Aplicaciones de la tecnología de aptámeros en los últimos 15 años
Reseña bibliográfica en la que se muestran las aplicaciones de la tecnología de aptámeros en los últimos 15 años, en donde se exponen sus ventajas, limitaciones y perspectivas futuras.
- Autores:
-
Rodríguez Ramírez, Ana María
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2022
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/64559
- Acceso en línea:
- http://hdl.handle.net/1992/64559
- Palabra clave:
- Aptámeros
Aplicaciones
SELEX
Reguladores moleculares
Nanoestructuras de ADN
Liberación de drogas
Agentes diagnósticos de enfermedades
Sensores
Agentes terapeúticos
Química
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
UNIANDES2_97dab9c417d4a0fcefa8bda8d6da1a36 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/64559 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.none.fl_str_mv |
Aplicaciones de la tecnología de aptámeros en los últimos 15 años |
title |
Aplicaciones de la tecnología de aptámeros en los últimos 15 años |
spellingShingle |
Aplicaciones de la tecnología de aptámeros en los últimos 15 años Aptámeros Aplicaciones SELEX Reguladores moleculares Nanoestructuras de ADN Liberación de drogas Agentes diagnósticos de enfermedades Sensores Agentes terapeúticos Química |
title_short |
Aplicaciones de la tecnología de aptámeros en los últimos 15 años |
title_full |
Aplicaciones de la tecnología de aptámeros en los últimos 15 años |
title_fullStr |
Aplicaciones de la tecnología de aptámeros en los últimos 15 años |
title_full_unstemmed |
Aplicaciones de la tecnología de aptámeros en los últimos 15 años |
title_sort |
Aplicaciones de la tecnología de aptámeros en los últimos 15 años |
dc.creator.fl_str_mv |
Rodríguez Ramírez, Ana María |
dc.contributor.advisor.none.fl_str_mv |
Jiménez Díaz, Elizabeth |
dc.contributor.author.none.fl_str_mv |
Rodríguez Ramírez, Ana María |
dc.contributor.researchgroup.es_CO.fl_str_mv |
Grupo de Investigación de Bioquímica Aplicada |
dc.subject.keyword.none.fl_str_mv |
Aptámeros Aplicaciones SELEX Reguladores moleculares Nanoestructuras de ADN Liberación de drogas Agentes diagnósticos de enfermedades Sensores Agentes terapeúticos |
topic |
Aptámeros Aplicaciones SELEX Reguladores moleculares Nanoestructuras de ADN Liberación de drogas Agentes diagnósticos de enfermedades Sensores Agentes terapeúticos Química |
dc.subject.themes.es_CO.fl_str_mv |
Química |
description |
Reseña bibliográfica en la que se muestran las aplicaciones de la tecnología de aptámeros en los últimos 15 años, en donde se exponen sus ventajas, limitaciones y perspectivas futuras. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-12 |
dc.date.accessioned.none.fl_str_mv |
2023-02-02T20:04:22Z |
dc.date.available.none.fl_str_mv |
2023-02-02T20:04:22Z |
dc.type.es_CO.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.es_CO.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/64559 |
dc.identifier.instname.es_CO.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.es_CO.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.es_CO.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/64559 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
spa |
language |
spa |
dc.relation.references.es_CO.fl_str_mv |
Sun, H.; Zu, Y. A Highlight of Recent Advances in Aptamer Technology and Its Application. Molecules 2015, 20 (7), 11959-11980. https://doi.org/10.3390/MOLECULES200711959. Sefah, K.; Shangguan, D.; Xiong, X.; O'Donoghue, M. B.; Tan, W. Development of DNA Aptamers Using Cell-SELEX. Nature Protocols 2010 5:6 2010, 5 (6), 1169-1185. https://doi.org/10.1038/nprot.2010.66. Ohuchi, S. Cell-Selex Technology. Biores Open Access 2012, 1 (6), 265-272. https://doi.org/10.1089/BIORES.2012.0253/ASSET/IMAGES/LARGE/FIGURE3.JPEG. Lorsch, J. R.; Szostak, J. W. In Vitro Evolution of New Ribozymes with Polynucleotide Kinase Activity. 1994. Mondal, I.; Sharma, S.; Kulshreshtha, R. MicroRNA Therapeutics in Glioblastoma: Candidates and Targeting Strategies. In AGO-Driven Non-Coding RNAs; Academic Press, 2019; pp 261- 292. https://doi.org/10.1016/b978-0-12-815669-8.00010-5. Singh, A.; Chaudhary, S.; Agarwal, A.; Verma, A. S. Antibodies: Monoclonal and Polyclonal. Animal Biotechnology: Models in Discovery and Translation 2014, 265-287. https://doi.org/10.1016/B978-0-12-416002-6.00015-8. Tuerk, C.; Gold, L. Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase. Science 1990, 249 (4968), 505-510. https://doi.org/10.1126/SCIENCE.2200121. Ellington, A. D.; Szostak, J. W. In Vitro Selection of RNA Molecules That Bind Specific Ligands. Nature 1990 346:6287 1990, 346 (6287), 818-822. https://doi.org/10.1038/346818a0. Ospina, J. D. Los Aptámeros Como Novedosa Herramienta Diagnóstica y Terapéutica y Su Potencial Uso En Parasitología. Biomédica 2020, 40 (Suppl 1), 148. https://doi.org/10.7705/BIOMEDICA.4765. Hernández, F. J.; Andrea, J.; Hincapié, B.; Clave, P. Aptámeros: Agentes Diagnósticos y Terapéuticos. Iatreia 2012, 25 (2), 159-168. Conrad, R.; Keranen, L. M.; Ellington, A. D.; Newton, A. C. Isozyme-Specific Inhibition of Protein Kinase C by RNA Aptamers. Journal of Biological Chemistry 1994, 269 (51), 32051- 32054. https://doi.org/10.1016/s0021-9258(18)31598-9. Jenison, R. D.; Gill, S. C.; Pardi, A.; Polisky, B. High-Resolution Molecular Discrimination by RNA. Science 1994, 263 (5152), 1425-1429. https://doi.org/10.1126/SCIENCE.7510417. Gopinath, S. C. B. Methods Developed for SELEX. Anal Bioanal Chem 2007, 387 (1), 171-182. https://doi.org/10.1007/S00216-006-0826-2/FIGURES/3. Cruz-Hernández, C. D.; Rodríguez-Martínez, G.; Cortés-Ramírez, S. A.; Morales-Pacheco, M.; Cruz-Burgos, M.; Losada-García, A.; Reyes-Grajeda, J. P.; González-Ramírez, I.; GonzálezCovarrubias, V.; Camacho-Arroyo, I.; Cerbón, M.; Rodríguez-Dorantes, M. Aptamers as Theragnostic Tools in Prostate Cancer. Biomolecules 2022, 12 (8), 