An integrative analysis of genetic and phenotypic variation of the Chlorospingus flavopectus complex: How many species exist in South America?
Análisis de los límites de especie evaluando datos genéticos y fenotípicos de un ave neotropical
- Autores:
-
Rodríguez Parada, María Paula
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2022
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/59562
- Acceso en línea:
- http://hdl.handle.net/1992/59562
- Palabra clave:
- Species limits
neotropical birds
geographic variation
songs
leapfrog pattern
Biología
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
UNIANDES2_962eb83d3221090b53417a2abb8c44d9 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/59562 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.none.fl_str_mv |
An integrative analysis of genetic and phenotypic variation of the Chlorospingus flavopectus complex: How many species exist in South America? |
dc.title.alternative.none.fl_str_mv |
Un análisis integrador de la variación genética y fenotípica del complejo Chlorospingus flavopectus ¿Cuántas especies existen en Sudamérica? |
title |
An integrative analysis of genetic and phenotypic variation of the Chlorospingus flavopectus complex: How many species exist in South America? |
spellingShingle |
An integrative analysis of genetic and phenotypic variation of the Chlorospingus flavopectus complex: How many species exist in South America? Species limits neotropical birds geographic variation songs leapfrog pattern Biología |
title_short |
An integrative analysis of genetic and phenotypic variation of the Chlorospingus flavopectus complex: How many species exist in South America? |
title_full |
An integrative analysis of genetic and phenotypic variation of the Chlorospingus flavopectus complex: How many species exist in South America? |
title_fullStr |
An integrative analysis of genetic and phenotypic variation of the Chlorospingus flavopectus complex: How many species exist in South America? |
title_full_unstemmed |
An integrative analysis of genetic and phenotypic variation of the Chlorospingus flavopectus complex: How many species exist in South America? |
title_sort |
An integrative analysis of genetic and phenotypic variation of the Chlorospingus flavopectus complex: How many species exist in South America? |
dc.creator.fl_str_mv |
Rodríguez Parada, María Paula |
dc.contributor.advisor.none.fl_str_mv |
Cadena Ordónez, Carlos Daniel Avendaño Carreño, Jorge Enrique |
dc.contributor.author.none.fl_str_mv |
Rodríguez Parada, María Paula |
dc.contributor.jury.none.fl_str_mv |
Orozco Montilla, Juan Sebastián Delgadillo Méndez, Diana Alexandra Bautista Plazas, Sebastián |
dc.contributor.researchgroup.es_CO.fl_str_mv |
Laboratorio de Biología Evolutiva de Vertebrados |
dc.subject.keyword.none.fl_str_mv |
Species limits neotropical birds geographic variation songs leapfrog pattern |
topic |
Species limits neotropical birds geographic variation songs leapfrog pattern Biología |
dc.subject.themes.es_CO.fl_str_mv |
Biología |
description |
Análisis de los límites de especie evaluando datos genéticos y fenotípicos de un ave neotropical |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-08-03T19:30:23Z |
dc.date.available.none.fl_str_mv |
2022-08-03T19:30:23Z |
dc.date.issued.none.fl_str_mv |
2022-07-31 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.es_CO.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/59562 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/59562 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.relation.references.es_CO.fl_str_mv |
Alström, P., van Linschooten, J., Donald, P. F., Sundev, G., Mohammadi, Z., Ghorbani, F., Shafaeipour, A., van den Berg, A., Robb, M., Aliabadian, M., Wei, C., Lei, F., Oxelman, B., & Olsson, U. (2021). Multiple species delimitation approaches applied to the avian lark genus Alaudala. Molecular Phylogenetics and Evolution, 154. https://doi.org/10.1016/j.ympev.2020.106994 Araya-Salas, M., & Smith-Vidaurre, G. (2017). warbleR: an R package to streamline analysis of animal acoustic signals. Methods in Ecology and Evolution, 8(2), 184-191. https://doi.org/10.1111/2041-210X.12624 Areta, J. I., Depino, E. A., Salvador, S. A., Cardiff, S. W., Epperly, K., & Holzmann, I. (2019). Species limits and biogeography of Rhynchospiza sparrows. Journal of Ornithology, 160(4), 973-991. https://doi.org/10.1007/s10336-019-01695-2 Audacity Team. (2021). Audacity(R): Free Audio Editor and Recorder [Computer application] (3.1.1). https://www.audacityteam.org/ Avendaño, J. E. (2010). Diversification across the mountains: Molecular phylogenetics and phylogeography of the Chlorospingus ophthalmicus complex (Aves, Emberizidae). Universidad de Los Andes. Avendaño, J. E., Arbeláez-Cortés, E., & Cadena, C. D. (2017). On the importance of geographic and taxonomic sampling in phylogeography: A reevaluation of diversification and species limits in a Neotropical thrush (Aves, Turdidae). Molecular Phylogenetics and Evolution, 111, 87-97. https://doi.org/10.1016/j.ympev.2017.03.020 Avendaño, J. E., Stiles, F. G., & Cadena, C. D. (2013). A new subspecies of Common Bush-Tanager (Chlorospingus flavopectus, Emberizidae) from the east slope of the Andes of Colombia. Ornitología Colombiana, 13, 44-58. Avendaño, J. E., Barker, F. K., & Cadena, C. D. (2016). The Yellow-green Bush-tanager is neither a bush-tanager nor a sparrow: Molecular phylogenetics reveals that Chlorospingus flavovirens is a tanager (Aves: Passeriformes; Thraupidae). Zootaxa, 4136(2), 373-381. https://doi.org/10.11646/zootaxa.4136.2.7 Barth, J. M. I., Gubili, C., Matschiner, M., Tørresen, O. K., Watanabe, S., Egger, B., Han, Y. S., Feunteun, E., Sommaruga, R., Jehle, R., & Schabetsberger, R. (2020). Stable species boundaries despite ten million years of hybridization in tropical eels. Nature Communications, 11(1), 1-13. https://doi.org/10.1038/s41467-020-15099-x Berlepsch, H.G. (1893). Diagnosen neuer südamerikanischer Vogelarten. Ornithologische Monatsberichte, 1893, 11-12. Bohórquez, C. I., & Stiles, F. G. (2002). The paradoxical social system of the Dusky Bush-Tanager (Chlorospingus semifuscus): lekking in a nine-primaried oscine Journal of Field Ornithology, 73(3), 281-291. https://doi.org/10.1648/0273-8570-73.3.281 Bonaccorso, E., Navarro-Sigüenza, A. G., Sánchez-González, L. A., Townsend Peterson, A., & García-Moreno, J. (2008). Genetic differentiation of the Chlorospingus ophthalmicus complex in Mexico and Central America. Journal of Avian Biology, 39(3), 311¿321. https://doi.org/10.1111/j.0908-8857.2008.04233.x Brumfield, R. T., & Remsen, J. v. (1996). Geographic Variation and Species Limits in Cinnycerthia Wrens of the Andes. The Wilson Bulletin, 108(2), 205-227. Buainain, N., Ferreira, M., Avendaño, J. E., Cadena, C. D., Faircloth, B. C., Brumfield, R. T., Cracraft, J., & Ribas, C. C. (2022). Biogeography of a neotropical songbird radiation reveals similar diversification dynamics between