Estimation of the Wigner function of a quantum state via symplectic transformations
The Wigner distribution function (WDF) is a quasi-probability distribution that provides a phase-space representation of quantum states. It offers insights into the state dynamics and contains statistical information of it, such as the marginal probabilities. This thesis investigates a protocol for...
- Autores:
-
Usuga, Santiago
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2025
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/75497
- Acceso en línea:
- https://hdl.handle.net/1992/75497
- Palabra clave:
- Quantum optics
Wigner function
Symplectic transformations
Gaussian optics
Física
- Rights
- openAccess
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
id |
UNIANDES2_92ccd5456cdd2fb1d71dec047e7fa2e8 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/75497 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Estimation of the Wigner function of a quantum state via symplectic transformations |
title |
Estimation of the Wigner function of a quantum state via symplectic transformations |
spellingShingle |
Estimation of the Wigner function of a quantum state via symplectic transformations Quantum optics Wigner function Symplectic transformations Gaussian optics Física |
title_short |
Estimation of the Wigner function of a quantum state via symplectic transformations |
title_full |
Estimation of the Wigner function of a quantum state via symplectic transformations |
title_fullStr |
Estimation of the Wigner function of a quantum state via symplectic transformations |
title_full_unstemmed |
Estimation of the Wigner function of a quantum state via symplectic transformations |
title_sort |
Estimation of the Wigner function of a quantum state via symplectic transformations |
dc.creator.fl_str_mv |
Usuga, Santiago |
dc.contributor.advisor.none.fl_str_mv |
Botero Mejía, Alonso Valencia González, Alejandra Catalina |
dc.contributor.author.none.fl_str_mv |
Usuga, Santiago |
dc.contributor.jury.none.fl_str_mv |
Ávila Bernal, Carlos Arturo |
dc.contributor.researchgroup.none.fl_str_mv |
Facultad de Ciencias::Óptica Cuántica Experimental |
dc.subject.keyword.eng.fl_str_mv |
Quantum optics Wigner function Symplectic transformations Gaussian optics |
topic |
Quantum optics Wigner function Symplectic transformations Gaussian optics Física |
dc.subject.themes.spa.fl_str_mv |
Física |
description |
The Wigner distribution function (WDF) is a quasi-probability distribution that provides a phase-space representation of quantum states. It offers insights into the state dynamics and contains statistical information of it, such as the marginal probabilities. This thesis investigates a protocol for estimating the WDF of quantum states using symplectic transformations, which are linear canonical transformations that preserve phase-space structure and can be implemented experimentally using the technique of Gaussian optics. These transformations are studied because the time evolution of the WDF can be described by means of these transformations in cases where the Hamiltonian is a second-order (quadratic) polynomial in the phase-space variables. Furthermore, it was found that the Fourier transform of the marginal probability (measured at the laboratory) is related to the characteristic function (Fourier transform of the Wigner function). This relationship is given by Equation 2.46, which states that, with each intensity data obtained by applying a given symplectic transformation, the value of the characteristic function (Fourier transform of the WDF) at a given point of the phase space can be obtained. Based on this, an optical setup was implemented to perform symplectic transformations, such as free-space propagation and passing through a lens. The study focuses on the WDF of a one-dimensional electric field of two Gaussian beams, separated by a distance 2d, where d = 1.388 ± 0.004mm. The two beams are passed through the transformation system (propagation-lens-propagation) and then the marginal probability (intensity) is measured with a CCD camera. After this, the Fourier transform was computationally applied to the intensity data and compared with the theoretical plots of the characteristic function (Equation 2.2). In doing so, it was found that it is necessary to multiply the data obtained by an additional scaling factor to improve them to better fit the theoretical results. Finally, the protocol to be followed to reconstruct the Wigner function of this state with the obtained data was described. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-01-20T18:50:33Z |
