Estimation of the Wigner function of a quantum state via symplectic transformations

The Wigner distribution function (WDF) is a quasi-probability distribution that provides a phase-space representation of quantum states. It offers insights into the state dynamics and contains statistical information of it, such as the marginal probabilities. This thesis investigates a protocol for...

Full description

Autores:
Usuga, Santiago
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2025
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/75497
Acceso en línea:
https://hdl.handle.net/1992/75497
Palabra clave:
Quantum optics
Wigner function
Symplectic transformations
Gaussian optics
Física
Rights
openAccess
License
Attribution-NonCommercial-ShareAlike 4.0 International
id UNIANDES2_92ccd5456cdd2fb1d71dec047e7fa2e8
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/75497
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Estimation of the Wigner function of a quantum state via symplectic transformations
title Estimation of the Wigner function of a quantum state via symplectic transformations
spellingShingle Estimation of the Wigner function of a quantum state via symplectic transformations
Quantum optics
Wigner function
Symplectic transformations
Gaussian optics
Física
title_short Estimation of the Wigner function of a quantum state via symplectic transformations
title_full Estimation of the Wigner function of a quantum state via symplectic transformations
title_fullStr Estimation of the Wigner function of a quantum state via symplectic transformations
title_full_unstemmed Estimation of the Wigner function of a quantum state via symplectic transformations
title_sort Estimation of the Wigner function of a quantum state via symplectic transformations
dc.creator.fl_str_mv Usuga, Santiago
dc.contributor.advisor.none.fl_str_mv Botero Mejía, Alonso
Valencia González, Alejandra Catalina
dc.contributor.author.none.fl_str_mv Usuga, Santiago
dc.contributor.jury.none.fl_str_mv Ávila Bernal, Carlos Arturo
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ciencias::Óptica Cuántica Experimental
dc.subject.keyword.eng.fl_str_mv Quantum optics
Wigner function
Symplectic transformations
Gaussian optics
topic Quantum optics
Wigner function
Symplectic transformations
Gaussian optics
Física
dc.subject.themes.spa.fl_str_mv Física
description The Wigner distribution function (WDF) is a quasi-probability distribution that provides a phase-space representation of quantum states. It offers insights into the state dynamics and contains statistical information of it, such as the marginal probabilities. This thesis investigates a protocol for estimating the WDF of quantum states using symplectic transformations, which are linear canonical transformations that preserve phase-space structure and can be implemented experimentally using the technique of Gaussian optics. These transformations are studied because the time evolution of the WDF can be described by means of these transformations in cases where the Hamiltonian is a second-order (quadratic) polynomial in the phase-space variables. Furthermore, it was found that the Fourier transform of the marginal probability (measured at the laboratory) is related to the characteristic function (Fourier transform of the Wigner function). This relationship is given by Equation 2.46, which states that, with each intensity data obtained by applying a given symplectic transformation, the value of the characteristic function (Fourier transform of the WDF) at a given point of the phase space can be obtained. Based on this, an optical setup was implemented to perform symplectic transformations, such as free-space propagation and passing through a lens. The study focuses on the WDF of a one-dimensional electric field of two Gaussian beams, separated by a distance 2d, where d = 1.388 ± 0.004mm. The two beams are passed through the transformation system (propagation-lens-propagation) and then the marginal probability (intensity) is measured with a CCD camera. After this, the Fourier transform was computationally applied to the intensity data and compared with the theoretical plots of the characteristic function (Equation 2.2). In doing so, it was found that it is necessary to multiply the data obtained by an additional scaling factor to improve them to better fit the theoretical results. Finally, the protocol to be followed to reconstruct the Wigner function of this state with the obtained data was described.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-01-20T18:50:33Z
dc.date.available.none.fl_str_mv 2025-01-20T18:50:33Z
dc.date.issued.none.fl_str_mv 2025-01-15
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/75497
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/75497
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv V. Guillemin and S. Sternberg, Symplectic techniques in physics. Cambridge university press, 1990.
P. E. Piñeros Lourenco, “Emulating the wigner function of an odd cat state by means of classical light fields,” Bogotá, 2023, undergraduate thesis.