1056. https://doi.org/10.3390/biom12081056. Klug, S. J.; Famulok, M. All You Wanted to Know about SELEX. Molecular Biology Reports 1994 20:2 1994, 20 (2), 97-107. https://doi.org/10.1007/BF00996358. Ni, S.; Zhuo, Z.; Pan, Y.; Yu, Y.; Li, F.; Liu, J.; Wang, L.; Wu, X.; Li, D.; Wan, Y.; Zhang, L.; Yang, Z.; Zhang, B. T.; Lu, A.; Zhang, G. Recent Progress in Aptamer Discoveries and Modifications for Therapeutic Applications. ACS Appl Mater Interfaces 2021, 13 (8), 9500-9519. https://doi.org/10.1021/ACSAMI.0C05750/ASSET/IMAGES/LARGE/AM0C05750_0017.JPEG. Zhou, J.; Rossi, J. Aptamers as Targeted Therapeutics: Current Potential and Challenges. Nat Rev Drug Discov 2017, 16 (3), 181-202. https://doi.org/10.1038/NRD.2016.199. Xuan, W.; Peng, Y.; Deng, Z.; Peng, T.; Kuai, H.; Li, Y.; He, J.; Jin, C.; Liu, Y.; Wang, R.; Tan, W. A Basic Insight into Aptamer-Drug Conjugates (ApDCs). Biomaterials 2018, 182, 216-226. https://doi.org/10.1016/J.BIOMATERIALS.2018.08.021. Bruno, J. G. A Review of Therapeutic Aptamer Conjugates with Emphasis on New Approaches. Pharmaceuticals 2013, Vol. 6, Pages 340-357 2013, 6 (3), 340-357. https://doi.org/10.3390/PH6030340. Cho, E. J.; Lee, J. W.; Ellington, A. D. Applications of Aptamers as Sensors. http://dx.doi.org/10.1146/annurev.anchem.1.031207.112851 2009, 2, 241-264. https://doi.org/10.1146/ANNUREV.ANCHEM.1.031207.112851. Zhu, G.; Niu, G.; Chen, X. Aptamer-Drug Conjugates. Bioconjug Chem 2015, 26 (11), 2186-2197. https://doi.org/10.1021/ACS.BIOCONJCHEM.5B00291/ASSET/IMAGES/LARGE/BC-2015- 00291G_0003.JPEG. Vinkenborg, J. L.; Karnowski, N.; Famulok, M. Aptamers for Allosteric Regulation. Nature Chemical Biology 2011 7:8 2011, 7 (8), 519-527. https://doi.org/10.1038/nchembio.609. Chen, S.; Zhang, L.; Yuan, Q.; Tan, J. Current Advances in Aptamer-Based Biomolecular Recognition and Biological Process Regulation. Chemical Research in Chinese Universities. Springer Science and Business Media Deutschland GmbH August 1, 2022, pp 847-855. https://doi.org/10.1007/s40242-022-2087-9. Park, K. S. Nucleic Acid Aptamer-Based Methods for Diagnosis of Infections. Biosens Bioelectron 2018, 102, 179-188. https://doi.org/10.1016/J.BIOS.2017.11.028. Xie, M.; Zhao, F.; Zhang, Y.; Xiong, Y.; Han, S. Recent Advances in Aptamer-Based Optical and Electrochemical Biosensors for Detection of Pesticides and Veterinary Drugs. Food Control 2022, 131, 108399. https://doi.org/10.1016/J.FOODCONT.2021.108399. Siddiqui, M. A. A.; Keating, G. M. Pegaptanib: In Exudative Age-Related Macular Degeneration. Drugs 2005, 65 (11), 1571-1577. https://doi.org/10.2165/00003495- 200565110-00010/FIGURES/3. Gragoudas, E. S.; Adamis, A. P.; Cunningham, E. T.; Feinsod, M.; Guyer, D. R. Pegaptanib for Neovascular Age-Related Macular Degeneration. N Engl J Med 2004, 351 (27), 2805-2816. https://doi.org/10.1056/NEJMOA042760. Jaffe, G. J.; Eliott, D.; Wells, J. A.; Prenner, J. L.; Papp, A.; Patel, S. A Phase 1 Study of Intravitreous E10030 in Combination with Ranibizumab in Neovascular Age-Related Macular Degeneration. Ophthalmology 2016, 123 (1), 78-85. https://doi.org/10.1016/J.OPHTHA.2015.09.004. Povsic, T. J.; Vavalle, J. P.; Alexander, J. H.; Aberle, L. H.; Zelenkofske, S. L.; Becker, R. C.; Buller, C. E.; Cohen, M. G.; Cornel, J. H.; Kasprzak, J. D.; Montalescot, G.; Fail, P. S.; Sarembock, I. J.; Mehran, R. Use of the REG1 Anticoagulation System in Patients with Acute Coronary Syndromes Undergoing Percutaneous Coronary Intervention: Results from the Phase II RADAR-PCI Study. EuroIntervention 2014, 10 (4), 431-438. https://doi.org/10.4244/EIJY14M06_01. Armulik, A.; Abramsson, A.; Betsholtz, C. Endothelial/Pericyte Interactions. Circ Res 2005, 97 (6), 512-523. https://doi.org/10.1161/01.RES.0000182903.16652.D7. Gupta, S.; Hirota, M.; Waugh, S. M.; Murakami, I.; Suzuki, T.; Muraguchi, M.; Shibamori, M.; Ishikawa, Y.; Jarvis, T. C.; Carter, J. D.; Zhang, C.; Gawande, B.; Vrkljan, M.; Janjic, N.; Schneider, D. J. Chemically Modified DNA Aptamers Bind Interleukin-6 with High Affinity and Inhibit Signaling by Blocking Its Interaction with Interleukin-6 Receptor. J Biol Chem 2014, 289 (12), 8706. https://doi.org/10.1074/JBC.M113.532580. Zhu, J.; Huang, H.; Dong, S.; Ge, L.; Zhang, Y. Progress in Aptamer-Mediated Drug Delivery Vehicles for Cancer Targeting and Its Implications in Addressing Chemotherapeutic Challenges. Theranostics 2014, 4 (9), 931. https://doi.org/10.7150/THNO.9663. Huang, Y. F.; Shangguan, D.; Liu, H.; Phillips, J. A.; Zhang, X.; Chen, Y.; Tan, W. Molecular Assembly of an Aptamer-Drug Conjugate for Targeted Drug Delivery to Tumor Cells. Chembiochem 2009, 10 (5), 862-868. https://doi.org/10.1002/CBIC.200800805. Johnson-Arbor, K.; Dubey, R. Doxorubicin. xPharm: The Comprehensive Pharmacology Reference 2022, 1-5. https://doi.org/10.1016/B978-008055232-3.61650-2. Zhu, G.; Zheng, J.; Song, E.; Donovan, M.; Zhang, K.; Liu, C.; Tan, W. Self-Assembled, AptamerTethered DNA Nanotrains for Targeted Transport of Molecular Drugs in Cancer Theranostics. Proc Natl Acad Sci U S A 2013, 110 (20), 7998-8003. https://doi.org/10.1073/PNAS.1220817110. Liang, C.; Li, F.; Wang, L.; Zhang, Z. K.; Wang, C.; He, B.; Li, J.; Chen, Z.; Shaikh, A. B.; Liu, J.; Wu, X.; Peng, S.; Dang, L.; Guo, B.; He, X.; Au, D. W. T.; Lu, C.; Zhu, H.; Zhang, B. T.; Lu, A.; Zhang, G. Tumor Cell-Targeted Delivery of CRISPR/Cas9 by Aptamer-Functionalized Lipopolymer for Therapeutic Genome Editing of VEGFA in Osteosarcoma. Biomaterials 2017, 147, 68-85. https://doi.org/10.1016/J.BIOMATERIALS.2017.09.015. Savic, N.; Schwank, G. Advances in Therapeutic CRISPR/Cas9 Genome Editing. Transl Res 2016, 168, 15-21. https://doi.org/10.1016/J.TRSL.2015.09.008. Barak, D.; Engelberg, S.; Assaraf, Y. G.; Livney, Y. D. Selective Targeting and Eradication of Various Human Non-Small Cell Lung Cancer Cell Lines Using Self-Assembled Aptamer Decorated Nanoparticles. Pharmaceutics 