dc.date.available.none.fl_str_mv |
2025-01-20T18:50:33Z |
dc.date.issued.none.fl_str_mv |
2025-01-15 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/75497 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/75497 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
V. Guillemin and S. Sternberg, Symplectic techniques in physics. Cambridge university press, 1990. P. E. Piñeros Lourenco, “Emulating the wigner function of an odd cat state by means of classical light fields,” Bogotá, 2023, undergraduate thesis. B. D. Guenther, Modern optics. OUP Oxford, 2015. M. C. Tichy, “Interference of identical particles from entanglement to boson-sampling,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 47, no. 10, p. 103001, 2014. D. Giovannini, J. Romero, V. Potoˇcek, G. Ferenczi, F. Speirits, S. M. Barnett, D. Faccio, and M. J. Padgett, “Spatially structured photons that travel in free space slower than the speed of light,” Science, vol. 347, no. 6224, pp. 857–860, 2015. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. Wadsworth, J. Knight et al., “Submicrometer axial resolution optical coherence tomography,” Optics letters, vol. 27, no. 20, pp. 1800–1802, 2002. C. Shen, Z. Zhang, and L.-M. Duan, “Scalable implementation of boson sampling with trapped ions,” Physical review letters, vol. 112, no. 5, p. 050504, 2014. J. P. Dowling, “Quantum optical metrology–the lowdown on high-n00nstates,” Contemporary physics, vol. 49, no. 2, pp. 125–143, 2008. M. A. Alonso, “Wigner functions in optics: describing beams as ray bundles and pulses as particle ensembles,” Advances in Optics and Photonics, vol. 3, no. 4, pp. 272–365, 2011. E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Physical review, vol. 40, no. 5, p. 749, 1932. F.-R. Winkelmann, C. A. Weidner, G. Ramola, W. Alt, D. Meschede, and A. Alberti, “Direct measurement of the wigner function of atoms in an optical trap,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 55, no. 19, p. 194004, 2022. 51 A. I. Lvovsky and M. G. Raymer, “Continuous-variable optical quantum-state tomography,” Reviews of modern physics, vol. 81, no. 1, pp. 299–332, 2009. S. Usuga, “Medición óptica de la transformada de fourier fraccional,” Universidad de los Andes, Bogotá, Colombia, Tech. Rep., 2024. J. E. Moyal, “Quantum mechanics as a statistical theory,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 45, no. 1, p. 99–124, 1949. L. N. Hand and J. D. Finch, Analytical mechanics. Cambridge University Press, 1998. R. K. Luneburg, Mathematical theory of optics. university of California Press, 1966. H. A. Buchdahl, An introduction to Hamiltonian optics. Courier Corporation, 1993. A. Curcio, M. P. Anania, F. G. Bisesto, M. Ferrario, F. Filippi, D. Giulietti, and M. Petrarca, “Ray optics hamiltonian approach to relativistic self focusing of ultraintense lasers in underdense plasmas,” in EPJ Web of Conferences,vol. 167. EDP Sciences, 2018, p. 01003. D. McAlister, M. Beck, L. Clarke, A. Mayer, and M. Raymer, “Optical phase retrieval by phase-space tomography and fractional-order fourier transforms,” Optics letters, vol. 20, no. 10, pp. 1181–1183, 1995. |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
61 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Física |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Física |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/ab468b21-8fd7-492e-9a3a-ed3920f53cd6/download https://repositorio.uniandes.edu.co/bitstreams/ad455207-1ff5-48df-8ca2-e659bb033d02/download https://repositorio.uniandes.edu.co/bitstreams/75dd8b0c-2903-4757-897a-7e9fce5a3358/download https://repositorio.uniandes.edu.co/bitstreams/6864ed75-a655-4ed4-a115-3ceb59404f49/download https://repositorio.uniandes.edu.co/bitstreams/782ee81c-4490-4ded-8e1b-225ce4039d85/download https://repositorio.uniandes.edu.co/bitstreams/8ae93a7f-2aa0-48ae-ab38-393e56c0e1ee/download https://repositorio.uniandes.edu.co/bitstreams/2fefe677-8679-4f4f-afad-be6e92b7879a/download https://repositorio.uniandes.edu.co/bitstreams/fd845d0b-bdd5-42f4-bd5a-bbed867a0944/download |