B. D. Guenther, Modern optics. OUP Oxford, 2015.
M. C. Tichy, “Interference of identical particles from entanglement to boson-sampling,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 47, no. 10, p. 103001, 2014.
D. Giovannini, J. Romero, V. Potoˇcek, G. Ferenczi, F. Speirits, S. M. Barnett, D. Faccio, and M. J. Padgett, “Spatially structured photons that travel in free space slower than the speed of light,” Science, vol. 347, no. 6224, pp.
857–860, 2015.
B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. Wadsworth, J. Knight et al., “Submicrometer axial resolution optical coherence tomography,” Optics letters,
vol. 27, no. 20, pp. 1800–1802, 2002.
C. Shen, Z. Zhang, and L.-M. Duan, “Scalable implementation of boson sampling with trapped ions,” Physical review letters, vol. 112, no. 5, p. 050504, 2014.
J. P. Dowling, “Quantum optical metrology–the lowdown on high-n00nstates,” Contemporary physics, vol. 49, no. 2, pp. 125–143, 2008.
M. A. Alonso, “Wigner functions in optics: describing beams as ray bundles and pulses as particle ensembles,” Advances in Optics and Photonics, vol. 3, no. 4, pp. 272–365, 2011.
E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Physical review, vol. 40, no. 5, p. 749, 1932.
F.-R. Winkelmann, C. A. Weidner, G. Ramola, W. Alt, D. Meschede, and A. Alberti, “Direct measurement of the wigner function of atoms in an optical trap,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 55, no. 19, p. 194004, 2022. 51
A. I. Lvovsky and M. G. Raymer, “Continuous-variable optical quantum-state tomography,” Reviews of modern physics, vol. 81, no. 1, pp. 299–332, 2009.
S. Usuga, “Medición óptica de la transformada de fourier fraccional,” Universidad de los Andes, Bogotá, Colombia, Tech. Rep., 2024.
J. E. Moyal, “Quantum mechanics as a statistical theory,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 45, no. 1, p. 99–124, 1949.
L. N. Hand and J. D. Finch, Analytical mechanics. Cambridge University Press, 1998.
R. K. Luneburg, Mathematical theory of optics. university of California Press, 1966.
H. A. Buchdahl, An introduction to Hamiltonian optics. Courier Corporation, 1993.
A. Curcio, M. P. Anania, F. G. Bisesto, M. Ferrario, F. Filippi, D. Giulietti, and M. Petrarca, “Ray optics hamiltonian approach to relativistic self focusing of ultraintense lasers in underdense plasmas,” in EPJ Web of Conferences,vol. 167. EDP Sciences, 2018, p. 01003.
D. McAlister, M. Beck, L. Clarke, A. Mayer, and M. Raymer, “Optical phase retrieval by phase-space tomography and fractional-order fourier transforms,” Optics letters, vol. 20, no. 10, pp. 1181–1183, 1995.
dc.rights.en.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 61 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Física
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Física
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/ab468b21-8fd7-492e-9a3a-ed3920f53cd6/download
https://repositorio.uniandes.edu.co/bitstreams/ad455207-1ff5-48df-8ca2-e659bb033d02/download
https://repositorio.uniandes.edu.co/bitstreams/75dd8b0c-2903-4757-897a-7e9fce5a3358/download
https://repositorio.uniandes.edu.co/bitstreams/6864ed75-a655-4ed4-a115-3ceb59404f49/download
https://repositorio.uniandes.edu.co/bitstreams/782ee81c-4490-4ded-8e1b-225ce4039d85/download
https://repositorio.uniandes.edu.co/bitstreams/8ae93a7f-2aa0-48ae-ab38-393e56c0e1ee/download
https://repositorio.uniandes.edu.co/bitstreams/2fefe677-8679-4f4f-afad-be6e92b7879a/download
https://repositorio.uniandes.edu.co/bitstreams/fd845d0b-bdd5-42f4-bd5a-bbed867a0944/download
bitstream.checksum.fl_str_mv f138f4444a56f42134bd84ecedd1b349
a7233cbb52d000fcf7d92b099461def5
934f4ca17e109e0a05eaeaba504d7ce4
ae9e573a68e7f92501b6913cc846c39f
2f98e48216aa47e958215884e5a47916
35d9ba0f6d399e4baba6ca9e49fd469c
7e2937464a04466cd5bbe2ad6e886a8f
f4045f29fb6ca69477da60c8b39535eb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1831927739675836416