2022, 14 (8), 1650. https://doi.org/10.3390/pharmaceutics14081650. Wood, S. L.; Pernemalm, M.; Crosbie, P. A.; Whetton, A. D. Molecular Histology of Lung Cancer: From Targets to Treatments. Cancer Treat Rev 2015, 41 (4), 361-375. https://doi.org/10.1016/J.CTRV.2015.02.008. Manzanares, J.; Sala, F.; Gutiérrez, M. S. G.; Rueda, F. N. Biomarkers. Comprehensive Pharmacology 2022, 693-724. https://doi.org/10.1016/B978-0-12-820472-6.00060-8. Yao, C.; Qi, Y.; Zhao, Y.; Xiang, Y.; Chen, Q.; Fu, W. Aptamer-Based Piezoelectric Quartz Crystal Microbalance Biosensor Array for the Quantification of IgE. Biosens Bioelectron 2009, 24 (8), 2499-2503. https://doi.org/10.1016/J.BIOS.2008.12.036. Bagalkot, V.; Zhang, L.; Levy-Nissenbaum, E.; Jon, S.; Kantoff, P. W.; Langery, R.; Farokhzad, O. C. Quantum Dot-Aptamer Conjugates for Synchronous Cancer Imaging, Therapy, and Sensing of Drug Delivery Based on Bi-Fluorescence Resonance Energy Transfer. Nano Lett 2007, 7 (10), 3065-3070. https://doi.org/10.1021/NL071546N/ASSET/IMAGES/MEDIUM/NL071546NN00001.GIF. Gold, L.; Ayers, D.; Bertino, J.; Bock, C.; Bock, A.; Brody, E. N.; Carter, J.; Dalby, A. B.; Eaton, B. E.; Fitzwater, T.; Flather, D.; Forbes, A.; Foreman, T.; Fowler, C.; Gawande, B.; Goss, M.; Gunn, M.; Gupta, S.; Halladay, D.; Heil, J.; Heilig, J.; Hicke, B.; Husar, G.; Janjic, N.; Jarvis, T.; Jennings, S.; Katilius, E.; Keeney, T. R.; Kim, N.; Koch, T. H.; Kraemer, S.; Kroiss, L.; Le, N.; Levine, D.; Lindsey, W.; Lollo, B.; Mayfield, W.; Mehan, M.; Mehler, R.; Nelson, S. K.; Nelson, M.; Nieuwlandt, D.; Nikrad, M.; Ochsner, U.; Ostroff, R. M.; Otis, M.; Parker, T.; Pietrasiewicz, S.; Resnicow, D. I.; Rohloff, J.; Sanders, G.; Sattin, S.; Schneider, D.; Singer, B.; Stanton, M.; Sterkel, A.; Stewart, A.; Stratford, S.; Vaught, J. D.; Vrkljan, M.; Walker, J. J.; Watrobka, M.; Waugh, S.; Weiss, A.; Wilcox, S. K.; Wolfson, A.; Wolk, S. K.; Zhang, C.; Zichi, D. AptamerBased Multiplexed Proteomic Technology for Biomarker Discovery. PLoS One 2010, 5 (12), e15004. https://doi.org/10.1371/JOURNAL.PONE.0015004. Cristal, M.; Qcm, C.; Piezoeléctrico, B.; Arnau, A.; Sogorb, T.; Jiménez, Y.; Camilo Gómez, J. Cristales Piezoeléctricos de Cuarzo En Aplicación Como Microbalanza QCM. CES Medicina 2002, 16 (2), 27-37. https://doi.org/10.21615/CESMEDICINA. Keyi Liu, X. F. A Label-Free Aptasensor for Rapid Detection of H1N1 Virus Based on Graphene Oxide and Polymerase-Aided Signal Amplification. J Nanomed Nanotechnol 2015, 06 (03). https://doi.org/10.4172/2157-7439.1000288. Khang, J.; Kim, D.; Chung, K. W.; Lee, J. H. Chemiluminescent Aptasensor Capable of Rapidly Quantifying Escherichia Coli O157:H7. Talanta 2016, 147, 177-183. https://doi.org/10.1016/J.TALANTA.2015.09.055. Baker, D. A. Malaria Gametocytogenesis. Mol Biochem Parasitol 2010, 172 (2), 57-65. https://doi.org/10.1016/J.MOLBIOPARA.2010.03.019. Cheung, Y. W.; Dirkzwager, R. M.; Wong, W. C.; Cardoso, J.; D'Arc Neves Costa, J.; Tanner, J. A. Aptamer-Mediated Plasmodium-Specific Diagnosis of Malaria. Biochimie 2018, 145, 131- 136. https://doi.org/10.1016/J.BIOCHI.2017.10.017. Rajagopalan, R.; Yakhmi, J. v. Nanotechnological Approaches toward Cancer Chemotherapy. Nanostructures for Cancer Therapy 2017, 211-240. https://doi.org/10.1016/B978-0-323- 46144-3.00008-8. Chen, J.; Fang, Z.; Liu, J.; Zeng, L. A Simple and Rapid Biosensor for Ochratoxin A Based on a Structure-Switching Signaling Aptamer. Food Control 2012, 25 (2), 555-560. https://doi.org/10.1016/J.FOODCONT.2011.11.039. He, Y.; Tian, F.; Zhou, J.; Zhao, Q.; Fu, R.; Jiao, B. Colorimetric Aptasensor for Ochratoxin A Detection Based on Enzyme-Induced Gold Nanoparticle Aggregation. J Hazard Mater 2020, 388. https://doi.org/10.1016/j.jhazmat.2019.121758. Petryayeva, E.; Krull, U. J. Localized Surface Plasmon Resonance: Nanostructures, Bioassays and Biosensing-A Review. Analytica Chimica Acta. November 7, 2011, pp 8-24. https://doi.org/10.1016/j.aca.2011.08.020. Percival, S. L.; Williams, D. W. Escherichia Coli. Microbiology of Waterborne Diseases: Microbiological Aspects and Risks: Second Edition 2014, 89-117. https://doi.org/10.1016/B978-0-12-415846-7.00006-8. ZHANG, T.; TAO, Q.; BIAN, X. J.; CHEN, Q.; YAN, J. Rapid Visualized Detection of Escherichia Coli O157:H7 by DNA Hydrogel Based on Rolling Circle Amplification. Chinese Journal of Analytical Chemistry 2021, 49 (3), 377-386. https://doi.org/10.1016/S1872-2040(21)60085-3. Wallace, D. R. Acetamiprid. In Encyclopedia of Toxicology: Third Edition; Elsevier, 2014; pp 30-32. https://doi.org/10.1016/B978-0-12-386454-3.00091-9. Bahreyni, A.; Yazdian-Robati, R.; Ramezani, M.; Abnous, K.; Taghdisi, S. M. Fluorometric Aptasensing of the Neonicotinoid Insecticide Acetamiprid by Using Multiple Complementary Strands and Gold Nanoparticles. Microchimica Acta 2018, 185 (5). https://doi.org/10.1007/s00604-018-2805-7. Madianos, L.; Tsekenis, G.; Skotadis, E.; Patsiouras, L.; Tsoukalas, D. A Highly Sensitive Impedimetric Aptasensor for the Selective Detection of Acetamiprid and Atrazine Based on Microwires Formed by Platinum Nanoparticles. Biosens Bioelectron 2018, 101, 268-274. https://doi.org/10.1016/j.bios.2017.10.034. Zadegan, R. M.; Norton, M. L. Structural DNA Nanotechnology: From Design to Applications. Int J Mol Sci 2012, 13 (6), 7149. https://doi.org/10.3390/IJMS13067149. Seeman, N. C.; Sleiman, H. F. DNA Nanotechnology. Nature Reviews Materials 2017 3:1 2017, 3 (1), 1-23. https://doi.org/10.1038/natrevmats.2017.68. Rothemund, P. W. K. Folding DNA to Create Nanoscale Shapes and Patterns. Nature 2006 440:7082 2006, 440 (7082), 297-302. https://doi.org/10.1038/nature04586. Colquhoun, F. C. E. Development and Characterization of DNA Origami Nanostructures and Their Application as an Aptamer-Mediated Targeted Delivery System, Carleton University Otawa, Ontario, 