montane and lowland clades. Journal of Biogeography, 49(7), 1260-1273. https://doi.org/10.1111/jbi.14379 Bulut, H. (2019). An R Package for Multivariate Hypothesis Tests: MVTests. E-Journal of New World Sciences Academy, 14(4), 132-138. https://dergipark.org.tr/tr/pub/nwsatecapsci/issue/49784/599944 Cadena, C. D., Córdoba-Córdoba, S., Londoño, G. A., Calderón-F, D., & Martin, T. E. (2007). Nesting and singing behavior of common bush-tanagers (Chlorospingus ophthalmicus) in South America. Ornitología Colombiana, 5(5), 54-63. Cadena, C. D., & Cuervo, A. M. (2010). Molecules, ecology, morphology, and songs in concert: How many species is Arremon torquatus (Aves: Emberizidae) Biological Journal of the Linnean Society, 99(1), 152-176. https://doi.org/10.1111/j.1095-8312.2009.01333.x Cadena, C. D., Klicka, J., & Ricklefs, R. E. (2007). Evolutionary differentiation in the Neotropical montane region: Molecular phylogenetics and phylogeography of Buarremon brush-finches (Aves, Emberizidae). Molecular Phylogenetics and Evolution, 44(3), 993-1016. https://doi.org/10.1016/j.ympev.2006.12.012 Cadena, C. D., Pérez-Emán, J. L., Cuervo, A. M., Céspedes, L. N., Epperly, K. L., & Klicka, J. T. (2019). Extreme genetic structure and dynamic range evolution in a montane passerine bird: implications for tropical diversification. Biological Journal of the Linnean Society, 126, 487-506. https://academic.oup.com/biolinnean/article/126/3/487/5306478 Cadena, C. D., & Zapata, F. (2021). The genomic revolution and species delimitation in birds (and other organisms): Why phenotypes should not be overlooked. Ornithology, 138, 1-18. https://doi.org/10.1093/ornithology/ukaa069 Cadena, C. D., Zapata, F., & Jiménez, I. (2018). Issues and Perspectives in Species Delimitation using Phenotypic Data: Atlantean Evolution in Darwin's Finches. Systematic Biology, 67(2), 181-194. https://doi.org/10.1093/sysbio/syx071 Catchpole, C. K., & Slater, P. J. B. (2008). Bird Song Biological Themes and Variations (2nd ed.). Cambridge University Press. Clements, J. F., Schulenberg, T. S., Iliff, M. J., Billerman, S. M., Fredericks, T. A., Gerbracht, J. A., Lepage, D., Sullivan, B. L., & Wood, C. L. (2021). The eBird/Clements checklist of Birds of the World: v2021. https://www.birds.cornell.edu/clementschecklist/download/ Cowles, S. A., & Uy, J. A. C. (2019). Rapid, complete reproductive isolation in two closely related Zosterops White-eye bird species despite broadly overlapping ranges. Evolution, 73(8), 1647-1662. https://doi.org/10.1111/evo.13797 De Queiroz, K. (1998). The General Lineage Concept of Species, Species Criteria, and the Process of Speciation: A Conceptual Unification and Terminological Recommendations. In Endless Forms: Species and Speciation (pp. 57-75). De Queiroz, K. (2005). A Unified Concept of Species and its Consequences for the Future of Taxonomy. Proceedings-California Academy of Sciences, 56(18), 196-215. De Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology, 56(6), 879-886. https://doi.org/10.1080/10635150701701083 Dickens, J. K., Bitton, P.-P., Bravo, G. A., & Silveira, L. F. (2021). Species limits, patterns of secondary contact and a new species in the Trogon rufus complex (Aves: Trogonidae). Zoological Journal of the Linnean Society, 193(2), 499-540. https://doi.org/10.1093/zoolinnean/zlaa169 Dowle, E. J., Morgan-Richards, M., & Trewick, S. A. (2014). Morphological differentiation despite gene flow in an endangered grasshopper. BMC Evolutionary Biology, 14(1), 19-23. https://doi.org/10.1186/s12862-014-0216-x Fisher, R. A. (1918). The Correlation between Relatives on the Supposition of Mendelian Inheritance. Transactions of the Royal Society of Edinburgh, 52(2), 399-433. https://doi.org/10.1017/S0080456800012163 Frankham, R., Ballou, J. D., Dudash, M. R., Eldridge, M. D. B., Fenster, C. B., Lacy, R. C., Mendelson, J. R., Porton, I. J., Ralls, K., & Ryder, O. A. (2012). Implications of different species concepts for conserving biodiversity. Biological Conservation, 153, 25-31. https://doi.org/10.1016/j.biocon.2012.04.034 Freeman, B. G., & Pennell, M. W. (2021). The latitudinal taxonomy gradient. Trends in Ecology and Evolution, 1, 1-9. https://doi.org/10.1016/j.tree.2021.05.003 García-Moreno, J., Navarro-Sigüenza, A. G., Peterson, A. T., & Sánchez-González, L. A. (2004). Genetic variation coincides with geographic structure in the common bush-tanager (Chlorospingus ophthalmicus) complex from Mexico. Molecular Phylogenetics and Evolution, 33(1), 186¿196. https://doi.org/10.1016/j.ympev.2004.05.007 Gill, F. B. (2014). Species taxonomy of birds: Which null hypothesis? Auk, 131(2), 150-161. https://doi.org/10.1642/AUK-13-206.1 Haavie, J., Borge, T., Bures, S., Garamszegi, L. Z., Lampe, H. M., Moreno, J., Qvarnström, A., Török, J., & Sætre, G. P. (2004). Flycatcher song in allopatry and sympatry - Convergence, divergence and reinforcement. Journal of Evolutionary Biology, 17(2), 227¿237. https://doi.org/10.1111/j.1420-9101.2003.00682.x Harvey, M. G., Bravo, G. A., Claramunt, S., Cuervo, A. M., Derryberry, G. E., Battilana, J., Seeholzer, G. F., Shearer McKay, J., O, B. C., Faircloth, B. C., Edwards, S. v, Pérez-Emán, J., Moyle, R. G., Sheldon, F. H., Aleixo, A., Tilston Smith, B., Terry Chesser, R., Fábio Silveira, L., Cracraft, J., Derryberry, E. P. (2020). The evolution of a tropical biodiversity hotspot. Science, 370, 1343-1348. http://science.sciencemag.org/ Hazzi, N. A., Moreno, J. S., Ortiz-Movliav, C., & Palacio, R. D. (2018). Biogeographic regions and events of isolation and diversification of the endemic biota of the tropical Andes. Proceedings of the National Academy of Sciences of the United States of America, 115(31), 7985-7990. https://doi.org/10.1073/pnas.1803908115 Hellmayr, C. E. (1936). Catalogue of birds of the Americas and the adjacent islands. Part 9 (Vol. 13). Field Museum of Natural History. Hilty, S. (2020). Common Chlorospingus (Chlorospingus flavopectus). In J. del Hoyo, A. Elliot, J. Sargatal, D. A. Chirstie, & E. de Juana (Eds.), Birds of the World. https://doi.org/10.2173/bow.cobtan1.01 Isler, M. L., & Isler, P. R. (1987). The tanagers: natural history, distribution, and identification. Smithsonian Institution Press. Isler, M. L., Isler, P. R., & Whitney, B. M. (1998). Use of vocalizations to establish species limits in antbirds (Passeriformes: Thamnophilidae). Auk, 115(3), 577-590. https://doi.org/10.2307/4089407 Jordan, E. A., Areta, J. I., & Holzmann, I. (2017). Mate recognition systems and species limits in a warbling-finch complex (Poospiza nigrorufa/whitii). Emu, 117(4), 344-358. https://doi.org/10.1080/01584197.2017.1360746 K. Lisa Yang Center for Conservation Bioacustics. (2022). Raven Pro: Interactive Sound Analysis Software (Version 1.6.2) [Computer software]. The Cornell Lab of Ornithology. Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical Association, 90(430), 773-795. Krishnan, A., & Tamma, K. (2016). Divergent morphological and acoustic traits in sympatric communities of Asian barbets. Royal Society Open Science, 3(160117). https://doi.org/10.1098/rsos.160117 Lafresnaye, M.F. de (1840) Description de quelques nouvelles espèces d'oiseaux. Revue Zoologique par La Société Cuvierienne, 227-232. Lanfear, R., Calcott, B., Ho, S. Y. W., & Guindon, S. (2012). PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29(6), 1695-1701. https://doi.org/10.1093/molbev/mss020 Lecocq, T., Vereecken, N. J., Michez, D., Dellicour, S., Lhomme, P., Valterová, I., Rasplus, J. Y., & Rasmont, P. (2013). Patterns of Genetic and Reproductive Traits Differentiation in Mainland vs. Corsican Populations of Bumblebees. PLoS ONE, 8(6). https://doi.org/10.1371/journal.pone.0065642 Liu, Y., Chen, G., Huang, Q., Jia, C., Carey, G., Leader, P., Li, Y., Zou, F., Yang, X., Olsson, U., & Alström, P. (2016). Species delimitation of the white-tailed rubythroat Calliope pectoralis complex (Aves, Muscicapidae) using an integrative taxonomic approach. Journal of Avian Biology, 47(6), 899-910. https://doi.org/10.1111/jav.01015 Maldonado-Sánchez, D., Gutiérrez-Rodríguez, C., & Ornelas, J. F. (2016). Genetic divergence in the common bush-tanager Chlorospingus ophthalmicus (Aves: Emberizidae) throughout Mexican cloud forests: The role of geography, ecology and Pleistocene climatic fluctuations. Molecular Phylogenetics and Evolution, 99, 76-88. https://doi.org/10.1016/j.ympev.2016.03.014 Mallet, J., Besansky, N., & Hahn, M. W. (2016). How reticulated are species Bio Essays, 38(2), 140-149. https://doi.org/10.1002/bies.201500149 Martínez-Gómez, S. C., Lara, C. E., Remsen, J. v, Brumfield, R. T., & Cuervo, A. M. (2022). Genetic, vocal, and body size divergence across the Northern Peruvian Low supports two species within the Masked Flowerpiercer (Diglossa cyanea). Preprint available at bioRxiv https://doi.org/10.1101/2022.05.18.492535 Mayden, R. L. (1997). A hierarchy of species concepts: the denouement in the saga of the species problem. In M. F. Claridge, H. A. Dawah, & M. R. Wilson (Eds.), Species: The units of diversity (pp. 381-424). Chapman and Hall. http://www.ncbi.nlm.nih.gov/pubmed/3720 Mayr, E. (1942). Systematics And The Origin Of Species. Columbia University Press. Mayr, E. (1969). Principles of systematic zoology. McGraw-Hill. McLachlan, G., & Peel, D. (2000). Finite Mixture Models. John Wiley and Sons (Series in probability and statistics). https://doi.org/10.1198/tech.2002.s651 Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 1-8. https://doi.org/10.1109/GCE.2010.5676129 Mundinger, P. C., & Lahti, D. C. (2014). Quantitative integration of genetic factors in the learning and production of canary song. Proceedings of the Royal Society B: Biological Sciences, 281(1781). https://doi.org/10.1098/rspb.2013.2631 Olson, S. L. (1983). Geographic variation in Chlorospingus ophthalmicus in Colombia and Venezuela (Aves: Thraupidae). Proceeding of Biological Society of Washington, 96, 103-109. O'Neill, J. P., & Parker, T. A. (1981). New subspecies of Pipreola riefferii and Chlorospingus ophthalmicus from Peru. Bulletin of the British Ornithologists Club, 101, 294-299. Padial, J. M., Miralles, A., de la Riva, I., & Vences, M. (2010). The integrative future of taxonomy. Frontiers in Zoology, 7, 1-14. https://doi.org/10.1186/1742-9994-7-16 Palacios, C., García-R, S., Parra, J. L., Cuervo, A. M., Stiles, F. G., McCormack, J. E., & Cadena, C. D. (2019). Shallow genetic divergence and distinct phenotypic differences between two Andean hummingbirds: Speciation with gene flow Auk, 136(4), 1-21. https://doi.org/10.1093/auk/ukz046 Podos, J. (1997). A performance constraint on the evolution of trilled vocalizations in a songbird family (Passeriformes: Emberizidae). Evolution, 51(2), 537-551. https://doi.org/10.1111/j.1558-5646.1997.tb02441.x Powell, L. L., Rutt, C. L., Mokross, K., Wolfe, J. D., Johnson, E. I., Rodrigues, P. F., & Stouffer, P. C. (2022). Sociality and morphology differentiate niches of 13 sympatric Amazonian woodcreepers (Dendrocolaptinae). Ornithology, 139(2). https://doi.org/10.1093/ornithology/ukac002 Price, T. (2008). Speciation in Birds. Roberts and Company. R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/ Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67(5), 901-904. https://doi.org/10.1093/sysbio/syy032 Remsen, J. v. (1984). High Incidence of Leapfrog Pattern of Geographic Variation in Andean Birds: Implications for the Speciation Process. Science, 224(4645), 171-173. Remsen, J. v. (2005). Pattern, process, and rigor meet classification. Auk, 122(2), 403-413. https://doi.org/10.1093/auk/122.2.403 Revelle, W. (2021). psych: Procedures for Personality and Psychological Research. Northwestern University. https://cran.r-project.org/package=psych Rheindt, F. E., Eaton, J. E., & Verbelen, F. (2011). Vocal Trait Evolution in a Geographic Leapfrog Pattern: Speciation in the Maroon-Chinned Fruit Dove (Ptilinopus subgularis) Complex from Wallacea. The Wilson Journal of Ornithology, 123(3), 429-440. https://doi.org/10.2307/23033547 Ríos-Chelén, A. A., McDonald, A. N., Berger, A., Perry, A. C., Krakauer, A. H., & Patricelli, G. L. (2017). Do birds vocalize at higher pitch in noise, or is it a matter of measurement? Behavioral Ecology and Sociobiology, 71(1). https://doi.org/10.1007/s00265-016-2243-7 Rolland, J., Silvestro, D., Schluter, D., Guisan, A., Broennimann, O., & Salamin, N. (2018). The impact of endothermy on the climatic niche evolution and the distribution of vertebrate diversity. Nature Ecology and Evolution, 2(3), 459-464. https://doi.org/10.1038/s41559-017-0451-9 Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12), 1572-1574. https://doi.org/10.1093/bioinformatics/btg180 Sánchez-Gonzalez, L., Adolfo, Navarro-Sigüenza, A. G., Peterson, A., & Garcia-Moreno, J. (2007). Taxonomy of Chlorospingus ophthalmicus in Mexico and northern Central America. Bulletin of the British Ornithologists¿ Club., 127(1), 34-49. Sánchez-Nivicela, M., Avendaño, J. E., Sánchez-Nivicela, J. C., Torres, A., Fuchs, J., Bird, B., & Bonaccorso, E. (2021). A taxonomic assessment of Chlorospingus flavopectus phaeocephalus and Chlorospingus semifuscus (Passeriformes: Passerellidae), including the description of a new subspecies. Zootaxa, 5057(2), 151-180. https://doi.org/10.11646/zootaxa.5057.2.1 Schlick-Steiner, B. C., Steiner, F. M., Seifert, B., Stauffer, C., Christian, E., & Crozier, R. H. (2010). Integrative taxonomy: A multisource approach to exploring biodiversity. Annual Review of Entomology, 55, 421-438. https://doi.org/10.1146/annurev-ento-112408-085432 Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461-464. Scrucca, L., Fop, M., Murphy, T. B., & Raftery, A. E. (2016). Mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models. R Journal, 8(1), 289-317. https://doi.org/10.32614/rj-2016-021 Scrucca, L., & Raftery, A. E. (2014). clustvarsel: A Package Implementing Variable Selection for Gaussian Model-Based