spelling Botero Mejía, Alonsovirtual::22229-1Valencia González, Alejandra CatalinaUsuga, SantiagoÁvila Bernal, Carlos ArturoFacultad de Ciencias::Óptica Cuántica Experimental2025-01-20T18:50:33Z2025-01-20T18:50:33Z2025-01-15https://hdl.handle.net/1992/75497instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The Wigner distribution function (WDF) is a quasi-probability distribution that provides a phase-space representation of quantum states. It offers insights into the state dynamics and contains statistical information of it, such as the marginal probabilities. This thesis investigates a protocol for estimating the WDF of quantum states using symplectic transformations, which are linear canonical transformations that preserve phase-space structure and can be implemented experimentally using the technique of Gaussian optics. These transformations are studied because the time evolution of the WDF can be described by means of these transformations in cases where the Hamiltonian is a second-order (quadratic) polynomial in the phase-space variables. Furthermore, it was found that the Fourier transform of the marginal probability (measured at the laboratory) is related to the characteristic function (Fourier transform of the Wigner function). This relationship is given by Equation 2.46, which states that, with each intensity data obtained by applying a given symplectic transformation, the value of the characteristic function (Fourier transform of the WDF) at a given point of the phase space can be obtained. Based on this, an optical setup was implemented to perform symplectic transformations, such as free-space propagation and passing through a lens. The study focuses on the WDF of a one-dimensional electric field of two Gaussian beams, separated by a distance 2d, where d = 1.388 ± 0.004mm. The two beams are passed through the transformation system (propagation-lens-propagation) and then the marginal probability (intensity) is measured with a CCD camera. After this, the Fourier transform was computationally applied to the intensity data and compared with the theoretical plots of the characteristic function (Equation 2.2). In doing so, it was found that it is necessary to multiply the data obtained by an additional scaling factor to improve them to better fit the theoretical results. Finally, the protocol to be followed to reconstruct the Wigner function of this state with the obtained data was described.Pregrado61 páginasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Estimation of the Wigner function of a quantum state via symplectic transformationsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPQuantum opticsWigner functionSymplectic transformationsGaussian opticsFísicaV. Guillemin and S. Sternberg, Symplectic techniques in physics. Cambridge university press, 1990.P. E. Piñeros Lourenco, “Emulating the wigner function of an odd cat state by means of classical light fields,” Bogotá, 2023, undergraduate thesis.B. D. Guenther, Modern optics. OUP Oxford, 2015.M. C. Tichy, “Interference of identical particles from entanglement to boson-sampling,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 47, no. 10, p. 103001, 2014.D. Giovannini, J. Romero, V. Potoˇcek, G. Ferenczi, F. Speirits, S. M. Barnett, D. Faccio, and M. J. Padgett, “Spatially structured photons that travel in free space slower than the speed of light,” Science, vol. 347, no. 6224, pp.857–860, 2015.B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. Wadsworth, J. Knight et al., “Submicrometer axial resolution optical coherence tomography,” Optics letters,vol. 27, no. 20, pp. 1800–1802, 2002.C. Shen, Z. Zhang, and L.-M. Duan, “Scalable implementation of boson sampling with trapped ions,” Physical review letters, vol. 112, no. 5, p. 050504, 2014.J. P. Dowling, “Quantum optical metrology–the lowdown on high-n00nstates,” Contemporary physics, vol. 49, no. 2, pp. 125–143, 2008.M. A. Alonso, “Wigner functions in optics: describing beams as ray bundles and pulses as particle ensembles,” Advances in Optics and Photonics, vol. 3, no. 4, pp. 272–365, 2011.E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Physical review, vol. 40, no. 5, p. 749, 1932.F.-R. Winkelmann, C. A. Weidner, G. Ramola, W. Alt, D. Meschede, and A. Alberti, “Direct measurement of the wigner function of atoms in an optical trap,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 55, no. 19, p. 194004, 2022. 51A. I. Lvovsky and M. G. Raymer, “Continuous-variable optical quantum-state tomography,” Reviews of modern physics, vol. 81, no. 1, pp. 299–332, 2009.S. Usuga, “Medición óptica de la transformada de fourier fraccional,” Universidad de los Andes, Bogotá, Colombia, Tech. Rep., 2024.J. E. Moyal, “Quantum mechanics as a statistical theory,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 45, no. 1, p. 99–124, 1949.L. N. Hand and J. D. Finch, Analytical mechanics. Cambridge University Press, 1998.R. K. Luneburg, Mathematical theory of optics. university of California Press, 1966.H. A. Buchdahl, An introduction to Hamiltonian optics. Courier Corporation, 1993.A. Curcio, M. P. Anania, F. G. Bisesto, M. Ferrario, F. Filippi, D. Giulietti, and M. Petrarca, “Ray optics hamiltonian approach to relativistic self focusing of ultraintense lasers in underdense plasmas,” in EPJ Web of Conferences,vol. 167. EDP Sciences, 2018, p. 01003.D. McAlister, M. Beck, L. Clarke, A. Mayer, and M. Raymer, “Optical phase retrieval by phase-space tomography and fractional-order fourier transforms,” Optics letters, vol. 20, no. 10, pp. 1181–1183, 1995.202015398Publicationhttps://scholar.google.es/citations?user=e06A7mUAAAAJvirtual::22229-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000155721virtual::22229-1da9a3753-fd45-4cc7-8177-ee7bb8a61399virtual::22229-1da9a3753-fd45-4cc7-8177-ee7bb8a61399virtual::22229-1ORIGINALAutorizacion tesis Santiago Usuga.pdfAutorizacion tesis Santiago Usuga.pdfHIDEapplication/pdf600545https://repositorio.uniandes.edu.co/bitstreams/ab468b21-8fd7-492e-9a3a-ed3920f53cd6/downloadf138f4444a56f42134bd84ecedd1b349MD51Estimation of the Wigner function of a quantum state via symplectic transformations.pdfEstimation of the Wigner function of a quantum state via symplectic transformations.pdfapplication/pdf3521044https://repositorio.uniandes.edu.co/bitstreams/ad455207-1ff5-48df-8ca2-e659bb033d02/downloada7233cbb52d000fcf7d92b099461def5MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.uniandes.edu.co/bitstreams/75dd8b0c-2903-4757-897a-7e9fce5a3358/download934f4ca17e109e0a05eaeaba504d7ce4MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/6864ed75-a655-4ed4-a115-3ceb59404f49/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTAutorizacion tesis Santiago Usuga.pdf.txtAutorizacion tesis Santiago Usuga.pdf.txtExtracted texttext/plain1624https://repositorio.uniandes.edu.co/bitstreams/782ee81c-4490-4ded-8e1b-225ce4039d85/download2f98e48216aa47e958215884e5a47916MD55Estimation of the Wigner function of a quantum state via symplectic transformations.pdf.txtEstimation of the Wigner function of a quantum state via symplectic transformations.pdf.txtExtracted texttext/plain84085https://repositorio.uniandes.edu.co/bitstreams/8ae93a7f-2aa0-48ae-ab38-393e56c0e1ee/download35d9ba0f6d399e4baba6ca9e49fd469cMD57THUMBNAILAutorizacion tesis Santiago Usuga.pdf.jpgAutorizacion tesis Santiago Usuga.pdf.jpgGenerated Thumbnailimage/jpeg10911https://repositorio.uniandes.edu.co/bitstreams/2fefe677-8679-4f4f-afad-be6e92b7879a/download7e2937464a04466cd5bbe2ad6e886a8fMD56Estimation of the Wigner function of a quantum state via symplectic transformations.pdf.jpgEstimation of the Wigner function of a quantum state via symplectic transformations.pdf.jpgGenerated Thumbnailimage/jpeg6076https://repositorio.uniandes.edu.co/bitstreams/fd845d0b-bdd5-42f4-bd5a-bbed867a0944/downloadf4045f29fb6ca69477da60c8b39535ebMD581992/75497oai:repositorio.uniandes.edu.co:1992/754972025-03-05 09:39:42.766http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K