2021. Godonoga, M.; Lin, T. Y.; Oshima, A.; Sumitomo, K.; Tang, M. S. L.; Cheung, Y. W.; Kinghorn, A. B.; Dirkzwager, R. M.; Zhou, C.; Kuzuya, A.; Tanner, J. A.; Heddle, J. G. A DNA Aptamer Recognising a Malaria Protein Biomarker Can Function as Part of a DNA Origami Assembly. Sci Rep 2016, 6. https://doi.org/10.1038/SREP21266. Ding, T.; Yang, J.; Wang, J.; Pan, V.; Lu, Z.; Ke, Y.; Zhang, C. Shaped DNA Origami Carrier Nanopore Translocation Influenced by Aptamer Based Surface Modification. Biosens Bioelectron 2022, 195, 113658. https://doi.org/10.1016/J.BIOS.2021.113658. Liu, X.; Yan, H.; Liu, Y.; Chang, Y. Targeted Cell-Cell Interactions by DNA NanoscaffoldTemplated Multivalent Bispecific Aptamers. Small 2011, 7 (12), 1673-1682. https://doi.org/10.1002/SMLL.201002292. Li, J.; Xun, K.; Pei, K.; Liu, X.; Peng, X.; Du, Y.; Qiu, L.; Tan, W. Cell-Membrane-Anchored DNA Nanoplatform for Programming Cellular Interactions. J Am Chem Soc 2019, 141 (45), 18013-18020. https://doi.org/10.1021/JACS.9B04725/ASSET/IMAGES/LARGE/JA9B04725_0005.JPEG. Platella, C.; Riccardi, C.; Montesarchio, D.; Roviello, G. N.; Musumeci, D. G-Quadruplex-Based Aptamers against Protein Targets in Therapy and Diagnostics. Biochimica et Biophysica Acta (BBA) - General Subjects 2017, 1861 (5), 1429-1447. https://doi.org/10.1016/J.BBAGEN.2016.11.027. Roxo, C.; Kotkowiak, W.; Pasternak, A. G-Quadruplex-Forming Aptamers-Characteristics, Applications, and Perspectives. Molecules 2019, Vol. 24, Page 3781 2019, 24 (20), 3781. https://doi.org/10.3390/MOLECULES24203781. Reyes-Reyes, E. M.; Salipur, F. R.; Shams, M.; Forsthoefel, M. K.; Bates, P. J. Mechanistic Studies of Anticancer Aptamer AS1411 Reveal a Novel Role for Nucleolin in Regulating Rac1 Activation. Mol Oncol 2015, 9 (7), 1392-1405. https://doi.org/10.1016/J.MOLONC.2015.03.012. Wang, J.; Wei, Y.; Hu, X.; Fang, Y. Y.; Li, X.; Liu, J.; Wang, S.; Yuan, Q. Protein Activity Regulation: Inhibition by Closed-Loop Aptamer-Based Structures and Restoration by Near-IR Stimulation. J Am Chem Soc 2015, 137 (33), 10576-10584. https://doi.org/10.1021/JACS.5B04894/ASSET/IMAGES/LARGE/JA-2015-04894Y_0007.JPEG. Han, D.; Zhu, Z.; Wu, C.; Peng, L.; Zhou, L.; Gulbakan, B.; Zhu, G.; Williams, K. R.; Tan, W. A Logical Molecular Circuit for Programmable and Autonomous Regulation of Protein Activity Using DNA Aptamer-Protein Interactions. J Am Chem Soc 2012, 134 (51), 20797-20804. https://doi.org/10.1021/JA310428S/SUPPL_FILE/JA310428S_SI_001.PDF. Gasse, C.; Zaarour, M.; Noppen, S.; Abramov, M.; Marlière, P.; Liekens, S.; de Strooper, B.; Herdewijn, P. Modulation of BACE1 Activity by Chemically Modified Aptamers. Chembiochem 2018, 19 (7), 754-763. https://doi.org/10.1002/CBIC.201700461. del Grosso, E.; Ragazzon, G.; Prins, L.; Ricci, F.; del Grosso, E.; Ricci, F.; Ragazzon, G.; Prins, L. J. Fuel-Responsive Allosteric DNA-Based Aptamers for the Transient Release of ATP and Cocaine. Angewandte Chemie 2019, 131 (17), 5638-5642. https://doi.org/10.1002/ANGE.201812885. Scott, W. G. Ribozymes. Curr Opin Struct Biol 2007, 17 (3), 280-286. https://doi.org/10.1016/J.SBI.2007.05.003. Ekesan, S.; McCarthy, E.; Case, D. A.; York, D. M. RNA Electrostatics: How Ribozymes Engineer Active Sites to Enable Catalysis. Journal of Physical Chemistry B 2022, 126 (32), 5982-5990. https://doi.org/10.1021/ACS.JPCB.2C03727/ASSET/IMAGES/LARGE/JP2C03727_0005.JPEG. Rotstan, K. A.; Abdelsayed, M. M.; Passalacqua, L. F. M.; Chizzolini, F.; Sudarshan, K.; Richard Chamberlin, A.; Jirí, M.; Luptak, A. Regulation of MRNA Translation by a Photoriboswitch. Elife 2020, 9. https://doi.org/10.7554/ELIFE.51737. Ahmadi, Y.; Soldo, R.; Rathammer, K.; Eibler, L.; Barisic, I. Analyzing Criteria Affecting the Functionality of G-Quadruplex-Based DNA Aptazymes as Colorimetric Biosensors and Development of Quinine-Binding Aptazymes. Anal Chem 2021, 93 (12), 5161-5169. https://doi.org/10.1021/ACS.ANALCHEM.0C05052/SUPPL_FILE/AC0C05052_SI_002.XLSX. Rozenblum, G. T.; Lopez, V. G.; Vitullo, A. D.; Radrizzani, M. Aptamers: Current Challenges and Future Prospects. http://dx.doi.org/10.1517/17460441.2016.1126244 2015, 11 (2), 127-135. https://doi.org/10.1517/17460441.2016.1126244. Pinheiro, V. B.; Taylor, A. I.; Cozens, C.; Abramov, M.; Renders, M.; Zhang, S.; Chaput, J. C.; Wengel, J.; Peak-Chew, S. Y.; McLaughlin, S. H.; Herdewijn, P.; Holliger, P. Synthetic Genetic Polymers Capable of Heredity and Evolution. Science 2012, 336 (6079), 341-344. https://doi.org/10.1126/SCIENCE.1217622. Kulabhusan, P. K.; Hussain, B.; Yüce, M. Current Perspectives on Aptamers as Diagnostic Tools and Therapeutic Agents. Pharmaceutics 2020, Vol. 12, Page 646 2020, 12 (7), 646. https://doi.org/10.3390/PHARMACEUTICS12070646. |
dc.rights.license.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
36 páginas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Química |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Química |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/916c619f-3272-4c69-9794-340752b0bf52/download https://repositorio.uniandes.edu.co/bitstreams/c01361a5-9dc9-4a56-beb3-f6750f896ec2/download https://repositorio.uniandes.edu.co/bitstreams/fc44025c-6759-4329-ac77-1a4f1c9cea07/download https://repositorio.uniandes.edu.co/bitstreams/c5f1bf18-974b-4d58-bdc1-800662b95b01/download https://repositorio.uniandes.edu.co/bitstreams/cc634212-a583-49d6-a3c9-7f70ba5c7a5d/download https://repositorio.uniandes.edu.co/bitstreams/cfe3a02a-8b30-43dc-9409-43694c3e01ab/download https://repositorio.uniandes.edu.co/bitstreams/98c9fa62-db62-47d9-9589-f004e7f66e38/download https://repositorio.uniandes.edu.co/bitstreams/853938de-da9b-40f0-a3c5-3713bc9a6dda/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 0f1163de53fd6442015fc698a6368041 86eb578073a59adac2c3b8af6941a190 c0d97f061c0dd9b6f6ddea6b1d211bc3 a036ac3ca8ae0648780ce67f69962896 d1e76f9fdcda4673b04899e5b1c93b6c 68b329da9893e34099c7d8ad5cb9c940 5aa5c691a1ffe97abd12c2966efcb8d6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1818111785026191360 |