Clustering in R. Journal of Statistical Software, 84(1), 1-28. https://doi.org/10.18637/jss.v084.i01 Secondi, J., Bordas, P., Hipsley, C. A., & Bensch, S. (2011). Bilateral Song Convergence in a Passerine Hybrid Zone: Genetics Contribute in One Species Only. Evolutionary Biology, 38(4), 441-452. https://doi.org/10.1007/s11692-011-9133-8 Smith, M. L., & Carstens, B. C. (2022). Species Delimitation Using Molecular Data. In Species Problems and Beyond (pp. 145-160). CRC Press. https://doi.org/10.1201/9780367855604-9 Sosa-López, J. R., González, C., & Navarro-Sigüenza, A. G. (2013). Vocal geographic variation in mesoamerican Common Bush Tanagers (Chlorospingus ophthalmicus). Wilson Journal of Ornithology, 125(1), 24-33. https://doi.org/10.1676/12-051.1 Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312-1313. https://doi.org/10.1093/bioinformatics/btu033 Sukumaran, J., & Knowles, L. L. (2017). Multispecies coalescent delimits structure, not species. Proceedings of the National Academy of Sciences of the United States of America, 114(7), 1607-1611. https://doi.org/10.1073/pnas.1607921114 Taczanowski, L. (1874) Description des oiseaux nouveaux du Pérou central. Proceedings of the Zoological Society of London, 42(1), 129-140. Templeton, A. (1989). The meaning of species and speciation: A genetic perspective. In J. Endler & D. Otte (Eds.), Speciation and Its Consequences (pp. 3-27). Sinauer Associates. Toews, D. P. L., Taylor, S. A., Vallender, R., Brelsford, A., Butcher, B. G., Messer, P. W., & Lovette, I. J. (2016). Plumage Genes and Little Else Distinguish the Genomes of Hybridizing Warblers. Current Biology, 26(17), 2313-2318. https://doi.org/10.1016/j.cub.2016.06.034 Turbek, S. P., Browne, M., di Giacomo, A. S., Kopuchian, C., Hochachka, W. M., Estalles, C., Lijtmaer, D. A., Tubaro, P. L., Silveira, L. F., Lovette, I. J., Safran, R. J., Taylor, S. A., & Campagna, L. (2021). Rapid speciation via the evolution of pre-mating isolation in the Iberá Seedeater. Science, 371(6536), 1-11. https://doi.org/10.1126/science.abc0256 Uy, J. A. C., Irwin, D. E., & Webster, M. S. (2018). Behavioral isolation and incipient speciation in birds. Annual Review of Ecology, Evolution, and Systematics, 49, 1-24. https://doi.org/10.1146/annurev-ecolsys-110617-062646 Uy, J. A. C., Moyle, R. G., & Filardi, C. E. (2009). Plumage and song differences mediate species recognition between incipient flycatcher species of the Solomon Islands. Evolution, 63(1), 153-164. https://doi.org/10.1111/j.1558-5646.2008.00530.x Venkatraman, M. X., Deraad, D. A., Tsai, W. L. E., Zarza, E., Zellmer, A. J., Maley, J. M., & McCormack, J. E. (2019). Cloudy with a chance of speciation: Integrative taxonomy reveals extraordinary divergence within a Mesoamerican cloud forest bird. Biological Journal of the Linnean Society, 126(1), 1--15. https://doi.org/10.1093/biolinnean/bly156 Vokurková, J., Petrusková, T., Reifová, R., Kozman, A., Mo¿kovský, L., Kipper, S., Weiss, M., Reif, J., Dolata, P. T., & Petrusek, A. (2013). The Causes and Evolutionary Consequences of Mixed Singing in Two Hybridizing Songbird Species (Luscinia spp.). PLoS ONE, 8(4). https://doi.org/10.1371/journal.pone.0060172 Weir, J. T., Bermingham, E., Miller, M. J., Klicka, J., & González, M. A. (2008). Phylogeography of a morphologically diverse Neotropical montane species, the Common Bush-Tanager (Chlorospingus ophthalmicus). Molecular Phylogenetics and Evolution, 47(2), 650-664. https://doi.org/10.1016/j.ympev.2008.02.004 Winker, K. (2009). Reuniting phenotype and genotype in biodiversity research. BioScience, 59(8), 657-665. https://doi.org/10.1525/bio.2009.59.8.7 Zapata, F., & Jiménez, I. (2012). Species delimitation: Inferring gaps in morphology across geography. Systematic Biology, 61(2), 179-194. https://doi.org/10.1093/sysbio/syr084 Zimmer, J. T. (1947). Studies of peruvian birds. no. 52. the genera sericossypha, chlorospingus, cnemoscopus, hemispingus, conothra upis, chlorornis, lamprospiza, cissopis, and schistochlamys. The American Museum of Natural History, 1367, 1-26. |
dc.rights.license.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
61 páginas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Biología |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Ciencias Biológicas |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/f55add8a-20f4-4238-9d38-a9d5df019311/download https://repositorio.uniandes.edu.co/bitstreams/ada151b8-9f02-4a32-8b6b-aa55fe1a17f9/download https://repositorio.uniandes.edu.co/bitstreams/705f79c1-e69d-4e97-9cb1-4390a79271e7/download https://repositorio.uniandes.edu.co/bitstreams/d896226b-0987-4caf-ad73-216a0f555878/download https://repositorio.uniandes.edu.co/bitstreams/708bb615-b64d-45e3-b00d-68982357452a/download https://repositorio.uniandes.edu.co/bitstreams/185fd6d5-7971-4142-a5f4-f23459839477/download https://repositorio.uniandes.edu.co/bitstreams/19380b8f-432f-4d9f-a0ba-2dc6487876e9/download https://repositorio.uniandes.edu.co/bitstreams/08a404b1-420d-4919-9c87-ff0925b2ee99/download |
bitstream.checksum.fl_str_mv |
5aa5c691a1ffe97abd12c2966efcb8d6 5d0177133cf7cfc00703c031b753f4cd 7484e7eb17f0259b172d5917fa93c8fd 4460e5956bc1d1639be9ae6146a50347 2f3b1973dd6f107c1736de6f794c944e 61b08bd35868472d9d2c3fa1f6b7ee98 b39291fb8a78a89770ec9f261cdacd67 bc35ecb6a9dd1767e068b712f380be1a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812134026021961728 |
spelling |
Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cadena Ordónez, Carlos Danielvirtual::14281-1Avendaño Carreño, Jorge Enriquevirtual::14282-1Rodríguez Parada, María Paulacffe0788-e5d3-4857-a483-8efa8885cc92600Orozco Montilla, Juan SebastiánDelgadillo Méndez, Diana AlexandraBautista Plazas, SebastiánLaboratorio de Biología Evolutiva de Vertebrados2022-08-03T19:30:23Z2022-08-03T19:30:23Z2022-07-31http://hdl.handle.net/1992/59562instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Análisis de los límites de especie evaluando datos genéticos y fenotípicos de un ave neotropicalSpecies delimitation in groups where taxonomy has been intensively disputed may be clarified by integrating different sources of evidence such as genetics and various dimensions of the phenotype, and by sampling thoroughly across populations. An avian group whose limits are unresolved is the Chlorospingus flavopectus complex, with 28 subspecies inhabiting disjunct cloud forests from Mexico to Argentina. Species limits in the complex are more clear in Mesoamerica, but most populations occur in South America, where phenotypic variation has not been thoroughly analyzed and many subspecies were omitted in previous phylogenetic studies, which found the complex is paraphyletic. Hence, we reconstructed phylogenetic relationships of the whole complex, and focused on Andean C. flavopectus populations and C. semifuscus, one of the species nested within the group, to assess population genetic structure jointly with quantitative analyses of morphometric and vocal variation to test alternative hypotheses of species limits. We found deep phylogenetic relationships in the complex are not resolved, but subspecies form highly supported groups that have unique haplotypes. Variation in morphometrics was mainly restricted to body mass and beak, with one subspecies group being smaller in these traits. Vocally, we found differences in spectral and structural aspects that coincide at a finer scale with phylogenetic groups and follow a leapfrog pattern of geopgraphic variation, in which populations from the Northern and Southern Andes are vocally similar yet distinct from populations of the Central Andes. Variation revealing statistical support for distinct phenotypic groups in regional sympatry suggested that more than one species in the complex exists in South America, but our results did not support species limits implied by current taxonomy or alternative treatments. We propose a preliminary classification that recognizes three species of the complex in South America and better reflects patterns of phenotypic variation and genetic structure among populations. Our results highlight the need of additional studies reassessing species limits of Neotropical organisms, a region where biodiversity remains underestimated.La delimitación de especies en grupos cuya taxonomía ha sido intensamente disputada puede aclararse al integrar diferentes fuentes de evidencia, como la genética y varias dimensiones del fenotipo, y mediante un muestreo exhaustivo de las poblaciones. Un grupo de aves cuyos límites no están resueltos es el complejo Chlorospingus flavopectus, con 28 subespecies alopátricamente distribuidas en bosques de niebla desde México hasta Argentina. Los límites de especies del complejo son más claros en Mesoamérica, pero la mayoría de las poblaciones se encuentran en Suramérica, donde la variación fenotípica no se ha analizado en detalle y muchas subespecies se omitieron en estudios filogenéticos previos, los cuales determinaron que el complejo es parafilético. Por lo tanto, reconstruimos las relaciones filogenéticas de todo el complejo, y nos enfocamos en las poblaciones andinas de C. flavopectus y C. semifuscus, una de las especies anidadas en el grupo, para evaluar la estructura genética poblacional junto con análisis cuantitativos de la variación morfométrica y vocal para poner a prueba distintas hipótesis sobre los límites de especies. Encontramos que las relaciones filogenéticas profundas del complejo no están resueltas, pero las subespecies forman grupos altamente soportados que tienen haplotipos únicos. La variación morfométrica se restringió principalmente a la masa corporal y al pico, con un grupo de subespecies más pequeño en estos rasgos. Vocalmente, encontramos diferencias en aspectos espectrales y estructurales que coinciden a una escala más fina con los grupos filogenéticos y siguen un patrón de salto de variación geográfica, en que las poblaciones de los Andes del Norte y del Sur son vocalmente similares pero distintas de las poblaciones de los Andes Centrales. La variación estadísticamente soportada de distintos grupos fenotípicos en simpatría regional sugirió que en Suramérica existe más de una especie en el complejo, pero nuestros resultados no apoyaron los límites de especies reconocidos por la taxonomía actual o tratamientos alternativos. Proponemos una clasificación preliminar que reconoce tres especies del complejo en Suramérica y que refleja de mejor manera los patrones de variación fenotípica y la estructura genética entre las poblaciones. Nuestros resultados destacan la necesidad de estudios adicionales que reevalúen los límites de especies de los organismos neotropicales, una región donde la biodiversidad sigue estando subestimada.Association of Field OrnithologistsSociety of Systematic BiologistsBiólogoPregradoBiología evolutiva61 páginasapplication/pdfengUniversidad de los AndesBiologíaFacultad de CienciasDepartamento de Ciencias BiológicasAn integrative analysis of genetic and phenotypic variation of the Chlorospingus flavopectus complex: How many species exist in South America?Un análisis integrador de la variación genética y fenotípica del complejo Chlorospingus flavopectus ¿Cuántas especies existen en Sudamérica?Trabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPSpecies limitsneotropical birdsgeographic variationsongsleapfrog patternBiologíaAlström, P., van Linschooten, J., Donald, P. F., Sundev, G., Mohammadi, Z., Ghorbani, F., Shafaeipour, A., van den Berg, A., Robb, M., Aliabadian, M., Wei, C., Lei, F., Oxelman, B., & Olsson, U. (2021). Multiple species delimitation approaches applied to the avian lark genus Alaudala. Molecular Phylogenetics and Evolution, 154. https://doi.org/10.1016/j.ympev.2020.106994Araya-Salas, M., & Smith-Vidaurre, G. (2017). warbleR: an R package to streamline analysis of animal acoustic signals. Methods in Ecology and Evolution, 8(2), 184-191. https://doi.org/10.1111/2041-210X.12624Areta, J. I., Depino, E. A., Salvador, S. A., Cardiff, S. W., Epperly, K., & Holzmann, I. (2019). Species limits and biogeography of Rhynchospiza sparrows. Journal of Ornithology, 160(4), 973-991. https://doi.org/10.1007/s10336-019-01695-2Audacity Team. (2021). Audacity(R): Free Audio Editor and Recorder [Computer application] (3.1.1). https://www.audacityteam.org/Avendaño, J. E. (2010). Diversification across the mountains: Molecular phylogenetics and phylogeography of the Chlorospingus ophthalmicus complex (Aves, Emberizidae). Universidad de Los Andes.Avendaño, J. E., Arbeláez-Cortés, E., & Cadena, C. D. (2017). On the importance of geographic and taxonomic sampling in phylogeography: A reevaluation of diversification and species limits in a Neotropical thrush (Aves, Turdidae). Molecular Phylogenetics and Evolution, 111, 87-97. https://doi.org/10.1016/j.ympev.2017.03.020Avendaño, J. E., Stiles, F. G., & Cadena, C. D. (2013). A new subspecies of Common Bush-Tanager (Chlorospingus flavopectus, Emberizidae) from the east slope of the Andes of Colombia. Ornitología Colombiana, 13, 44-58.Avendaño, J. E., Barker, F. K., & Cadena, C. D. (2016). The Yellow-green Bush-tanager is neither a bush-tanager nor a sparrow: Molecular phylogenetics reveals that Chlorospingus flavovirens is a tanager (Aves: Passeriformes; Thraupidae). Zootaxa, 4136(2), 373-381. https://doi.org/10.11646/zootaxa.4136.2.7Barth, J. M. I., Gubili, C., Matschiner, M., Tørresen, O. K., Watanabe, S., Egger, B., Han, Y. S., Feunteun, E., Sommaruga, R., Jehle, R., & Schabetsberger, R. (2020). Stable species boundaries despite ten million years of hybridization in tropical eels. Nature Communications, 11(1), 1-13. https://doi.org/10.1038/s41467-020-15099-xBerlepsch, H.G. (1893). Diagnosen neuer südamerikanischer Vogelarten. Ornithologische Monatsberichte, 1893, 11-12.Bohórquez, C. I., & Stiles, F. G. (2002). The paradoxical social system of the Dusky Bush-Tanager (Chlorospingus semifuscus): lekking in a nine-primaried