bitstream.checksum.fl_str_mv |
f138f4444a56f42134bd84ecedd1b349 a7233cbb52d000fcf7d92b099461def5 934f4ca17e109e0a05eaeaba504d7ce4 ae9e573a68e7f92501b6913cc846c39f 2f98e48216aa47e958215884e5a47916 35d9ba0f6d399e4baba6ca9e49fd469c 7e2937464a04466cd5bbe2ad6e886a8f f4045f29fb6ca69477da60c8b39535eb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1831927739675836416 |
spelling |
Botero Mejía, Alonsovirtual::22229-1Valencia González, Alejandra CatalinaUsuga, SantiagoÁvila Bernal, Carlos ArturoFacultad de Ciencias::Óptica Cuántica Experimental2025-01-20T18:50:33Z2025-01-20T18:50:33Z2025-01-15https://hdl.handle.net/1992/75497instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The Wigner distribution function (WDF) is a quasi-probability distribution that provides a phase-space representation of quantum states. It offers insights into the state dynamics and contains statistical information of it, such as the marginal probabilities. This thesis investigates a protocol for estimating the WDF of quantum states using symplectic transformations, which are linear canonical transformations that preserve phase-space structure and can be implemented experimentally using the technique of Gaussian optics. These transformations are studied because the time evolution of the WDF can be described by means of these transformations in cases where the Hamiltonian is a second-order (quadratic) polynomial in the phase-space variables. Furthermore, it was found that the Fourier transform of the marginal probability (measured at the laboratory) is related to the characteristic function (Fourier transform of the Wigner function). This relationship is given by Equation 2.46, which states that, with each intensity data obtained by applying a given symplectic transformation, the value of the characteristic function (Fourier transform of the WDF) at a given point of the phase space can be obtained. Based on this, an optical setup was implemented to perform symplectic transformations, such as free-space propagation and passing through a lens. The study focuses on the WDF of a one-dimensional electric field of two Gaussian beams, separated by a distance 2d, where d = 1.388 ± 0.004mm. The two beams are passed through the transformation system (propagation-lens-propagation) and then the marginal probability (intensity) is measured with a CCD camera. After this, the Fourier transform was computationally applied to the intensity data and compared with the theoretical plots of the characteristic function (Equation 2.2). In doing so, it was found that it is necessary to multiply the data obtained by an additional scaling factor to improve them to better fit the theoretical results. Finally, the protocol to be followed to reconstruct the Wigner function of this state with the obtained data was described.Pregrado61 páginasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Estimation of the Wigner function of a quantum state via symplectic transformationsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPQuantum opticsWigner functionSymplectic transformationsGaussian opticsFísicaV. Guillemin and S. Sternberg, Symplectic techniques in physics. Cambridge university press, 1990.P. E. Piñeros Lourenco, “Emulating the wigner function of an odd cat state by means of classical light fields,” Bogotá, 2023, undergraduate thesis.B. D. Guenther, Modern optics. OUP Oxford, 2015.M. C. Tichy, “Interference of identical particles from entanglement to boson-sampling,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 47, no. 10, p. 103001, 2014.D. Giovannini, J. Romero, V. Potoˇcek, G. Ferenczi, F. Speirits, S. M. Barnett, D. Faccio, and M. J. Padgett, “Spatially structured photons that travel in free space slower than the speed of light,” Science, vol. 347, no. 6224, pp.857–860, 2015.B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. Wadsworth, J. Knight et al., “Submicrometer axial resolution optical coherence tomography,” Optics letters,vol. 27, no. 20, pp. 1800–1802, 2002.C. Shen, Z. Zhang, and L.