Crystallization of white dwarfs in globular clusters

White dwarf stars are the most common end point of stellar evolution. Due to their large numbers and multiple applications, white dwarfs are among the most interesting objects to study in the universe. Based on the observations provided by the Gaia Space Mission, studies of these objects showed that...

Full description

Autores:
Castro Idarraga, Juan Pablo
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/74727
Acceso en línea:
https://hdl.handle.net/1992/74727
Palabra clave:
White dwarfs
Astrophysics
Crystallization
Globular clusters
Física
Rights
openAccess
License
Attribution-ShareAlike 4.0 International
id UNIANDES2_9244dd3288ff4b091420646fdfc5ed72
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/74727
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Crystallization of white dwarfs in globular clusters
dc.title.alternative.spa.fl_str_mv Cristalización de enanas blancas en cumulos globulares
title Crystallization of white dwarfs in globular clusters
spellingShingle Crystallization of white dwarfs in globular clusters
White dwarfs
Astrophysics
Crystallization
Globular clusters
Física
title_short Crystallization of white dwarfs in globular clusters
title_full Crystallization of white dwarfs in globular clusters
title_fullStr Crystallization of white dwarfs in globular clusters
title_full_unstemmed Crystallization of white dwarfs in globular clusters
title_sort Crystallization of white dwarfs in globular clusters
dc.creator.fl_str_mv Castro Idarraga, Juan Pablo
dc.contributor.advisor.none.fl_str_mv Oostra Van Noppen, Benjamín
Torres Gil, Santiago
Camisassa, María Eugenia
dc.contributor.author.none.fl_str_mv Castro Idarraga, Juan Pablo
dc.contributor.jury.none.fl_str_mv Sabogal Martínez, Beatriz Eugenia
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ciencias::Astrofísica
dc.subject.keyword.eng.fl_str_mv White dwarfs
Astrophysics
Crystallization
Globular clusters
topic White dwarfs
Astrophysics
Crystallization
Globular clusters
Física
dc.subject.themes.none.fl_str_mv Física
description White dwarf stars are the most common end point of stellar evolution. Due to their large numbers and multiple applications, white dwarfs are among the most interesting objects to study in the universe. Based on the observations provided by the Gaia Space Mission, studies of these objects showed that a small fraction of the ultra-massive white dwarfs undergo a substantial delay in their cooling times. To explain the delay, additional energy sources inside the white dwarf have been considered. Neon 22 sedimentation and crystallization are the most important sources. Considering these two extra energy sources and high metallicity, it was possible to explain the delay. In this framework, we aimed to analyze the effect of crystallization and Neon 22 sedimentation on white dwarfs, especially in ultra-massive white dwarfs. To do this, we generated a wide sample of synthetic globular clusters with different physical properties using Monte Carlo techniques and an up-to-date set of white dwarf cooling tracks. These synthetic stellar populations were analyzed using Hertzsprung-Russell diagrams, ς distributions, and a new quantity introduced in this text, the ultra-massive quotient. The extensive analysis showed that younger and metal-richer clusters present higher ultra-massive quotients and ς histograms centered on lower values. Moreover, Hertzsprung-Russell diagrams prove that a high metallicity and a carbon-oxygen core chemical composition abruptly increase the delay time undergone by the white dwarfs due to Neon 22 sedimentation. In addition, we found that only a stellar population with ultra-massive carbon-oxygen core white dwarfs counts with a significant number of white dwarfs in the ultra-massive region. These findings allow us to compare our simulations with real observed clusters (NGC 6397, NGC 6791, and 47 Tucanae). The comparison shows that the ultra-massive white dwarfs are located around the same values of ς for synthetic and observed clusters. Additionally, we could predict, thanks to the ultra-massive quotient, which clusters have the highest percentage of ultra-massive white dwarfs visible in their color-magnitude diagrams.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-26T19:54:29Z
dc.date.available.none.fl_str_mv 2024-07-26T19:54:29Z
dc.date.issued.none.fl_str_mv 2024-07-25
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/74727
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/74727
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Althaus, L. G., García-Berro, E., Isern, J., & Corsico, A. H. (2005). Mass-radius relations for massive white dwarf stars. Astron. Astrophys., 441(2), 689–694. https://doi.org/10.1051/0004-6361:20052996