oscine Journal of Field Ornithology, 73(3), 281-291. https://doi.org/10.1648/0273-8570-73.3.281Bonaccorso, E., Navarro-Sigüenza, A. G., Sánchez-González, L. A., Townsend Peterson, A., & García-Moreno, J. (2008). Genetic differentiation of the Chlorospingus ophthalmicus complex in Mexico and Central America. Journal of Avian Biology, 39(3), 311¿321. https://doi.org/10.1111/j.0908-8857.2008.04233.xBrumfield, R. T., & Remsen, J. v. (1996). Geographic Variation and Species Limits in Cinnycerthia Wrens of the Andes. The Wilson Bulletin, 108(2), 205-227.Buainain, N., Ferreira, M., Avendaño, J. E., Cadena, C. D., Faircloth, B. C., Brumfield, R. T., Cracraft, J., & Ribas, C. C. (2022). Biogeography of a neotropical songbird radiation reveals similar diversification dynamics between montane and lowland clades. Journal of Biogeography, 49(7), 1260-1273. https://doi.org/10.1111/jbi.14379Bulut, H. (2019). An R Package for Multivariate Hypothesis Tests: MVTests. E-Journal of New World Sciences Academy, 14(4), 132-138. https://dergipark.org.tr/tr/pub/nwsatecapsci/issue/49784/599944Cadena, C. D., Córdoba-Córdoba, S., Londoño, G. A., Calderón-F, D., & Martin, T. E. (2007). Nesting and singing behavior of common bush-tanagers (Chlorospingus ophthalmicus) in South America. Ornitología Colombiana, 5(5), 54-63.Cadena, C. D., & Cuervo, A. M. (2010). Molecules, ecology, morphology, and songs in concert: How many species is Arremon torquatus (Aves: Emberizidae) Biological Journal of the Linnean Society, 99(1), 152-176. https://doi.org/10.1111/j.1095-8312.2009.01333.xCadena, C. D., Klicka, J., & Ricklefs, R. E. (2007). Evolutionary differentiation in the Neotropical montane region: Molecular phylogenetics and phylogeography of Buarremon brush-finches (Aves, Emberizidae). Molecular Phylogenetics and Evolution, 44(3), 993-1016. https://doi.org/10.1016/j.ympev.2006.12.012Cadena, C. D., Pérez-Emán, J. L., Cuervo, A. M., Céspedes, L. N., Epperly, K. L., & Klicka, J. T. (2019). Extreme genetic structure and dynamic range evolution in a montane passerine bird: implications for tropical diversification. Biological Journal of the Linnean Society, 126, 487-506. https://academic.oup.com/biolinnean/article/126/3/487/5306478Cadena, C. D., & Zapata, F. (2021). The genomic revolution and species delimitation in birds (and other organisms): Why phenotypes should not be overlooked. Ornithology, 138, 1-18. https://doi.org/10.1093/ornithology/ukaa069Cadena, C. D., Zapata, F., & Jiménez, I. (2018). Issues and Perspectives in Species Delimitation using Phenotypic Data: Atlantean Evolution in Darwin's Finches. Systematic Biology, 67(2), 181-194. https://doi.org/10.1093/sysbio/syx071Catchpole, C. K., & Slater, P. J. B. (2008). Bird Song Biological Themes and Variations (2nd ed.). Cambridge University Press.Clements, J. F., Schulenberg, T. S., Iliff, M. J., Billerman, S. M., Fredericks, T. A., Gerbracht, J. A., Lepage, D., Sullivan, B. L., & Wood, C. L. (2021). The eBird/Clements checklist of Birds of the World: v2021. https://www.birds.cornell.edu/clementschecklist/download/Cowles, S. A., & Uy, J. A. C. (2019). Rapid, complete reproductive isolation in two closely related Zosterops White-eye bird species despite broadly overlapping ranges. Evolution, 73(8), 1647-1662. https://doi.org/10.1111/evo.13797De Queiroz, K. (1998). The General Lineage Concept of Species, Species Criteria, and the Process of Speciation: A Conceptual Unification and Terminological Recommendations. In Endless Forms: Species and Speciation (pp. 57-75).De Queiroz, K. (2005). A Unified Concept of Species and its Consequences for the Future of Taxonomy. Proceedings-California Academy of Sciences, 56(18), 196-215.De Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology, 56(6), 879-886. https://doi.org/10.1080/10635150701701083Dickens, J. K., Bitton, P.-P., Bravo, G. A., & Silveira, L. F. (2021). Species limits, patterns of secondary contact and a new species in the Trogon rufus complex (Aves: Trogonidae). Zoological Journal of the Linnean Society, 193(2), 499-540. https://doi.org/10.1093/zoolinnean/zlaa169Dowle, E. J., Morgan-Richards, M., & Trewick, S. A. (2014). Morphological differentiation despite gene flow in an endangered grasshopper. BMC Evolutionary Biology, 14(1), 19-23. https://doi.org/10.1186/s12862-014-0216-xFisher, R. A. (1918). The Correlation between Relatives on the Supposition of Mendelian Inheritance. Transactions of the Royal Society of Edinburgh, 52(2), 399-433. https://doi.org/10.1017/S0080456800012163Frankham, R., Ballou, J. D., Dudash, M. R., Eldridge, M. D. B., Fenster, C. B., Lacy, R. C., Mendelson, J. R., Porton, I. J., Ralls, K., & Ryder, O. A. (2012). Implications of different species concepts for conserving biodiversity. Biological Conservation, 153, 25-31. https://doi.org/10.1016/j.biocon.2012.04.034Freeman, B. G., & Pennell, M. W. (2021). The latitudinal taxonomy gradient. Trends in Ecology and Evolution, 1, 1-9. https://doi.org/10.1016/j.tree.2021.05.003García-Moreno, J., Navarro-Sigüenza, A. G., Peterson, A. T., & Sánchez-González, L. A. (2004). Genetic variation coincides with geographic structure in the common bush-tanager (Chlorospingus ophthalmicus) complex from Mexico. Molecular Phylogenetics and Evolution, 33(1), 186¿196. https://doi.org/10.1016/j.ympev.2004.05.007Gill, F. B. (2014). Species taxonomy of birds: Which null hypothesis? Auk, 131(2), 150-161. https://doi.org/10.1642/AUK-13-206.1Haavie, J., Borge, T., Bures, S., Garamszegi, L. Z., Lampe, H. M., Moreno, J., Qvarnström, A., Török, J., & Sætre, G. P. (2004). Flycatcher song in allopatry and sympatry - Convergence, divergence and reinforcement. Journal of Evolutionary Biology, 17(2), 227¿237. https://doi.org/10.1111/j.1420-9101.2003.00682.xHarvey, M. G., Bravo, G. A., Claramunt, S., Cuervo, A. M., Derryberry, G. E., Battilana, J., Seeholzer, G. F., Shearer McKay, J., O, B. C., Faircloth, B. C., Edwards, S. v, Pérez-Emán, J., Moyle, R. G., Sheldon, F. H., Aleixo, A., Tilston Smith, B., Terry Chesser, R., Fábio Silveira, L., Cracraft, J., Derryberry, E. P. (2020). The evolution of a tropical biodiversity hotspot. Science, 370, 1343-1348. http://science.sciencemag.org/Hazzi, N. A., Moreno, J. S., Ortiz-Movliav, C., & Palacio, R. D. (2018). Biogeographic regions and events of isolation and diversification of the endemic biota of the tropical Andes. Proceedings of the National Academy of Sciences of the United States of America, 115(31), 7985-7990. https://doi.org/10.1073/pnas.1803908115Hellmayr, C. E. (1936). Catalogue of birds of the Americas and the adjacent islands. Part 9 (Vol. 13). Field Museum of Natural History.Hilty, S. (2020). Common Chlorospingus (Chlorospingus flavopectus). In J. del Hoyo, A. Elliot, J. Sargatal, D. A. Chirstie, & E. de Juana (Eds.), Birds of the World. https://doi.org/10.2173/bow.cobtan1.01Isler, M. L., & Isler, P. R. (1987). The tanagers: natural history, distribution, and identification. Smithsonian Institution Press.Isler, M. L., Isler, P. R., & Whitney, B. M. (1998). Use of vocalizations to establish species limits in antbirds (Passeriformes: Thamnophilidae). Auk, 115(3), 577-590. https://doi.org/10.2307/4089407Jordan, E. A., Areta, J. I., & Holzmann, I. (2017). Mate recognition systems and species limits in a warbling-finch complex (Poospiza nigrorufa/whitii). Emu, 117(4), 344-358. https://doi.org/10.1080/01584197.2017.1360746K. Lisa Yang Center for Conservation Bioacustics. (2022). Raven Pro: Interactive Sound Analysis Software (Version 1.6.2) [Computer software]. The Cornell Lab of Ornithology.Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical Association, 90(430), 773-795.Krishnan, A., & Tamma, K. (2016). Divergent morphological and acoustic traits in sympatric communities of Asian barbets. Royal Society Open Science, 3(160117). https://doi.org/10.1098/rsos.160117Lafresnaye, M.F. de (1840) Description de quelques nouvelles espèces d'oiseaux. Revue Zoologique par La Société Cuvierienne, 227-232.Lanfear, R., Calcott, B., Ho, S. Y. W., & Guindon, S. (2012). PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29(6), 1695-1701. https://doi.org/10.1093/molbev/mss020Lecocq, T., Vereecken, N. J., Michez, D., Dellicour, S., Lhomme, P., Valterová, I., Rasplus, J. Y., & Rasmont, P. (2013). Patterns of Genetic and Reproductive Traits Differentiation in Mainland vs. Corsican Populations of Bumblebees. PLoS ONE, 8(6). https://doi.org/10.1371/journal.pone.0065642Liu, Y., Chen, G., Huang, Q., Jia, C., Carey, G., Leader, P., Li, Y., Zou, F., Yang, X., Olsson, U., & Alström, P. (2016). Species delimitation of the white-tailed rubythroat Calliope pectoralis complex (Aves, Muscicapidae) using an integrative taxonomic approach. Journal of Avian Biology, 47(6), 899-910. https://doi.org/10.1111/jav.01015Maldonado-Sánchez, D., Gutiérrez-Rodríguez, C., & Ornelas, J. F. (2016). Genetic divergence in the common bush-tanager Chlorospingus ophthalmicus (Aves: Emberizidae) throughout Mexican cloud forests: The role of geography, ecology and Pleistocene climatic fluctuations. Molecular Phylogenetics and Evolution, 99, 76-88. https://doi.org/10.1016/j.ympev.2016.03.014Mallet, J., Besansky, N., & Hahn, M. W. (2016). How reticulated are species Bio Essays, 38(2), 140-149. https://doi.org/10.1002/bies.201500149Martínez-Gómez, S. C., Lara, C. E., Remsen, J. v, Brumfield, R. T., & Cuervo, A. M. (2022). Genetic, vocal, and body size divergence across the Northern Peruvian Low supports two species within the Masked Flowerpiercer (Diglossa cyanea). Preprint available at bioRxiv https://doi.org/10.1101/2022.05.18.492535Mayden, R. L. (1997). A hierarchy of species concepts: the denouement in the saga of the species problem. In M. F. Claridge, H. A. Dawah, & M. R. Wilson (Eds.), Species: The units of diversity (pp. 381-424). Chapman and Hall. http://www.ncbi.nlm.nih.gov/pubmed/3720Mayr, E. (1942). Systematics And The Origin Of Species. Columbia University Press.Mayr, E. (1969). Principles of systematic zoology. McGraw-Hill.McLachlan, G., & Peel, D. (2000). Finite Mixture Models. John Wiley and Sons (Series in probability and statistics). https://doi.org/10.1198/tech.2002.s651Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 1-8. https://doi.org/10.1109/GCE.2010.5676129Mundinger, P. C., & Lahti, D. C. (2014). Quantitative integration of genetic factors in the learning and production of canary song. Proceedings of the Royal Society B: Biological Sciences, 281(1781). https://doi.org/10.1098/rspb.2013.2631Olson, S. L. (1983). Geographic variation in Chlorospingus ophthalmicus in Colombia and Venezuela (Aves: Thraupidae). Proceeding of Biological Society of Washington, 96, 103-109.O'Neill, J. P., & Parker, T. A. (1981). New subspecies of Pipreola riefferii and Chlorospingus ophthalmicus from Peru. Bulletin of the British Ornithologists Club, 101, 294-299.Padial, J. M., Miralles, A., de la Riva, I., & Vences, M. (2010). The integrative future of taxonomy. Frontiers in Zoology, 7, 1-14. https://doi.org/10.1186/1742-9994-7-16Palacios, C., García-R, S., Parra, J. L., Cuervo, A. M., Stiles, F. G., McCormack, J. E., & Cadena, C. D. (2019). Shallow genetic divergence and distinct phenotypic differences between two Andean hummingbirds: Speciation with gene flow Auk, 136(4), 1-21. https://doi.org/10.1093/auk/ukz046Podos, J. (1997). A performance constraint on the evolution of trilled vocalizations in a songbird family (Passeriformes: Emberizidae). Evolution, 51(2), 537-551. https://doi.org/10.1111/j.1558-5646.1997.tb02441.xPowell, L. L., Rutt, C. L., Mokross, K., Wolfe, J. D., Johnson, E. I., Rodrigues, P. F., & Stouffer, P. C. (2022). Sociality and morphology differentiate niches of 13 sympatric Amazonian woodcreepers (Dendrocolaptinae). Ornithology, 139(2). https://doi.org/10.1093/ornithology/ukac002Price, T. (2008). Speciation in Birds. Roberts and Company.R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67(5), 901-904. https://doi.org/10.1093/sysbio/syy032Remsen, J. v. (1984). High Incidence of Leapfrog Pattern of Geographic Variation in Andean Birds: Implications for the Speciation Process. Science, 224(4645), 171-173.Remsen, J. v. (2005). Pattern, process, and rigor meet classification. Auk, 122(2), 403-413. https://doi.org/10.1093/auk/122.2.403Revelle, W. (2021). psych: Procedures for Personality and Psychological Research. Northwestern University. https://cran.r-project.org/package=psychRheindt, F. E., Eaton, J. E., & Verbelen, F. (2011). Vocal Trait Evolution in a Geographic Leapfrog Pattern: Speciation in the Maroon-Chinned Fruit Dove (Ptilinopus subgularis) Complex from Wallacea. The Wilson Journal of Ornithology, 123(3), 429-440. https://doi.org/10.2307/23033547Ríos-Chelén, A. A., McDonald, A. N., Berger, A., Perry, A. C., Krakauer, A. H., & Patricelli, G. L. (2017). Do birds vocalize at higher pitch in noise, or is it a matter of measurement? Behavioral Ecology and Sociobiology, 71(1). https://doi.org/10.1007/s00265-016-2243-7Rolland, J., Silvestro, D., Schluter, D., Guisan, A., Broennimann, O., & Salamin, N. (2018). The impact of endothermy on the climatic niche evolution and the distribution of vertebrate diversity. Nature Ecology and Evolution, 2(3), 459-464. https://doi.org/10.1038/s41559-017-0451-9Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12), 1572-1574. https://doi.org/10.1093/bioinformatics/btg180Sánchez-Gonzalez, L., Adolfo, Navarro-Sigüenza, A. G., Peterson, A., & Garcia-Moreno, J. (2007). Taxonomy of Chlorospingus ophthalmicus in Mexico and northern Central America. Bulletin of the British Ornithologists¿ Club., 127(1), 34-49.Sánchez-Nivicela, M., Avendaño, J. E., Sánchez-Nivicela, J. C., Torres, A., Fuchs, J., Bird, B., & Bonaccorso, E. (2021). A taxonomic assessment of Chlorospingus flavopectus phaeocephalus and Chlorospingus semifuscus (Passeriformes: Passerellidae), including the description of a new subspecies. Zootaxa, 5057(2), 