spelling |
Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Jiménez Díaz, Elizabethvirtual::5966-1Rodríguez Ramírez, Ana Maríad7a36dc6-248f-4cf4-a2ed-c50ea6d4557c600Grupo de Investigación de Bioquímica Aplicada2023-02-02T20:04:22Z2023-02-02T20:04:22Z2022-12http://hdl.handle.net/1992/64559instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Reseña bibliográfica en la que se muestran las aplicaciones de la tecnología de aptámeros en los últimos 15 años, en donde se exponen sus ventajas, limitaciones y perspectivas futuras.Los aptámeros son cadenas de oligonucleótidos de ARN o ADN elaborados sintéticamente, que tienen la propiedad de unirse a moléculas objetivo con alta afinidad y especificidad. Estos han sido utilizados como análogos a anticuerpos debido a sus ventajas de producción y detección, tomando el nombre de anticuerpos sintéticos. Aunque presentan desventajas a la hora de utilizarse in vivo, a lo largo de los años se han mejorado sus propiedades, ya que su estructura es fácilmente modificable. De hecho, gracias a su versatilidad y capacidad de reconocer específicamente objetivos moleculares, los aptámeros han sido objeto de estudio, por lo que se han derivado nuevas aplicaciones, más allá de actuar como análogos de anticuerpos. En el presente trabajo se presentarán las aplicaciones de la tecnología de aptámeros en los últimos 15 años. Entre las aplicaciones se encuentra su uso como agentes terapéuticos, sistemas de liberación de drogas, agentes diagnósticos de enfermedades o infecciones, sensores, nanoestructuras de ADN y reguladores moleculares. Además de exponer perspectivas futuras para el desarrollo de esta tecnología en los campos anteriormente mencionados.QuímicoPregradoBioquímica, tecnología36 páginasapplication/pdfspaUniversidad de los AndesQuímicaFacultad de CienciasDepartamento de QuímicaAplicaciones de la tecnología de aptámeros en los últimos 15 añosTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPAptámerosAplicacionesSELEXReguladores molecularesNanoestructuras de ADNLiberación de drogasAgentes diagnósticos de enfermedadesSensoresAgentes terapeúticosQuímicaSun, H.; Zu, Y. A Highlight of Recent Advances in Aptamer Technology and Its Application. Molecules 2015, 20 (7), 11959-11980. https://doi.org/10.3390/MOLECULES200711959.Sefah, K.; Shangguan, D.; Xiong, X.; O'Donoghue, M. B.; Tan, W. Development of DNA Aptamers Using Cell-SELEX. Nature Protocols 2010 5:6 2010, 5 (6), 1169-1185. https://doi.org/10.1038/nprot.2010.66.Ohuchi, S. Cell-Selex Technology. Biores Open Access 2012, 1 (6), 265-272. https://doi.org/10.1089/BIORES.2012.0253/ASSET/IMAGES/LARGE/FIGURE3.JPEG.Lorsch, J. R.; Szostak, J. W. In Vitro Evolution of New Ribozymes with Polynucleotide Kinase Activity. 1994.Mondal, I.; Sharma, S.; Kulshreshtha, R. MicroRNA Therapeutics in Glioblastoma: Candidates and Targeting Strategies. In AGO-Driven Non-Coding RNAs; Academic Press, 2019; pp 261- 292. https://doi.org/10.1016/b978-0-12-815669-8.00010-5.Singh, A.; Chaudhary, S.; Agarwal, A.; Verma, A. S. Antibodies: Monoclonal and Polyclonal. Animal Biotechnology: Models in Discovery and Translation 2014, 265-287. https://doi.org/10.1016/B978-0-12-416002-6.00015-8.Tuerk, C.; Gold, L. Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase. Science 1990, 249 (4968), 505-510. https://doi.org/10.1126/SCIENCE.2200121.Ellington, A. D.; Szostak, J. W. In Vitro Selection of RNA Molecules That Bind Specific Ligands. Nature 1990 346:6287 1990, 346 (6287), 818-822. https://doi.org/10.1038/346818a0.Ospina, J. D. Los Aptámeros Como Novedosa Herramienta Diagnóstica y Terapéutica y Su Potencial Uso En Parasitología. Biomédica 2020, 40 (Suppl 1), 148. https://doi.org/10.7705/BIOMEDICA.4765.Hernández, F. J.; Andrea, J.; Hincapié, B.; Clave, P. Aptámeros: Agentes Diagnósticos y Terapéuticos. Iatreia 2012, 25 (2), 159-168.Conrad, R.; Keranen, L. M.; Ellington, A. D.; Newton, A. C. Isozyme-Specific Inhibition of Protein Kinase C by RNA Aptamers. Journal of Biological Chemistry 1994, 269 (51), 32051- 32054. https://doi.org/10.1016/s0021-9258(18)31598-9.Jenison, R. D.; Gill, S. C.; Pardi, A.; Polisky, B. High-Resolution Molecular Discrimination by RNA. Science 1994, 263 (5152), 1425-1429. https://doi.org/10.1126/SCIENCE.7510417.Gopinath, S. C. B. Methods Developed for SELEX. Anal Bioanal Chem 2007, 387 (1), 171-182. https://doi.org/10.1007/S00216-006-0826-2/FIGURES/3.Cruz-Hernández, C. D.; Rodríguez-Martínez, G.; Cortés-Ramírez, S. A.; Morales-Pacheco, M.; Cruz-Burgos, M.; Losada-García, A.; Reyes-Grajeda, J. P.; González-Ramírez, I.; GonzálezCovarrubias, V.; Camacho-Arroyo, I.; Cerbón, M.; Rodríguez-Dorantes, M. Aptamers as Theragnostic Tools in Prostate Cancer. Biomolecules 2022, 12 (8), 1056. https://doi.org/10.3390/biom12081056.Klug, S. J.; Famulok, M. All You Wanted to Know about SELEX. Molecular Biology Reports 1994 20:2 1994, 20 (2), 97-107. https://doi.org/10.1007/BF00996358.Ni, S.; Zhuo, Z.; Pan, Y.; Yu, Y.; Li, F.; Liu, J.; Wang, L.; Wu, X.; Li, D.; Wan, Y.; Zhang, L.; Yang, Z.; Zhang, B. T.; Lu, A.; Zhang, G. Recent Progress in Aptamer Discoveries and Modifications for Therapeutic Applications. ACS Appl Mater Interfaces 2021, 13 (8), 9500-9519. https://doi.org/10.1021/ACSAMI.0C05750/ASSET/IMAGES/LARGE/AM0C05750_0017.JPEG.Zhou, J.; Rossi, J. Aptamers as Targeted Therapeutics: Current Potential and Challenges. Nat Rev Drug Discov 2017, 16 (3), 181-202. https://doi.org/10.1038/NRD.2016.199.Xuan, W.; Peng, Y.; Deng, Z.; Peng, T.; Kuai, H.; Li, Y.; He, J.; Jin, C.; Liu, Y.; Wang, R.; Tan, W. A Basic Insight into Aptamer-Drug Conjugates (ApDCs). Biomaterials 2018, 182, 216-226. https://doi.org/10.1016/J.BIOMATERIALS.2018.08.021.Bruno, J. G. A Review of Therapeutic Aptamer Conjugates with Emphasis on New Approaches. Pharmaceuticals 2013, Vol. 6, Pages 340-357 2013, 6 (3), 340-357. https://doi.org/10.3390/PH6030340.Cho, E. J.; Lee, J. W.; Ellington, A. D. Applications of Aptamers as Sensors. http://dx.doi.org/10.1146/annurev.anchem.1.031207.112851 2009, 2, 241-264. https://doi.org/10.1146/ANNUREV.ANCHEM.1.031207.112851.Zhu, G.; Niu, G.; Chen, X. Aptamer-Drug Conjugates. Bioconjug Chem 2015, 26 (11), 2186-2197. https://doi.org/10.1021/ACS.BIOCONJCHEM.5B00291/ASSET/IMAGES/LARGE/BC-2015- 00291G_0003.JPEG.Vinkenborg, J. L.; Karnowski, N.; Famulok, M. Aptamers for Allosteric Regulation. Nature Chemical Biology 2011 7:8 2011, 7 (8), 519-527. https://doi.org/10.1038/nchembio.609.Chen, S.; Zhang, L.; Yuan, Q.; Tan, J. Current Advances in Aptamer-Based Biomolecular Recognition and Biological Process Regulation. Chemical Research in Chinese Universities. Springer Science and Business Media Deutschland GmbH August 1, 2022, pp 847-855. https://doi.org/10.1007/s40242-022-2087-9.Park, K. S. Nucleic Acid Aptamer-Based Methods for Diagnosis of Infections. Biosens Bioelectron 2018, 102, 179-188. https://doi.org/10.1016/J.BIOS.2017.11.028.Xie, M.; Zhao, F.; Zhang, Y.; Xiong, Y.; Han, S. Recent Advances in Aptamer-Based Optical and Electrochemical Biosensors for Detection of Pesticides and Veterinary Drugs. Food Control 2022, 131, 108399. https://doi.org/10.1016/J.FOODCONT.2021.108399.Siddiqui, M. A. A.; Keating, G. M. Pegaptanib: In Exudative Age-Related Macular Degeneration. Drugs 2005, 65 (11), 1571-1577. https://doi.org/10.2165/00003495- 200565110-00010/FIGURES/3.Gragoudas, E. S.; Adamis, A. P.; Cunningham, E. T.; Feinsod, M.; Guyer, D. R. Pegaptanib for Neovascular Age-Related Macular Degeneration. N Engl J Med 2004, 351 (27), 2805-2816. https://doi.org/10.1056/NEJMOA042760.Jaffe, G. J.; Eliott, D.; Wells, J. A.; Prenner, J. L.; Papp, A.; Patel, S. A Phase 1 Study of Intravitreous E10030 in Combination with Ranibizumab in Neovascular Age-Related Macular Degeneration. Ophthalmology 2016, 123 (1), 78-85. https://doi.org/10.1016/J.OPHTHA.2015.09.004.Povsic, T. J.; Vavalle, J. P.; Alexander, J. H.; Aberle, L. H.; Zelenkofske, S. L.; Becker, R. C.; Buller, C. E.; Cohen, M. G.; Cornel, J. H.; Kasprzak, J. D.; Montalescot, G.; Fail, P. S.; Sarembock, I. J.; Mehran, R. Use of the REG1 Anticoagulation System in Patients with Acute Coronary Syndromes Undergoing Percutaneous Coronary Intervention: Results from the Phase II RADAR-PCI Study. EuroIntervention 2014, 10 (4), 431-438. https://doi.org/10.4244/EIJY14M06_01.Armulik, A.; Abramsson, A.; Betsholtz, C. Endothelial/Pericyte Interactions. Circ Res 2005, 97 (6), 512-523. https://doi.org/10.1161/01.RES.0000182903.16652.D7.Gupta, S.; Hirota, M.; Waugh, S. M.; Murakami, I.; Suzuki, T.; Muraguchi, M.; Shibamori, M.; Ishikawa, Y.; Jarvis, T. C.; Carter, J. D.; Zhang, C.; Gawande, B.; Vrkljan, M.; Janjic, N.; Schneider, D. J. Chemically Modified DNA Aptamers Bind Interleukin-6 with High Affinity and Inhibit Signaling by Blocking Its Interaction with Interleukin-6 Receptor. J Biol Chem 2014, 289 (12), 8706. https://doi.org/10.1074/JBC.M113.532580.Zhu, J.; Huang, H.; Dong, S.; Ge, L.; Zhang, Y. Progress in Aptamer-Mediated Drug Delivery Vehicles for Cancer Targeting and Its Implications in Addressing Chemotherapeutic Challenges. Theranostics 2014, 4 (9), 931. https://doi.org/10.7150/THNO.9663.Huang, Y. F.; Shangguan, D.; Liu, H.; Phillips, J. A.; Zhang, X.; Chen, Y.; Tan, W. Molecular Assembly of an Aptamer-Drug Conjugate for Targeted Drug Delivery to Tumor Cells. Chembiochem 2009, 10 (5), 862-868. https://doi.org/10.1002/CBIC.200800805.Johnson-Arbor, K.; Dubey, R. Doxorubicin. xPharm: The Comprehensive Pharmacology Reference 2022, 1-5. https://doi.org/10.1016/B978-008055232-3.61650-2.Zhu, G.; Zheng, J.; Song, E.; Donovan, M.; Zhang, K.; Liu, C.; Tan, W. Self-Assembled, AptamerTethered DNA Nanotrains for Targeted Transport of Molecular Drugs in Cancer Theranostics. Proc Natl Acad Sci U S A 2013, 110 (20), 7998-8003. https://doi.org/10.1073/PNAS.1220817110.Liang, C.; Li, F.; Wang, L.; Zhang, Z. K.; Wang, C.; He, B.; Li, J.; Chen, Z.; Shaikh, A. B.; Liu, J.; Wu, X.; Peng, S.; Dang, L.; Guo, B.; He, X.; Au, D. W. T.; Lu, C.; Zhu, H.; Zhang, B. T.; Lu, A.; Zhang, G. Tumor Cell-Targeted Delivery of CRISPR/Cas9 by Aptamer-Functionalized Lipopolymer for Therapeutic Genome Editing of VEGFA in Osteosarcoma. Biomaterials 2017, 147, 68-85. https://doi.org/10.1016/J.BIOMATERIALS.2017.09.015.Savic, N.; Schwank, G. Advances in Therapeutic CRISPR/Cas9 Genome Editing. Transl Res 2016, 168, 15-21. https://doi.org/10.1016/J.TRSL.2015.09.008.Barak, D.; Engelberg, S.; Assaraf, Y. G.; Livney, Y. D. Selective Targeting and Eradication of Various Human Non-Small Cell Lung Cancer Cell Lines Using Self-Assembled Aptamer Decorated Nanoparticles. Pharmaceutics 2022, 14 (8), 1650. https://doi.org/10.3390/pharmaceutics14081650.Wood, S. L.; Pernemalm, M.; Crosbie, P. A.; Whetton, A. D. Molecular Histology of Lung Cancer: From Targets to Treatments. Cancer Treat Rev 2015, 41 (4), 361-375. https://doi.org/10.1016/J.CTRV.2015.02.008.Manzanares, J.; Sala, F.; Gutiérrez, M. S. G.; Rueda, F. N. Biomarkers. Comprehensive Pharmacology 2022, 693-724. https://doi.org/10.1016/B978-0-12-820472-6.00060-8.Yao, C.; Qi, Y.; Zhao, Y.; Xiang, Y.; Chen, Q.; Fu, W. Aptamer-Based Piezoelectric Quartz Crystal Microbalance Biosensor Array for the Quantification of IgE. Biosens Bioelectron 2009, 24 (8), 2499-2503. https://doi.org/10.1016/J.BIOS.2008.12.036.Bagalkot, V.; Zhang, L.; Levy-Nissenbaum, E.; Jon, S.; Kantoff, P. W.; Langery, R.; Farokhzad, O. C. Quantum Dot-Aptamer Conjugates for Synchronous Cancer Imaging, Therapy, and Sensing of Drug Delivery Based on Bi-Fluorescence Resonance Energy Transfer. Nano Lett 2007, 7 (10), 3065-3070. https://doi.org/10.1021/NL071546N/ASSET/IMAGES/MEDIUM/NL071546NN00001.GIF.Gold, L.; Ayers, D.; Bertino, J.; Bock, C.; Bock, A.; Brody, E. N.; Carter, J.; Dalby, A. B.; Eaton, B. E.; Fitzwater, T.; Flather, D.; Forbes, A.; Foreman, T.; Fowler, C.; Gawande, B.; Goss, M.; Gunn, M.; Gupta, S.; Halladay, D.; Heil, J.; Heilig, J.; Hicke, B.; Husar, G.; Janjic, N.; Jarvis, T.; Jennings, S.; Katilius, E.; Keeney, T. R.; Kim, N.; Koch, T. H.; Kraemer, S.; Kroiss, L.; Le, N.; Levine, D.; Lindsey, W.; Lollo, B.; Mayfield, W.; Mehan, M.; Mehler, R.; Nelson, S. K.; Nelson, M.; Nieuwlandt, D.; Nikrad, M.; Ochsner, U.; Ostroff, R. M.; Otis, M.; Parker, T.; Pietrasiewicz, S.; Resnicow, D. I.; Rohloff, J.; Sanders, G.; Sattin, S.; Schneider, D.; Singer, B.; Stanton, M.; Sterkel, A.; Stewart, A.; Stratford, S.; Vaught, J. D.; Vrkljan, M.; Walker, J. J.; Watrobka, M.; Waugh, S.; Weiss, A.; Wilcox, S. K.; Wolfson, A.; Wolk, S. K.; Zhang, C.; Zichi, D. AptamerBased Multiplexed Proteomic Technology for Biomarker Discovery. PLoS One 2010, 5 (12), e15004. https://doi.org/10.1371/JOURNAL.PONE.0015004.Cristal, M.; Qcm, C.; Piezoeléctrico, B.; Arnau, A.; Sogorb, T.; Jiménez, Y.; Camilo Gómez, J. Cristales Piezoeléctricos de Cuarzo En Aplicación Como Microbalanza QCM. CES Medicina 2002, 16 (2), 27-37. https://doi.org/10.21615/CESMEDICINA.Keyi Liu, X. F. A Label-Free Aptasensor for Rapid Detection of H1N1 Virus Based on Graphene Oxide and Polymerase-Aided Signal Amplification. J Nanomed Nanotechnol 2015, 06 (03). https://doi.org/10.4172/2157-7439.1000288.Khang, J.; Kim, D.; Chung, K. W.; Lee, J. H. Chemiluminescent Aptasensor Capable of Rapidly Quantifying Escherichia Coli O157:H7. Talanta 2016, 147, 177-183. https://doi.org/10.1016/J.TALANTA.2015.09.055.Baker, D. A. Malaria Gametocytogenesis. Mol Biochem Parasitol 2010, 172 (2), 57-65. https://doi.org/10.1016/J.MOLBIOPARA.2010.03.019.Cheung, Y. W.; Dirkzwager, R. M.; Wong, W. C.; Cardoso, J.; D'Arc Neves Costa, J.; Tanner, J. A. Aptamer-Mediated Plasmodium-Specific Diagnosis of Malaria. Biochimie 2018, 145, 131- 136. https://doi.org/10.1016/J.BIOCHI.2017.10.017.Rajagopalan, R.; Yakhmi, J. v. Nanotechnological Approaches toward Cancer Chemotherapy. Nanostructures for Cancer Therapy 2017, 211-240. https://doi.org/10.1016/B978-0-323- 46144-3.00008-8.Chen, J.; Fang, Z.; Liu, J.; Zeng, L. A Simple and Rapid Biosensor for Ochratoxin A Based on a Structure-Switching Signaling Aptamer. Food Control 2012, 25 (2), 555-560. https://doi.org/10.1016/J.FOODCONT.2011.11.039.He, Y.; Tian, F.; Zhou, J.; Zhao, Q.; Fu, R.; Jiao, B. Colorimetric Aptasensor for Ochratoxin A Detection Based on Enzyme-Induced Gold Nanoparticle Aggregation. J Hazard Mater 2020, 388. https://doi.org/10.1016/j.jhazmat.2019.121758.Petryayeva, E.; Krull, U. J. Localized Surface Plasmon Resonance: Nanostructures, Bioassays and Biosensing-A Review. Analytica Chimica Acta. November 7, 2011, pp 8-24. https://doi.org/10.1016/j.aca.2011.08.020.Percival, S. L.; Williams, D. W. Escherichia Coli. Microbiology of Waterborne Diseases: Microbiological Aspects and Risks: Second Edition 2014, 89-117. https://doi.org/10.1016/B978-0-12-415846-7.00006-8.ZHANG, T.; TAO, Q.; BIAN, X. J.; CHEN, Q.; YAN, J. Rapid Visualized Detection of Escherichia Coli O157:H7 by DNA Hydrogel Based on Rolling Circle Amplification. Chinese Journal of Analytical Chemistry 2021, 49 (3), 377-386. https://doi.org/10.1016/S1872-2040(21)60085-3.Wallace, D. R. Acetamiprid. In Encyclopedia of Toxicology: Third Edition; Elsevier, 2014; pp 30-32. https://doi.org/10.1016/B978-0-12-386454-3.00091-9.Bahreyni, A.; Yazdian-Robati, R.; Ramezani, M.; Abnous, K.; Taghdisi, S. M. Fluorometric Aptasensing of the Neonicotinoid Insecticide Acetamiprid by Using Multiple Complementary Strands and Gold Nanoparticles. Microchimica Acta 2018, 185 (5). https://doi.org/10.1007/s00604-018-2805-7.Madianos, L.; Tsekenis, G.; Skotadis, E.; Patsiouras, L.; Tsoukalas, D. A Highly Sensitive Impedimetric Aptasensor for the Selective Detection of Acetamiprid and Atrazine Based on Microwires Formed by Platinum Nanoparticles. Biosens Bioelectron 2018, 101, 268-274. https://doi.org/10.1016/j.bios.2017.10.034.Zadegan, R. M.; Norton, M. L. Structural DNA Nanotechnology: From Design to Applications. Int J Mol Sci 2012, 13 (6), 7149. https://doi.org/10.3390/IJMS13067149.Seeman, N. C.; Sleiman, H. F. DNA Nanotechnology. Nature Reviews Materials 2017 3:1 2017, 3 (1), 1-23. https://doi.org/10.1038/natrevmats.2017.68.Rothemund, P. W. K. Folding DNA to Create Nanoscale Shapes and Patterns. Nature 2006 440:7082 2006, 440 (7082), 297-302. https://doi.org/10.1038/nature04586.Colquhoun, F. C. E. Development and Characterization of DNA Origami Nanostructures and Their Application as an Aptamer-Mediated Targeted Delivery System, Carleton University Otawa, Ontario, 2021.Godonoga, M.; Lin, T. Y.; Oshima, A.; Sumitomo, K.; Tang, M. S. L.; Cheung, Y. W.; Kinghorn, A. B.; Dirkzwager, R. M.; Zhou, C.; Kuzuya, A.; Tanner, J. A.; Heddle, J. G. A DNA Aptamer Recognising a Malaria Protein Biomarker Can Function as Part of a DNA Origami Assembly. Sci Rep 2016, 6. https://doi.org/10.1038/SREP21266.Ding, T.; Yang, J.; Wang, J.; Pan, V.; Lu, Z.; Ke, Y.; Zhang, C. Shaped DNA Origami Carrier Nanopore Translocation Influenced by Aptamer Based Surface Modification. Biosens Bioelectron 2022, 195, 113658. https://doi.org/10.1016/J.BIOS.2021.113658.Liu, X.; Yan, H.; Liu, Y.; Chang, Y. Targeted Cell-Cell Interactions by DNA NanoscaffoldTemplated Multivalent Bispecific Aptamers. Small 2011, 7 (12), 1673-1682. https://doi.org/10.1002/SMLL.201002292.Li, J.; Xun, K.; Pei, K.; Liu, X.; Peng, X.; Du, Y.; Qiu, L.; Tan, W. Cell-Membrane-Anchored DNA Nanoplatform for Programming Cellular Interactions. J Am Chem Soc 2019, 141 (45), 18013-18020. https://doi.org/10.1021/JACS.9B04725/ASSET/IMAGES/LARGE/JA9B04725_0005.JPEG.Platella, C.; Riccardi, C.; Montesarchio, D.; Roviello, G. N.; Musumeci, D. G-Quadruplex-Based