Althaus, L. G., García-Berro, E., Renedo, I., Isern, J., Corsico, A. H., & Rohrmann, R. D. (2010). Evolution of White Dwarf Stars with High-metallicity Progenitors: The Role of 22Ne Diffusion. Astrophys. J., 719(1), 612–621. https://doi.org/10.1088/0004- 637X/719/1/612
Althaus, L. G., Panei, J. A., Bertolami, M. M. M., Garcia-Berro, E., Corsico, A. H., Romero, A. D., Kepler, S. O., & Rohrmann, R. D. (2009). NEW EVOLUTIONARY SEQUENCES FOR HOT H-DEFICIENT WHITE DWARFS ON THE BASIS OF A FULL ACCOUNT OF PROGENITOR EVOLUTION. Astrophys. J., 704(2), 1605. https://doi.org/10.1088/0004-637X/704/2/1605
Althaus, L. G., Panei, J. A., Romero, A. D., Rohrmann, R. D., Corsico, A. H., Garcia-Berro, E., & Bertolami, M. M. M. (2009). Evolution and colors of helium-core white dwarf stars with high-metallicity progenitors. Astron. Astrophys., 502(1), 207–216. https: //doi.org/10.1051/0004-6361/200911640
Althaus, L. G., Serenelli, A. M., Corsico, A. H., & Montgomery, M. H. (2003). New evolutionary models for massive ZZ Ceti stars. I. First results for their pulsational properties. Astron. Astrophys., 404(2), 593–609. https://doi.org/10.1051/0004- 6361: 20030472
Althaus, L. G., Camisassa, M. E., Bertolami, M. M. M., Corsico, A. H., & Garcıa-Berro, E. (2015). White dwarf evolutionary sequences for low-metallicity progenitors: The impact of third dredge-up. Astron. Astrophys., 576, A9. https://doi.org/10.1051/0004- 6361/201424922
Althaus, L. G., Corsico, A. H., Isern, J., & Garcia-Berro, E. (2010). Evolutionary and pulsational properties of white dwarf stars. arXiv. https://doi.org/10.1007/s00159-010- 0033-1
Althaus, L. G., De Geronimo, F., Corsico, A., Torres, S., & Garcia-Berro, E. (2017). The evo lution of white dwarfs resulting from helium-enhanced, low-metallicity progenitor stars. Astron. Astrophys., 597, A67. https://doi.org/10.1051/0004-6361/201629909
Althaus, L. G., Pons, P. G., Corsico, A. H., Bertolami, M. M., De Gernimo, F., Camisassa, M. E., Torres, S., Gutierrez, J., & Rebassa-Mansergas, A. (2021). The formation of ultra-massive carbon-oxygen core white dwarfs and their evolutionary and pulsational properties. Astron. Astrophys., 646, A30. https : / / doi . org / 10 . 1051 / 0004 - 6361/202038930
Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. (2009). The Chemical Composition of the Sun. Annual Review of Astronomy and Astrophysics, 47(1), 481–522. https: //doi.org/10.1146/annurev.astro.46.060407.145222
Bastian, N., & Lardo, C. (2017). Multiple Stellar Populations in Globular Clusters. arXiv. https://doi.org/10.1146/annurev-astro-081817-051839 Camacho D´ıaz, J. (2014, June). Monte Carlo simulations of the population of single and binary white dwarfs of our galaxy [Doctoral dissertation, Universitat Politecnica de ` Catalunya]. https://doi.org/10.5821/dissertation-2117-95354
Camisassa, M. E., MM, M. B., & Althaus, L. G. (2014). Evolucion de enanas blancas provenientes de progenitores de baja metalicidad.
Camisassa, M. E., Althaus, L. G., Corsico, A. H., De Geronimo, F. C., Bertolami, M. M. M.,Novarino, M. L., Rohrmann, R. D., Wachlin, F. C., & Garc´ıa-Berro, E. (2019). The evolution of ultra-massive white dwarfs. Astron. Astrophys., 625, A87. https://doi. org/10.1051/0004-6361/201833822
Camisassa, M. E., Althaus, L. G., Rohrmann, R. D., Garcia-Berro, E., Torres, S., Corsico, A. H., & Wachlin, F. C. (2017). Updated Evolutionary Sequences for Hydrogen deficient White Dwarfs. Astrophys. J., 839(1), 11. https://doi.org/10.3847/1538- 4357/aa6797
Camisassa, M. E., Althaus, L. G., Torres, S., Corsico, A. H., Rebassa-Mansergas, A., Tremblay, P.-E., Cheng, S., & Raddi, R. (2021). Forever young white dwarfs: When stellar ageing stops. Astron. Astrophys., 649, L7. https : / / doi . org / 10 . 1051 / 0004 - 6361 / 202140720
Casagrande, L., Schonrich, R., Asplund, M., Cassisi, S., Ramirez, I., Melendez, J., Bensby, T., & Feltzing, S. (2011). New constraints on the chemical evolution of the solar neighbourhood and Galactic disc(s) - Improved astrophysical parameters for the Geneva-Copenhagen Survey. Astron. Astrophys., 530, A138. https://doi.org/10.1051/ 0004-6361/201016276
Cheng, S., Cummings, J. D., & Menard, B. (2019). A Cooling Anomaly of High-mass White Dwarfs. Astrophys. J., 886(2), 100. https://doi.org/10.3847/1538-4357/ab4989
Cojocaru, E. R. (2016, November). Population synthesis studies of the white dwarfs of the galactic disk and halo [Doctoral dissertation, Universitat Politecnica de Catalunya]. https://doi.org/10.5821/dissertation-2117-105828
De Bruijne, J., Perryman, M., Lindegren, L., Jordi, C., Høg, E., Katz, D., & Cropper, M. (2005). Gaia astrometric, photometric, and radial-velocity performance assessment methodologies to be used by the industrial system-level teams. Gaia–JdB–022. Deloye, C. J., & Bildsten, L. (2002). Gravitational Settling of 22Ne in Liquid White Dwarf Interiors–Cooling and Seismological Effects. arXiv. https://doi.org/10.1086/343800
Devorkin, D. H. (1977). The Origins of the Hertzsprung-Russell Diagram. IAU Symposium, 80(80), 61. ESO. (2021). Hubble’s view of dazzling globular cluster NGC 6397. www.spacetelescope.org. https://esahubble.org/images/opo1824a
Forbes, D. A., & Bridges, T. (2010). Accreted versus In Situ Milky Way Globular Clusters. arXiv. https://doi.org/10.1111/j.1365-2966.2010.16373.x
Gaia collaboration, c. (2018). Gaia Data Release 2 - Observational Hertzsprung-Russell diagrams. Astron. Astrophys., 616, A10. https://doi.org/10.1051/0004-6361/201832843
Gaia collaborators, c. (2023). Gaia Data Release 3 - Summary of the content and survey properties. Astron. Astrophys., 674, A1. https://doi.org/10.1051/0004-6361/202243940 Gaia DR2 Passbands - Gaia - Cosmos [[Online; accessed 12. May 2024]]. (2024, May). https://www.cosmos.esa.int/web/gaia/iow 20180316
Garcia-Berro, E., Torres, S., Renedo, I., Camacho, J., Althaus, L. G., Corsico, A. H., Salaris, M., & Isern, J. (2011). The white-dwarf cooling sequence of NGC 6791: a unique tool for stellar evolution. aap, 533, Article A31, A31. https://doi.org/10.1051/0004- 6361/201116499
Garcia–Berro, E., & Oswalt, T. D. (2016). The white dwarf luminosity function. New As tronomy Reviews, 72-74, 1–22. https://doi.org/https://doi.org/10.1016/j.newar.2016. 08.001
Garcia-Berro, E., Torres, S., Isern, J., & Burkert, A. (2004). Monte Carlo simulations of the halo white dwarf population. Astron. Astrophys., 418(1), 53–65. https://doi.org/10. 1051/0004-6361:2003454
Garcia-Berro, E., Torres, S., Althaus, L. G., & Miller Bertolami, M. M. (2014). The white dwarf cooling sequence of 47 Tucanae. Astron. Astrophys., 571, A56. https://doi.org/ 10.1051/0004-6361/201424652
Garcia-Berro, E., Torres, S., Althaus, L. G., Renedo, I., Loren-Aguilar, P., Corsico, A. H., Rohrmann, R. D., Salaris, M., & Isern, J. (2010). A white dwarf cooling age of 8 Gyr for NGC 6791 from physical separation processes. Nature, 465, 194–196. https: //doi.org/10.1038/nature09045
Gratton, R., Bragaglia, A., Carretta, E., D’Orazi, V., Lucatello, S., & Sollima, A. (2019). What is a globular cluster? An observational perspective. arXiv. https://doi.org/10. 1007/s00159-019-0119-3
Harris, W. (1996). Catalog of parameters for milky way globular clusters. Astrophysical Journal, 112(1487), 2003.
Herschel, W. (1814). XIV. Astronomical observations relating to the sidereal part of the heavens, and its connection with the nebulous part; arranged for the purpose of a critical examination. Philos. Trans. R. Soc. Lond., 104, 248–284. https://doi.org/10. 1098/rstl.1814.0015
Hollow, R. (2006). Concepts for the cosmic engine. Isern, J., Mochkovitch, R., García-Berro, E., & Hernanz, M. (1997). The Physics of Crystallizing White Dwarfs. Astrophys. J., 485(1), 308–312. https://doi.org/10.1086/304425
Isern, J., Garcia-Berro, E., Hernanz, M., & Mochkovitch, R. (1998). The physics of white dwarfs. J. Phys.: Condens. Matter, 10(49), 11263. https://doi.org/10.1088/0953- 8984/10/49/015
James, F. (1990). A review of pseudorandom number generators. Comput. Phys. Commun., 60(3), 329–344. https://doi.org/10.1016/0010-4655(90)90032-V
Jimenez-Esteban, F. M., Torres, S., Rebassa-Mansergas, A., Cruz, P., Murillo-Ojeda, R., Solano, E., Rodrigo, C., & Camisassa, M. E. (2023). Spectral classification of the 100 pc white dwarf population from Gaia-DR3 and the virtual observatory. Mon. Not. R. Astron. Soc., 518(4), 5106–5122. https://doi.org/10.1093/mnras/stac3382
Jimenez-Esteban, F. M., Torres, S., Rebassa-Mansergas, A., Skorobogatov, G., Solano, E., ´ Cantero, C., & Rodrigo, C. (2018). A white dwarf catalogue from Gaia-DR2 and the Virtual Observatory. Mon. Not. R. Astron. Soc., 480(4), 4505–4518. https://doi.org/ 10.1093/mnras/sty2120
Kato, M., Saio, H., & Hachisu, I. (2017). A Millennium-long Evolution of the 1 yr Recur rence Period Nova—Search for Any Indication of the Forthcoming He Flash. Astro phys. J., 844(2), 143. https://doi.org/10.3847/1538-4357/aa7c5e
Mermilliod, J.-C., & Paunzen, E. (2003). Analysing the database for stars in open clusters I. General methods and description of the data. Astron. Astrophys., 410(2). https : //doi.org/10.1051/0004-6361:20031112
Mochkovitch, R. (1983). Freezing of a carbon-oxygen white dwarf. Astron. Astrophys., 122(1-2), 212–218. NRA. (2024, February). Intensity of Starlight on a Planet in a Globular Cluster - National Radio Astronomy Observatory [[Online; accessed 8. Feb. 2024]]. https://public.nrao. edu/ask/intensity-of-starlight-on-a-planet-in-a-globular-cluster
Rebassa-Mansergas, A., Maldonado, J., Raddi, R., Knowles, A. T., Torres, S., Hoskin, M., Cunningham, T., Hollands, M., Ren, J., Gaensicke, B. T., Tremblay, P.-E., Castro Rodriguez, N., Camisassa, M., & Koester, D. (2021). Constraining the solar neighbourhood age-metallicity relation from white dwarf-main sequence binaries. arXiv. https://doi.org/10.1093/mnras/stab1559
Renedo, I., Althaus, L. G., Bertolami, M. M. M., Romero, A. D., Corsico, A. H., Rohrmann, ´ R. D., & Garcia-Berro, E. (2010). NEW COOLING SEQUENCES FOR OLD WHITE DWARFS. Astrophys. J., 717(1), 183. https : / / doi . org / 10 . 1088 / 0004 - 637X/717/1/183
Russell, H. N. (1914). Relations Between the Spectra and Other Characteristics of the Stars. Popular Astronomy, 22, 275–294. https://ui.adsabs.harvard.edu/abs/1914PA.....22. .275R/abstract Salpeter, E. E. (1955). The Luminosity Function and Stellar Evolution. Astrophys. J., 121, 161. https://doi.org/10.1086/145971
Schwab, J. (2021). Evolutionary Models for the Remnant of the Merger of Two Carbon Oxygen Core White Dwarfs. Astrophys. J., 906(1), 53. https://doi.org/10.3847/1538- 4357/abc87e
Siess, L. (2007). Evolution of massive AGB stars - II. model properties at non-solar metal licity and the fate of Super-AGB stars. Astron. Astrophys., 476(2), 893–909. https: //doi.org/10.1051/0004-6361:20078132
Stevenson, D. J. (1980). A EUTECTIC IN CARBON-OXYGEN WHITE DWARFS ? J. Phys. Colloques, 41(C2), C2-61–C2-64. https://doi.org/10.1051/jphyscol:1980209 Temmink, K. D., Toonen, S., Zapartas, E., Justham, S., & Gansicke, B. T. (2020). Looks can ¨ be deceiving - Underestimating the age of single white dwarfs due to binary mergers. Astron. Astrophys., 636, A31. https://doi.org/10.1051/0004-6361/201936889
Torres, S., Canals, P., Jimenez-Esteban, F. M., Rebassa-Mansergas, A., & Solano, E. (2022). ´ A population synthesis fitting of the Gaia resolved white dwarf binary populationwithin 100 pc. Monthly Notices of the Royal Astronomical Society, 511(4), 5462– 5474. https://doi.org/10.1093/mnras/stac374
Torres, S. (2002, July). Simulacion de Monte Carlo de la poblaci ´ on de enanas blancas de la ´ galaxia [Doctoral dissertation, Universitat Politecnica de Catalunya]. https://doi.org/ ` 10.5821/dissertation-2117-93889
Torres, S., Garcia-Berro, E., Burkert, A., & Isern, J. (2002). High-proper-motion white dwarfs and halo dark matter. Mon. Not. R. Astron. Soc., 336(3), 971–978. https : //doi.org/10.1046/j.1365-8711.2002.05830.x
Torres, S., Garc´ıa-Berro, E., Althaus, L. G., & Camisassa, M. E. (2015). The white dwarf population of NGC 6397. Astron. Astrophys., 581, A90. https://doi.org/10.1051/ 0004-6361/201526157
Tremblay, N. P., Gentile Fusillo, Tremblay, P.-E., Gensicke, B. T., Manser, C. J., Cunning ham, T., Cukanovaite, E., Hollands, M., Marsh, T., Raddi, R., Jordan, S., Toonen, S., Geier, S., Barstow, M., & Cummings, J. D. (2019). A Gaia Data Release 2 catalog of white dwarfs and a comparison with SDSS. Mon. Not. R. Astron. Soc., 482(4), 4570–4591. https://doi.org/10.1093/mnras/sty3016
van Horn, H. M. (1968). Crystallization of White Dwarfs. Astrophys. J., 151, 227. https: //doi.org/10.1086/149432
Yoon, S.-C., Podsiadlowski, P., & Rosswog, S. (2007). Remnant evolution after a car bon–oxygen white dwarf merger. Mon. Not. R. Astron. Soc., 380(3), 933–948. https: //doi.org/10.1111/j.1365-2966.2007.12161.x
dc.rights.en.fl_str_mv Attribution-ShareAlike 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 74 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Física
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Física
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/03022851-17f9-447f-a7d0-86895f910301/download
https://repositorio.uniandes.edu.co/bitstreams/a1f6cf11-beee-448b-9228-a1ac2e70fd9f/download
https://repositorio.uniandes.edu.co/bitstreams/1f2d208e-afef-4ebc-913b-269ce2874b2f/download
https://repositorio.uniandes.edu.co/bitstreams/11db3cdd-fdc6-472d-aa7d-39c3ffed56dc/download
https://repositorio.uniandes.edu.co/bitstreams/45016eee-aa15-47ad-9338-60dc0b475968/download
https://repositorio.uniandes.edu.co/bitstreams/323497c8-f1f1-4ee0-968b-faca4138810c/download
https://repositorio.uniandes.edu.co/bitstreams/8ed2ed18-babe-4fc7-b23c-1975a1fae668/download
https://repositorio.uniandes.edu.co/bitstreams/e8a7d6cf-f489-42d7-99ad-e7e3942cac19/download
bitstream.checksum.fl_str_mv c665865edc7ad4d340b043728a845c98
55265e2bb3c4bb8c002f42b84aecaab1
84a900c9dd4b2a10095a94649e1ce116
ae9e573a68e7f92501b6913cc846c39f
c16cb51127d4f95fffdb3fe237841e06
20e5fbe6a5965b026e9be4db71d91574
841192a759f9d574925c22cf447f2b4d
21927cdea7c3d816d6d19960ec5e3e62
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134026826219520
spelling Oostra Van Noppen, BenjamínTorres Gil, SantiagoCamisassa, María EugeniaCastro Idarraga, Juan PabloSabogal Martínez, Beatriz EugeniaFacultad de Ciencias::Astrofísica2024-07-26T19:54:29Z2024-07-26T19:54:29Z2024-07-25https://hdl.handle.net/1992/74727instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/White dwarf stars are the most common end point of stellar evolution. Due to their large numbers and multiple applications, white dwarfs are among the most interesting objects to study in the universe. Based on the observations provided by the Gaia Space Mission, studies of these objects showed that a small fraction of the ultra-massive white dwarfs undergo a substantial delay in their cooling times. To explain the delay, additional energy sources inside the white dwarf have been considered. Neon 22 sedimentation and crystallization are the most important sources. Considering these two extra energy sources and high metallicity, it was possible to explain the delay. In this framework, we aimed to analyze the effect of crystallization and Neon 22 sedimentation on white dwarfs, especially in ultra-massive white dwarfs. To do this, we generated a wide sample of synthetic globular clusters with different physical properties using Monte Carlo techniques and an up-to-date set of white dwarf cooling tracks. These synthetic stellar populations were analyzed using Hertzsprung-Russell diagrams, ς distributions, and a new quantity introduced in this text, the ultra-massive quotient. The extensive analysis showed that younger and metal-richer clusters present higher ultra-massive quotients and ς histograms centered on lower values. Moreover, Hertzsprung-Russell diagrams prove that a high metallicity and a carbon-oxygen core chemical composition abruptly increase the delay time undergone by the white dwarfs due to Neon 22 sedimentation. In addition, we found that only a stellar population with ultra-massive carbon-oxygen core white dwarfs counts with a significant number of white dwarfs in the ultra-massive region. These findings allow us to compare our simulations with real observed clusters (NGC 6397, NGC 6791, and 47 Tucanae). The comparison shows that the ultra-massive white dwarfs are located around the same values of ς for synthetic and observed clusters. Additionally, we could predict, thanks to the ultra-massive quotient, which clusters have the highest percentage of ultra-massive white dwarfs visible in their color-magnitude diagrams.Las enanas blancas son la etapa final en la vida de la mayoría de las estrellas de secuencia principal. debido a su gran numero y a sus múltiples aplicaciones, las enanas blancas están entre los objetos de estudio más interesantes del universo. Basándose en las observaciones de la Misión Espacial Gaia, diversos estudios encontraron que una pequeña porción de las enanas blancas ultramasivas sufre un efecto de retardo en sus tiempos de enfriamiento. Para explicar este retardo, es necesario considerar fuentes adicionales de energía dentro de la enana blanca. La sedimentación del neón-22 y la cristalización son los efectos más importantes. Al considerar estas dos fuentes extra de energía y una alta metalicidad, fue posible dar cuenta del retardo en el tiempo de enfriamiento de las enanas blancas. En este contexto, nuestro objetivo es analizar los efectos de la cristalización y la sedimentación del neón-22 en enanas blancas, especialmente en enanas blancas ultramasivas. Para esto, usando técnicas de Monte Carlo y modelos de enfriamiento de última generación, generamos una amplia gama de poblaciones sintéticas de estrellas con diferentes propiedades. Estas poblaciones sintéticas fueron analizadas usando diagramas Hertzsprung-Russell, histogramas de la variable ς y una nueva cantidad introducida en este texto, el cociente ultramasivo. Este extenso análisis mostro que los cúmulos más jóvenes y con las abundancias de metal más alta tienen cocientes ultramasivos más altos e histogramas de ς centrados en valores más bajos. Además, con los diagramas Hertzsprung-Russell se comprueba que una alta metalicidad y una composición química de carbono-oxigeno aumenta en gran medida el retardo en los modelos de enfriamiento causado por la sedimentación del neón-22. Comparamos nuestras simulaciones con la población de enanas blancas de cúmulos reales observados por el telescopio espacial Hubble, como lo son NGC 6397, NGC 6791 y 47 Tucanae. La comparación muestra que las enanas blancas ultramasivas se ubican sobre la misma región de ς, tanto para cúmulos sintéticos como observados. Adicionalmente, logramos predecir con ayuda del cociente ultramasivo el cumulo observado con el mayor porcentaje de enanas blancas ultramasivas visibles en su diagrama color magnitud.PregradoAstrofísica computacional74 páginasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaAttribution-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Crystallization of white dwarfs in globular clustersCristalización de enanas blancas en cumulos globularesTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPWhite dwarfsAstrophysicsCrystallizationGlobular clustersFísicaAlthaus, L. G., García-Berro, E., Isern, J., & Corsico, A. H. (2005). Mass-radius relations for massive white dwarf stars. Astron. Astrophys., 441(2), 689–694. https://doi.org/10.1051/0004-6361:20052996Althaus, L. G., García-Berro, E., Renedo, I., Isern, J., Corsico, A. H., & Rohrmann, R. D. (2010). Evolution of White Dwarf Stars with High-metallicity Progenitors: The Role of 22Ne Diffusion. Astrophys. J., 719(1), 612–621. https://doi.org/10.1088/0004- 637X/719/1/612Althaus, L. G., Panei, J. A., Bertolami, M. M. M., Garcia-Berro, E., Corsico, A. H., Romero, A. D., Kepler, S. O., & Rohrmann, R. D. (2009). NEW EVOLUTIONARY SEQUENCES FOR HOT H-DEFICIENT WHITE DWARFS ON THE BASIS OF A FULL ACCOUNT OF PROGENITOR EVOLUTION. Astrophys. J., 704(2), 1605. https://doi.org/10.1088/0004-637X/704/2/1605Althaus, L. G., Panei, J. A., Romero, A. D., Rohrmann, R. D., Corsico, A. H., Garcia-Berro, E., & Bertolami, M. M. M. (2009). Evolution and colors of helium-core white dwarf stars with high-metallicity progenitors. Astron. Astrophys., 502(1), 207–216. https: //doi.org/10.1051/0004-6361/200911640Althaus, L. G., Serenelli, A. M., Corsico, A. H., & Montgomery, M. H. (2003). New evolutionary models for massive ZZ Ceti stars. I. First results for their pulsational properties. Astron. Astrophys., 404(2), 593–609. https://doi.org/10.1051/0004- 6361: 20030472Althaus, L. G., Camisassa, M. E., Bertolami, M. M. M., Corsico, A. H., & Garcıa-Berro, E. (2015). White dwarf evolutionary sequences for low-metallicity progenitors: The impact of third dredge-up. Astron. Astrophys., 576, A9. https://doi.org/10.1051/0004- 6361/201424922Althaus, L. G., Corsico, A. H., Isern, J., & Garcia-Berro, E. (2010). Evolutionary and pulsational properties of white dwarf stars. arXiv. https://doi.org/10.1007/s00159-010- 0033-1Althaus, L. G., De Geronimo, F., Corsico, A., Torres, S., & Garcia-Berro, E. (2017). The evo lution of white dwarfs resulting from helium-enhanced, low-metallicity progenitor stars. Astron. Astrophys., 597, A67. https://doi.org/10.1051/0004-6361/201629909Althaus, L. G., Pons, P. G., Corsico, A. H., Bertolami, M. M., De Gernimo, F., Camisassa, M. E., Torres, S., Gutierrez, J., & Rebassa-Mansergas, A. (2021). The formation of ultra-massive carbon-oxygen core white dwarfs and their evolutionary and pulsational properties. Astron. Astrophys., 646, A30. https : / / doi . org / 10 . 1051 / 0004 - 6361/202038930Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. (2009). The Chemical Composition of the Sun. Annual Review of Astronomy and Astrophysics, 47(1), 481–522. https: //doi.org/10.1146/annurev.astro.46.060407.145222Bastian, N., & Lardo, C. (2017). Multiple Stellar Populations in Globular Clusters. arXiv. https://doi.org/10.1146/annurev-astro-081817-051839 Camacho D´ıaz, J. (2014, June). Monte Carlo simulations of the population of single and binary white dwarfs of our galaxy [Doctoral dissertation, Universitat Politecnica de ` Catalunya]. https://doi.org/10.5821/dissertation-2117-95354Camisassa, M. E., MM, M. B., & Althaus, L. G. (2014). Evolucion de enanas blancas provenientes de progenitores de baja metalicidad.Camisassa, M. E., Althaus, L. G., Corsico, A. H., De Geronimo, F. C., Bertolami, M. M. M.,Novarino, M. L., Rohrmann, R. D., Wachlin, F. C., & Garc´ıa-Berro, E. (2019). The evolution of ultra-massive white dwarfs. Astron. Astrophys., 625, A87. https://doi. org/10.1051/0004-6361/201833822Camisassa, M. E., Althaus, L. G., Rohrmann, R. D., Garcia-Berro, E., Torres, S., Corsico, A. H., & Wachlin, F. C. (2017). Updated Evolutionary Sequences for Hydrogen deficient White Dwarfs. Astrophys. J., 839(1), 11. https://doi.org/10.3847/1538- 4357/aa6797Camisassa, M. E., Althaus, L. G., Torres, S., Corsico, A. H., Rebassa-Mansergas, A., Tremblay, P.-E., Cheng, S., & Raddi, R. (2021). Forever young white dwarfs: When stellar ageing stops. Astron. Astrophys., 649, L7. https : / / doi . org / 10 . 1051 / 0004 - 6361 / 202140720Casagrande, L., Schonrich, R., Asplund, M., Cassisi, S., Ramirez, I., Melendez, J., Bensby, T., & Feltzing, S. (2011). New constraints on the chemical evolution of the solar neighbourhood and Galactic disc(s) - Improved astrophysical parameters for the Geneva-Copenhagen Survey. Astron. Astrophys., 530, A138. https://doi.org/10.1051/ 0004-6361/201016276Cheng, S., Cummings, J. D., & Menard, B. (2019). A Cooling Anomaly of High-mass White Dwarfs. Astrophys. J., 886(2), 100. https://doi.org/10.3847/1538-4357/ab4989Cojocaru, E. R. (2016, November). Population synthesis studies of the white dwarfs of the galactic disk and halo [Doctoral dissertation, Universitat Politecnica de Catalunya]. https://doi.org/10.5821/dissertation-2117-105828De Bruijne, J., Perryman, M., Lindegren, L., Jordi, C., Høg, E., Katz, D., & Cropper, M. (2005). Gaia astrometric, photometric, and radial-velocity performance assessment methodologies to be used by the industrial system-level teams. Gaia–JdB–022. Deloye, C. J., & Bildsten, L. (2002). Gravitational Settling of 22Ne in Liquid White Dwarf Interiors–Cooling and Seismological Effects. arXiv. https://doi.org/10.1086/343800Devorkin, D. H. (1977). The Origins of the Hertzsprung-Russell Diagram. IAU Symposium, 80(80), 61. ESO. (2021). Hubble’s view of dazzling globular cluster NGC 6397. www.spacetelescope.org. https://esahubble.org/images/opo1824aForbes, D. A., & Bridges, T. (2010). Accreted versus In Situ Milky Way Globular Clusters. arXiv. https://doi.org/10.1111/j.1365-2966.2010.16373.xGaia collaboration, c. (2018). Gaia Data Release 2 - Observational Hertzsprung-Russell diagrams. Astron. Astrophys., 616, A10. https://doi.org/10.1051/0004-6361/201832843Gaia collaborators, c. (2023). Gaia Data Release 3 - Summary of the content and survey properties. Astron. Astrophys., 674, A1. https://doi.org/10.1051/0004-6361/202243940 Gaia DR2 Passbands - Gaia - Cosmos [[Online; accessed 12. May 2024]]. (2024, May). https://www.cosmos.esa.int/web/gaia/iow 20180316Garcia-Berro, E., Torres, S., Renedo, I., Camacho, J., Althaus, L. G., Corsico, A. H., Salaris, M., & Isern, J. (2011). The white-dwarf cooling sequence of NGC 6791: a unique tool for stellar evolution. aap, 533, Article A31, A31. https://doi.org/10.1051/0004- 6361/201116499Garcia–Berro, E., & Oswalt, T. D. (2016). The white dwarf luminosity function. New As tronomy Reviews, 72-74, 1–22. https://doi.org/https://doi.org/10.1016/j.newar.2016. 08.001Garcia-Berro, E., Torres, S., Isern, J., & Burkert, A. (2004). Monte Carlo simulations of the halo white dwarf population. Astron. Astrophys., 418(1), 53–65. https://doi.org/10. 1051/0004-6361:2003454Garcia-Berro, E., Torres, S., Althaus, L. G., & Miller Bertolami, M. M. (2014). The white dwarf cooling sequence of 47 Tucanae. Astron. Astrophys., 571, A56. https://doi.org/ 10.1051/0004-6361/201424652Garcia-Berro, E., Torres, S., Althaus, L. G., Renedo, I., Loren-Aguilar, P., Corsico, A. H., Rohrmann, R. D., Salaris, M., & Isern, J. (2010). A white dwarf cooling age of 8 Gyr for NGC 6791 from physical separation processes. Nature, 465, 194–196. https: //doi.org/10.1038/nature09045Gratton, R., Bragaglia, A., Carretta, E., D’Orazi, V., Lucatello, S., & Sollima, A. (2019). What is a globular cluster? An observational perspective. arXiv. https://doi.org/10. 1007/s00159-019-0119-3Harris, W. (1996). Catalog of parameters for milky way globular clusters. Astrophysical Journal, 112(1487), 2003.Herschel, W. (1814). XIV. Astronomical observations relating to the sidereal part of the heavens, and its connection with the nebulous part; arranged for the purpose of a critical examination. Philos. Trans. R. Soc. Lond., 104, 248–284. https://doi.org/10. 1098/rstl.1814.0015Hollow, R. (2006). Concepts for the cosmic engine. Isern, J., Mochkovitch, R., García-Berro, E., & Hernanz, M. (1997). The Physics of Crystallizing White Dwarfs. Astrophys. J., 485(1), 308–312. https://doi.org/10.1086/304425Isern, J., Garcia-Berro, E., Hernanz, M., & Mochkovitch, R. (1998). The physics of white dwarfs. J. Phys.: Condens. Matter, 10(49), 11263. https://doi.org/10.1088/0953- 8984/10/49/015James, F. (1990). A review of pseudorandom number generators. Comput. Phys. Commun., 60(3), 329–344. https://doi.org/10.1016/0010-4655(90)90032-VJimenez-Esteban, F. M., Torres, S., Rebassa-Mansergas, A., Cruz, P., Murillo-Ojeda, R., Solano, E., Rodrigo, C., & Camisassa, M. E. (2023). Spectral classification of the 100 pc white dwarf population from Gaia-DR3 and the virtual observatory. Mon. Not. R. Astron. Soc., 518(4), 5106–5122. https://doi.org/10.1093/mnras/stac3382Jimenez-Esteban, F. M., Torres, S., Rebassa-Mansergas, A., Skorobogatov, G., Solano, E., ´ Cantero, C., & Rodrigo, C. (2018). A white dwarf catalogue from Gaia-DR2 and the Virtual Observatory. Mon. Not. R. Astron. Soc., 480(4), 4505–4518. https://doi.org/ 10.1093/mnras/sty2120Kato, M., Saio, H., & Hachisu, I. (2017). A Millennium-long Evolution of the 1 yr Recur rence Period Nova—Search for Any Indication of the Forthcoming He Flash. Astro phys. J., 844(2), 143. https://doi.org/10.3847/1538-4357/aa7c5eMermilliod, J.-C., & Paunzen, E. (2003). Analysing the database for stars in open clusters I. General methods and description of the data. Astron. Astrophys., 410(2). https : //doi.org/10.1051/0004-6361:20031112Mochkovitch, R. (1983). Freezing of a carbon-oxygen white dwarf. Astron. Astrophys., 122(1-2), 212–218. NRA. (2024, February). Intensity of Starlight on a Planet in a Globular Cluster - National Radio Astronomy Observatory [[Online; accessed 8. Feb. 2024]]. https://public.nrao. edu/ask/intensity-of-starlight-on-a-planet-in-a-globular-clusterRebassa-Mansergas, A., Maldonado, J., Raddi, R., Knowles, A. T., Torres, S., Hoskin, M., Cunningham, T., Hollands, M., Ren, J., Gaensicke, B. T., Tremblay, P.-E., Castro Rodriguez, N., Camisassa, M., & Koester, D. (2021). Constraining the solar neighbourhood age-metallicity relation from white dwarf-main sequence binaries. arXiv. https://doi.org/10.1093/mnras/stab1559Renedo, I., Althaus, L. G., Bertolami, M. M. M., Romero, A. D., Corsico, A. H., Rohrmann, ´ R. D., & Garcia-Berro, E. (2010). NEW COOLING SEQUENCES FOR OLD WHITE DWARFS. Astrophys. J., 717(1), 183. https : / / doi . org / 10 . 1088 / 0004 - 637X/717/1/183Russell, H. N. (1914). Relations Between the Spectra and Other Characteristics of the Stars. Popular Astronomy, 22, 275–294. https://ui.adsabs.harvard.edu/abs/1914PA.....22. .275R/abstract Salpeter, E. E. (1955). The Luminosity Function and Stellar Evolution. Astrophys. J., 121, 161. https://doi.org/10.1086/145971Schwab, J. (2021). Evolutionary Models for the Remnant of the Merger of Two Carbon Oxygen Core White Dwarfs. Astrophys. J., 906(1), 53. https://doi.org/10.3847/1538- 4357/abc87eSiess, L. (2007). Evolution of massive AGB stars - II. model properties at non-solar metal licity and the fate of Super-AGB stars. Astron. Astrophys., 476(2), 893–909. https: //doi.org/10.1051/0004-6361:20078132Stevenson, D. J. (1980). A EUTECTIC IN CARBON-OXYGEN WHITE DWARFS ? J. Phys. Colloques, 41(C2), C2-61–C2-64. https://doi.org/10.1051/jphyscol:1980209 Temmink, K. D., Toonen, S., Zapartas, E., Justham, S., & Gansicke, B. T. (2020). Looks can ¨ be deceiving - Underestimating the age of single white dwarfs due to binary mergers. Astron. Astrophys., 636, A31. https://doi.org/10.1051/0004-6361/201936889Torres, S., Canals, P., Jimenez-Esteban, F. M., Rebassa-Mansergas, A., & Solano, E. (2022). ´ A population synthesis fitting of the Gaia resolved white dwarf binary populationwithin 100 pc. Monthly Notices of the Royal Astronomical Society, 511(4), 5462– 5474. https://doi.org/10.1093/mnras/stac374Torres, S. (2002, July). Simulacion de Monte Carlo de la poblaci ´ on de enanas blancas de la ´ galaxia [Doctoral dissertation, Universitat Politecnica de Catalunya]. https://doi.org/ ` 10.5821/dissertation-2117-93889Torres, S., Garcia-Berro, E., Burkert, A., & Isern, J. (2002). High-proper-motion white dwarfs and halo dark matter. Mon. Not. R. Astron. Soc., 336(3), 971–978. https : //doi.org/10.1046/j.1365-8711.2002.05830.xTorres, S., Garc´ıa-Berro, E., Althaus, L. G., & Camisassa, M. E. (2015). The white dwarf population of NGC 6397. Astron. Astrophys., 581, A90. https://doi.org/10.1051/ 0004-6361/201526157Tremblay, N. P., Gentile Fusillo, Tremblay, P.-E., Gensicke, B. T., Manser, C. J., Cunning ham, T., Cukanovaite, E., Hollands, M., Marsh, T., Raddi, R., Jordan, S., Toonen, S., Geier, S., Barstow, M., & Cummings, J. D. (2019). A Gaia Data Release 2 catalog of white dwarfs and a comparison with SDSS. Mon. Not. R. Astron. Soc., 482(4), 4570–4591. https://doi.org/10.1093/mnras/sty3016van Horn, H. M. (1968). Crystallization of White Dwarfs. Astrophys. J., 151, 227. https: //doi.org/10.1086/149432Yoon, S.-C., Podsiadlowski, P., & Rosswog, S. (2007). Remnant evolution after a car bon–oxygen white dwarf merger. Mon. Not. R. Astron. Soc., 380(3), 933–948. https: //doi.org/10.1111/j.1365-2966.2007.12161.x202012399PublicationORIGINALautorizacion tesis firmaBO.pdfautorizacion tesis firmaBO.pdfHIDEapplication/pdf271887https://repositorio.uniandes.edu.co/bitstreams/03022851-17f9-447f-a7d0-86895f910301/downloadc665865edc7ad4d340b043728a845c98MD51Crystallization of white dwarfs in globular clusters.pdfCrystallization of white dwarfs in globular clusters.pdfapplication/pdf37723709https://repositorio.uniandes.edu.co/bitstreams/a1f6cf11-beee-448b-9228-a1ac2e70fd9f/download55265e2bb3c4bb8c002f42b84aecaab1MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81025https://repositorio.uniandes.edu.co/bitstreams/1f2d208e-afef-4ebc-913b-269ce2874b2f/download84a900c9dd4b2a10095a94649e1ce116MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/11db3cdd-fdc6-472d-aa7d-39c3ffed56dc/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTautorizacion tesis firmaBO.pdf.txtautorizacion tesis firmaBO.pdf.txtExtracted texttext/plain2025https://repositorio.uniandes.edu.co/bitstreams/45016eee-aa15-47ad-9338-60dc0b475968/downloadc16cb51127d4f95fffdb3fe237841e06MD55Crystallization of white dwarfs in globular clusters.pdf.txtCrystallization of white dwarfs in globular clusters.pdf.txtExtracted texttext/plain100467https://repositorio.uniandes.edu.co/bitstreams/323497c8-f1f1-4ee0-968b-faca4138810c/download20e5fbe6a5965b026e9be4db71d91574MD57THUMBNAILautorizacion tesis firmaBO.pdf.jpgautorizacion tesis firmaBO.pdf.jpgGenerated Thumbnailimage/jpeg10903https://repositorio.uniandes.edu.co/bitstreams/8ed2ed18-babe-4fc7-b23c-1975a1fae668/download841192a759f9d574925c22cf447f2b4dMD56Crystallization of white dwarfs in globular clusters.pdf.jpgCrystallization of white dwarfs in globular clusters.pdf.jpgGenerated Thumbnailimage/jpeg8360https://repositorio.uniandes.edu.co/bitstreams/e8a7d6cf-f489-42d7-99ad-e7e3942cac19/download21927cdea7c3d816d6d19960ec5e3e62MD581992/74727oai:repositorio.uniandes.edu.co:1992/747272024-09-12 15:52:03.052http://creativecommons.org/licenses/by-sa/4.0/Attribution-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K