151-180. https://doi.org/10.11646/zootaxa.5057.2.1Schlick-Steiner, B. C., Steiner, F. M., Seifert, B., Stauffer, C., Christian, E., & Crozier, R. H. (2010). Integrative taxonomy: A multisource approach to exploring biodiversity. Annual Review of Entomology, 55, 421-438. https://doi.org/10.1146/annurev-ento-112408-085432Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461-464.Scrucca, L., Fop, M., Murphy, T. B., & Raftery, A. E. (2016). Mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models. R Journal, 8(1), 289-317. https://doi.org/10.32614/rj-2016-021Scrucca, L., & Raftery, A. E. (2014). clustvarsel: A Package Implementing Variable Selection for Gaussian Model-Based Clustering in R. Journal of Statistical Software, 84(1), 1-28. https://doi.org/10.18637/jss.v084.i01Secondi, J., Bordas, P., Hipsley, C. A., & Bensch, S. (2011). Bilateral Song Convergence in a Passerine Hybrid Zone: Genetics Contribute in One Species Only. Evolutionary Biology, 38(4), 441-452. https://doi.org/10.1007/s11692-011-9133-8Smith, M. L., & Carstens, B. C. (2022). Species Delimitation Using Molecular Data. In Species Problems and Beyond (pp. 145-160). CRC Press. https://doi.org/10.1201/9780367855604-9Sosa-López, J. R., González, C., & Navarro-Sigüenza, A. G. (2013). Vocal geographic variation in mesoamerican Common Bush Tanagers (Chlorospingus ophthalmicus). Wilson Journal of Ornithology, 125(1), 24-33. https://doi.org/10.1676/12-051.1Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312-1313. https://doi.org/10.1093/bioinformatics/btu033Sukumaran, J., & Knowles, L. L. (2017). Multispecies coalescent delimits structure, not species. Proceedings of the National Academy of Sciences of the United States of America, 114(7), 1607-1611. https://doi.org/10.1073/pnas.1607921114Taczanowski, L. (1874) Description des oiseaux nouveaux du Pérou central. Proceedings of the Zoological Society of London, 42(1), 129-140.Templeton, A. (1989). The meaning of species and speciation: A genetic perspective. In J. Endler & D. Otte (Eds.), Speciation and Its Consequences (pp. 3-27). Sinauer Associates.Toews, D. P. L., Taylor, S. A., Vallender, R., Brelsford, A., Butcher, B. G., Messer, P. W., & Lovette, I. J. (2016). Plumage Genes and Little Else Distinguish the Genomes of Hybridizing Warblers. Current Biology, 26(17), 2313-2318. https://doi.org/10.1016/j.cub.2016.06.034Turbek, S. P., Browne, M., di Giacomo, A. S., Kopuchian, C., Hochachka, W. M., Estalles, C., Lijtmaer, D. A., Tubaro, P. L., Silveira, L. F., Lovette, I. J., Safran, R. J., Taylor, S. A., & Campagna, L. (2021). Rapid speciation via the evolution of pre-mating isolation in the Iberá Seedeater. Science, 371(6536), 1-11. https://doi.org/10.1126/science.abc0256Uy, J. A. C., Irwin, D. E., & Webster, M. S. (2018). Behavioral isolation and incipient speciation in birds. Annual Review of Ecology, Evolution, and Systematics, 49, 1-24. https://doi.org/10.1146/annurev-ecolsys-110617-062646Uy, J. A. C., Moyle, R. G., & Filardi, C. E. (2009). Plumage and song differences mediate species recognition between incipient flycatcher species of the Solomon Islands. Evolution, 63(1), 153-164. https://doi.org/10.1111/j.1558-5646.2008.00530.xVenkatraman, M. X., Deraad, D. A., Tsai, W. L. E., Zarza, E., Zellmer, A. J., Maley, J. M., & McCormack, J. E. (2019). Cloudy with a chance of speciation: Integrative taxonomy reveals extraordinary divergence within a Mesoamerican cloud forest bird. Biological Journal of the Linnean Society, 126(1), 1--15. https://doi.org/10.1093/biolinnean/bly156Vokurková, J., Petrusková, T., Reifová, R., Kozman, A., Mo¿kovský, L., Kipper, S., Weiss, M., Reif, J., Dolata, P. T., & Petrusek, A. (2013). The Causes and Evolutionary Consequences of Mixed Singing in Two Hybridizing Songbird Species (Luscinia spp.). PLoS ONE, 8(4). https://doi.org/10.1371/journal.pone.0060172Weir, J. T., Bermingham, E., Miller, M. J., Klicka, J., & González, M. A. (2008). Phylogeography of a morphologically diverse Neotropical montane species, the Common Bush-Tanager (Chlorospingus ophthalmicus). Molecular Phylogenetics and Evolution, 47(2), 650-664. https://doi.org/10.1016/j.ympev.2008.02.004Winker, K. (2009). Reuniting phenotype and genotype in biodiversity research. BioScience, 59(8), 657-665. https://doi.org/10.1525/bio.2009.59.8.7Zapata, F., & Jiménez, I. (2012). Species delimitation: Inferring gaps in morphology across geography. Systematic Biology, 61(2), 179-194. https://doi.org/10.1093/sysbio/syr084Zimmer, J. T. (1947). Studies of peruvian birds. no. 52. the genera sericossypha, chlorospingus, cnemoscopus, hemispingus, conothra upis, chlorornis, lamprospiza, cissopis, and schistochlamys. The American Museum of Natural History, 1367, 1-26.201715685Publicationhttps://scholar.google.es/citations?user=HC_mHmUAAAAJvirtual::14281-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000756580virtual::14281-111af7bde-0a26-4d8f-8dd9-4e99b1569940virtual::14281-19eb9d5b4-4490-4417-ba67-1e84831ade0bvirtual::14282-111af7bde-0a26-4d8f-8dd9-4e99b1569940virtual::14281-19eb9d5b4-4490-4417-ba67-1e84831ade0bvirtual::14282-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/f55add8a-20f4-4238-9d38-a9d5df019311/download5aa5c691a1ffe97abd12c2966efcb8d6MD51ORIGINALRodríguezetal2022_ChlorospingusLimitisSouthAmerica.pdfRodríguezetal2022_ChlorospingusLimitisSouthAmerica.pdfTrabajo de grado con material suplementarioapplication/pdf2707481https://repositorio.uniandes.edu.co/bitstreams/ada151b8-9f02-4a32-8b6b-aa55fe1a17f9/download5d0177133cf7cfc00703c031b753f4cdMD53formato_aprobaciónf.pdfformato_aprobaciónf.pdfHIDEapplication/pdf204547https://repositorio.uniandes.edu.co/bitstreams/705f79c1-e69d-4e97-9cb1-4390a79271e7/download7484e7eb17f0259b172d5917fa93c8fdMD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/d896226b-0987-4caf-ad73-216a0f555878/download4460e5956bc1d1639be9ae6146a50347MD52THUMBNAILRodríguezetal2022_ChlorospingusLimitisSouthAmerica.pdf.jpgRodríguezetal2022_ChlorospingusLimitisSouthAmerica.pdf.jpgIM Thumbnailimage/jpeg6676https://repositorio.uniandes.edu.co/bitstreams/708bb615-b64d-45e3-b00d-68982357452a/download2f3b1973dd6f107c1736de6f794c944eMD56formato_aprobaciónf.pdf.jpgformato_aprobaciónf.pdf.jpgIM Thumbnailimage/jpeg17057https://repositorio.uniandes.edu.co/bitstreams/185fd6d5-7971-4142-a5f4-f23459839477/download61b08bd35868472d9d2c3fa1f6b7ee98MD57TEXTRodríguezetal2022_ChlorospingusLimitisSouthAmerica.pdf.txtRodríguezetal2022_ChlorospingusLimitisSouthAmerica.pdf.txtExtracted texttext/plain126887https://repositorio.uniandes.edu.co/bitstreams/19380b8f-432f-4d9f-a0ba-2dc6487876e9/downloadb39291fb8a78a89770ec9f261cdacd67MD55formato_aprobaciónf.pdf.txtformato_aprobaciónf.pdf.txtExtracted texttext/plain2159https://repositorio.uniandes.edu.co/bitstreams/08a404b1-420d-4919-9c87-ff0925b2ee99/downloadbc35ecb6a9dd1767e068b712f380be1aMD581992/59562oai:repositorio.uniandes.edu.co:1992/595622024-03-13 15:09:43.06http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg== |