Aptamers against Protein Targets in Therapy and Diagnostics. Biochimica et Biophysica Acta (BBA) - General Subjects 2017, 1861 (5), 1429-1447. https://doi.org/10.1016/J.BBAGEN.2016.11.027.Roxo, C.; Kotkowiak, W.; Pasternak, A. G-Quadruplex-Forming Aptamers-Characteristics, Applications, and Perspectives. Molecules 2019, Vol. 24, Page 3781 2019, 24 (20), 3781. https://doi.org/10.3390/MOLECULES24203781.Reyes-Reyes, E. M.; Salipur, F. R.; Shams, M.; Forsthoefel, M. K.; Bates, P. J. Mechanistic Studies of Anticancer Aptamer AS1411 Reveal a Novel Role for Nucleolin in Regulating Rac1 Activation. Mol Oncol 2015, 9 (7), 1392-1405. https://doi.org/10.1016/J.MOLONC.2015.03.012.Wang, J.; Wei, Y.; Hu, X.; Fang, Y. Y.; Li, X.; Liu, J.; Wang, S.; Yuan, Q. Protein Activity Regulation: Inhibition by Closed-Loop Aptamer-Based Structures and Restoration by Near-IR Stimulation. J Am Chem Soc 2015, 137 (33), 10576-10584. https://doi.org/10.1021/JACS.5B04894/ASSET/IMAGES/LARGE/JA-2015-04894Y_0007.JPEG.Han, D.; Zhu, Z.; Wu, C.; Peng, L.; Zhou, L.; Gulbakan, B.; Zhu, G.; Williams, K. R.; Tan, W. A Logical Molecular Circuit for Programmable and Autonomous Regulation of Protein Activity Using DNA Aptamer-Protein Interactions. J Am Chem Soc 2012, 134 (51), 20797-20804. https://doi.org/10.1021/JA310428S/SUPPL_FILE/JA310428S_SI_001.PDF.Gasse, C.; Zaarour, M.; Noppen, S.; Abramov, M.; Marlière, P.; Liekens, S.; de Strooper, B.; Herdewijn, P. Modulation of BACE1 Activity by Chemically Modified Aptamers. Chembiochem 2018, 19 (7), 754-763. https://doi.org/10.1002/CBIC.201700461.del Grosso, E.; Ragazzon, G.; Prins, L.; Ricci, F.; del Grosso, E.; Ricci, F.; Ragazzon, G.; Prins, L. J. Fuel-Responsive Allosteric DNA-Based Aptamers for the Transient Release of ATP and Cocaine. Angewandte Chemie 2019, 131 (17), 5638-5642. https://doi.org/10.1002/ANGE.201812885.Scott, W. G. Ribozymes. Curr Opin Struct Biol 2007, 17 (3), 280-286. https://doi.org/10.1016/J.SBI.2007.05.003.Ekesan, S.; McCarthy, E.; Case, D. A.; York, D. M. RNA Electrostatics: How Ribozymes Engineer Active Sites to Enable Catalysis. Journal of Physical Chemistry B 2022, 126 (32), 5982-5990. https://doi.org/10.1021/ACS.JPCB.2C03727/ASSET/IMAGES/LARGE/JP2C03727_0005.JPEG.Rotstan, K. A.; Abdelsayed, M. M.; Passalacqua, L. F. M.; Chizzolini, F.; Sudarshan, K.; Richard Chamberlin, A.; Jirí, M.; Luptak, A. Regulation of MRNA Translation by a Photoriboswitch. Elife 2020, 9. https://doi.org/10.7554/ELIFE.51737.Ahmadi, Y.; Soldo, R.; Rathammer, K.; Eibler, L.; Barisic, I. Analyzing Criteria Affecting the Functionality of G-Quadruplex-Based DNA Aptazymes as Colorimetric Biosensors and Development of Quinine-Binding Aptazymes. Anal Chem 2021, 93 (12), 5161-5169. https://doi.org/10.1021/ACS.ANALCHEM.0C05052/SUPPL_FILE/AC0C05052_SI_002.XLSX.Rozenblum, G. T.; Lopez, V. G.; Vitullo, A. D.; Radrizzani, M. Aptamers: Current Challenges and Future Prospects. http://dx.doi.org/10.1517/17460441.2016.1126244 2015, 11 (2), 127-135. https://doi.org/10.1517/17460441.2016.1126244.Pinheiro, V. B.; Taylor, A. I.; Cozens, C.; Abramov, M.; Renders, M.; Zhang, S.; Chaput, J. C.; Wengel, J.; Peak-Chew, S. Y.; McLaughlin, S. H.; Herdewijn, P.; Holliger, P. Synthetic Genetic Polymers Capable of Heredity and Evolution. Science 2012, 336 (6079), 341-344. https://doi.org/10.1126/SCIENCE.1217622.Kulabhusan, P. K.; Hussain, B.; Yüce, M. Current Perspectives on Aptamers as Diagnostic Tools and Therapeutic Agents. Pharmaceutics 2020, Vol. 12, Page 646 2020, 12 (7), 646. https://doi.org/10.3390/PHARMACEUTICS12070646.201910928Publicationhttps://scholar.google.es/citations?user=jIgIKoAAAAAJvirtual::5966-10000-0001-7798-2194virtual::5966-1525dcdb4-7349-4e54-bf7d-6dcb9c7cad8dvirtual::5966-1525dcdb4-7349-4e54-bf7d-6dcb9c7cad8dvirtual::5966-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/916c619f-3272-4c69-9794-340752b0bf52/download4460e5956bc1d1639be9ae6146a50347MD54THUMBNAILAplicaciones de la tecnología de aptámeros en los ultimos 15 años.pdf.jpgAplicaciones de la tecnología de aptámeros en los ultimos 15 años.pdf.jpgIM Thumbnailimage/jpeg5574https://repositorio.uniandes.edu.co/bitstreams/c01361a5-9dc9-4a56-beb3-f6750f896ec2/download0f1163de53fd6442015fc698a6368041MD59Formato de autorizacion tesis corregido.pdf.jpgFormato de autorizacion tesis corregido.pdf.jpgIM Thumbnailimage/jpeg20596https://repositorio.uniandes.edu.co/bitstreams/fc44025c-6759-4329-ac77-1a4f1c9cea07/download86eb578073a59adac2c3b8af6941a190MD511ORIGINALAplicaciones de la tecnología de aptámeros en los ultimos 15 años.pdfAplicaciones de la tecnología de aptámeros en los ultimos 15 años.pdfTrabajo de Gradoapplication/pdf815278https://repositorio.uniandes.edu.co/bitstreams/c5f1bf18-974b-4d58-bdc1-800662b95b01/downloadc0d97f061c0dd9b6f6ddea6b1d211bc3MD53Formato de autorizacion tesis corregido.pdfFormato de autorizacion tesis corregido.pdfHIDEapplication/pdf28732https://repositorio.uniandes.edu.co/bitstreams/cc634212-a583-49d6-a3c9-7f70ba5c7a5d/downloada036ac3ca8ae0648780ce67f69962896MD57TEXTAplicaciones de la tecnología de aptámeros en los ultimos 15 años.pdf.txtAplicaciones de la tecnología de aptámeros en los ultimos 15 años.pdf.txtExtracted texttext/plain92993https://repositorio.uniandes.edu.co/bitstreams/cfe3a02a-8b30-43dc-9409-43694c3e01ab/downloadd1e76f9fdcda4673b04899e5b1c93b6cMD58Formato de autorizacion tesis corregido.pdf.txtFormato de autorizacion tesis corregido.pdf.txtExtracted texttext/plain1https://repositorio.uniandes.edu.co/bitstreams/98c9fa62-db62-47d9-9589-f004e7f66e38/download68b329da9893e34099c7d8ad5cb9c940MD510LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/853938de-da9b-40f0-a3c5-3713bc9a6dda/download5aa5c691a1ffe97abd12c2966efcb8d6MD561992/64559oai:repositorio.uniandes.edu.co:1992/645592024-03-13 13:04:10.002http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg== |