-M. Duan, “Scalable implementation of boson sampling with trapped ions,” Physical review letters, vol. 112, no. 5, p. 050504, 2014.J. P. Dowling, “Quantum optical metrology–the lowdown on high-n00nstates,” Contemporary physics, vol. 49, no. 2, pp. 125–143, 2008.M. A. Alonso, “Wigner functions in optics: describing beams as ray bundles and pulses as particle ensembles,” Advances in Optics and Photonics, vol. 3, no. 4, pp. 272–365, 2011.E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Physical review, vol. 40, no. 5, p. 749, 1932.F.-R. Winkelmann, C. A. Weidner, G. Ramola, W. Alt, D. Meschede, and A. Alberti, “Direct measurement of the wigner function of atoms in an optical trap,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 55, no. 19, p. 194004, 2022. 51A. I. Lvovsky and M. G. Raymer, “Continuous-variable optical quantum-state tomography,” Reviews of modern physics, vol. 81, no. 1, pp. 299–332, 2009.S. Usuga, “Medición óptica de la transformada de fourier fraccional,” Universidad de los Andes, Bogotá, Colombia, Tech. Rep., 2024.J. E. Moyal, “Quantum mechanics as a statistical theory,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 45, no. 1, p. 99–124, 1949.L. N. Hand and J. D. Finch, Analytical mechanics. Cambridge University Press, 1998.R. K. Luneburg, Mathematical theory of optics. university of California Press, 1966.H. A. Buchdahl, An introduction to Hamiltonian optics. Courier Corporation, 1993.A. Curcio, M. P. Anania, F. G. Bisesto, M. Ferrario, F. Filippi, D. Giulietti, and M. Petrarca, “Ray optics hamiltonian approach to relativistic self focusing of ultraintense lasers in underdense plasmas,” in EPJ Web of Conferences,vol. 167. EDP Sciences, 2018, p. 01003.D. McAlister, M. Beck, L. Clarke, A. Mayer, and M. Raymer, “Optical phase retrieval by phase-space tomography and fractional-order fourier transforms,” Optics letters, vol. 20, no. 10, pp. 1181–1183, 1995.202015398Publicationhttps://scholar.google.es/citations?user=e06A7mUAAAAJvirtual::22229-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000155721virtual::22229-1da9a3753-fd45-4cc7-8177-ee7bb8a61399virtual::22229-1da9a3753-fd45-4cc7-8177-ee7bb8a61399virtual::22229-1ORIGINALAutorizacion tesis Santiago Usuga.pdfAutorizacion tesis Santiago Usuga.pdfHIDEapplication/pdf600545https://repositorio.uniandes.edu.co/bitstreams/ab468b21-8fd7-492e-9a3a-ed3920f53cd6/downloadf138f4444a56f42134bd84ecedd1b349MD51Estimation of the Wigner function of a quantum state via symplectic transformations.pdfEstimation of the Wigner function of a quantum state via symplectic transformations.pdfapplication/pdf3521044https://repositorio.uniandes.edu.co/bitstreams/ad455207-1ff5-48df-8ca2-e659bb033d02/downloada7233cbb52d000fcf7d92b099461def5MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.uniandes.edu.co/bitstreams/75dd8b0c-2903-4757-897a-7e9fce5a3358/download934f4ca17e109e0a05eaeaba504d7ce4MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/6864ed75-a655-4ed4-a115-3ceb59404f49/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTAutorizacion tesis Santiago Usuga.pdf.txtAutorizacion tesis Santiago Usuga.pdf.txtExtracted texttext/plain1624https://repositorio.uniandes.edu.co/bitstreams/782ee81c-4490-4ded-8e1b-225ce4039d85/download2f98e48216aa47e958215884e5a47916MD55Estimation of the Wigner function of a quantum state via symplectic transformations.pdf.txtEstimation of the Wigner function of a quantum state via symplectic transformations.pdf.txtExtracted texttext/plain84085https://repositorio.uniandes.edu.co/bitstreams/8ae93a7f-2aa0-48ae-ab38-393e56c0e1ee/download35d9ba0f6d399e4baba6ca9e49fd469cMD57THUMBNAILAutorizacion tesis Santiago Usuga.pdf.jpgAutorizacion tesis Santiago Usuga.pdf.jpgGenerated Thumbnailimage/jpeg10911https://repositorio.uniandes.edu.co/bitstreams/2fefe677-8679-4f4f-afad-be6e92b7879a/download7e2937464a04466cd5bbe2ad6e886a8fMD56Estimation of the Wigner function of a quantum state via symplectic transformations.pdf.jpgEstimation of the Wigner function of a quantum state via symplectic transformations.pdf.jpgGenerated Thumbnailimage/jpeg6076https://repositorio.uniandes.edu.co/bitstreams/fd845d0b-bdd5-42f4-bd5a-bbed867a0944/downloadf4045f29fb6ca69477da60c8b39535ebMD581992/75497oai:repositorio.uniandes.edu.co:1992/754972025-03-05 09:39:42.766http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |