Homotopy gets real

This thesis presents the development of a new module for the Julia programming language, designed to decompose the real part of complex curves within the field of computational algebraic geometry. The work leverages homotopic approaches to bridge gaps in existing tools. The core objective is to impl...

Full description

Autores:
González Cabrera, Juan Camilo
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/75053
Acceso en línea:
https://hdl.handle.net/1992/75053
Palabra clave:
Julia
Homotopy methods
Programming language
Computational algebraic geometry
Ingeniería
Rights
openAccess
License
Attribution-NonCommercial-ShareAlike 4.0 International
id UNIANDES2_91bd6514b6de145e0d319778d76183c2
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/75053
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Homotopy gets real
title Homotopy gets real
spellingShingle Homotopy gets real
Julia
Homotopy methods
Programming language
Computational algebraic geometry
Ingeniería
title_short Homotopy gets real
title_full Homotopy gets real
title_fullStr Homotopy gets real
title_full_unstemmed Homotopy gets real
title_sort Homotopy gets real
dc.creator.fl_str_mv González Cabrera, Juan Camilo
dc.contributor.advisor.none.fl_str_mv Cardozo Álvarez, Nicolás
Barrero Rosero, Daniel Ricardo
dc.contributor.author.none.fl_str_mv González Cabrera, Juan Camilo
dc.subject.keyword.none.fl_str_mv Julia
Homotopy methods
Programming language
Computational algebraic geometry
topic Julia
Homotopy methods
Programming language
Computational algebraic geometry
Ingeniería
dc.subject.themes.spa.fl_str_mv Ingeniería
description This thesis presents the development of a new module for the Julia programming language, designed to decompose the real part of complex curves within the field of computational algebraic geometry. The work leverages homotopic approaches to bridge gaps in existing tools. The core objective is to implement a Julia package inspired by BertiniReal, aiming to efficiently handle the decomposition of algebraic sets into their real components. Julia’s robust features and growing prominence in scientific computing motivate the choice of the language. The thesis details the foundational concepts, the implementation of the new module, and its validation through comparative analysis, demonstrating the reliability and utility.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-08-09T16:44:46Z
dc.date.available.none.fl_str_mv 2024-08-09T16:44:46Z
dc.date.issued.none.fl_str_mv 2024-06-11
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/75053
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/75053
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Silviana Amethyst, Daniel J. Bates, Wenrui Hao, Jonathan D. Hauenstein, Andrew J. Sommese, and Charles W. Wampler, Bertini real: Numerical decomposition of real algebraic curves and surfaces.
Silviana Amethyst, Daniel J. Bates, Wenrui Hao, Jonathan D. Hauenstein, Andrew J. Sommese, and Charles W. Wampler, Bertinireal: Software for numerical decomposition of real algebraic sets, 2024, Accessed: fecha de acceso.
Daniel J. Bates, Jonathan D. Hauenstein, Andrew J. Sommese, and Charles W. Wampler, Bertini: Software for numerical algebraic geometry, 2023, Version actualizada.
G.E. Bredon, Topology and geometry, Graduate texts in mathematics, Springer Verlag, 1993.
Paul Breiding and Sascha Timme, Homotopycontinuation.jl, Julia Package, 2024.
dc.rights.en.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 40 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Ingeniería de Sistemas y Computación
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.department.none.fl_str_mv Departamento de Ingeniería de Sistemas y Computación
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/f7507026-2f0d-4390-8e20-81cd275632ac/download
https://repositorio.uniandes.edu.co/bitstreams/9eec017b-a2b5-42b3-8e8e-c68e4dabc841/download
https://repositorio.uniandes.edu.co/bitstreams/41c7a14d-c8f1-428a-9995-c2d1c6c4a51f/download
https://repositorio.uniandes.edu.co/bitstreams/4033ac8d-900b-4126-ac6d-4faf80846f2a/download
https://repositorio.uniandes.edu.co/bitstreams/f1094135-347a-49dc-b01b-4000a1e143cf/download
https://repositorio.uniandes.edu.co/bitstreams/37a02dfe-4454-4d8d-a97e-c2bbc6ee0a30/download
https://repositorio.uniandes.edu.co/bitstreams/dadbf28a-fbe2-4be4-9c31-2e7cbe5fc908/download
https://repositorio.uniandes.edu.co/bitstreams/cfae78a8-5420-4d65-a92c-1aaf2d2c523b/download
bitstream.checksum.fl_str_mv 934f4ca17e109e0a05eaeaba504d7ce4
ae9e573a68e7f92501b6913cc846c39f
37a73619799e587e1f8c14c4b9b1cef6
691daa6941fcef67b69db24989368f6a
c75afd8751bfb7e667c9d9865f8b7113
d653e4cbf12048508d83fdd41751f916
89982ba955a3d159f57a7d1be544702a
41763a9aa46272e43e1d93f9bb0ef14c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1818112023199744000
spelling Cardozo Álvarez, Nicolásvirtual::18150-1Barrero Rosero, Daniel RicardoGonzález Cabrera, Juan Camilo2024-08-09T16:44:46Z2024-08-09T16:44:46Z2024-06-11https://hdl.handle.net/1992/75053instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/This thesis presents the development of a new module for the Julia programming language, designed to decompose the real part of complex curves within the field of computational algebraic geometry. The work leverages homotopic approaches to bridge gaps in existing tools. The core objective is to implement a Julia package inspired by BertiniReal, aiming to efficiently handle the decomposition of algebraic sets into their real components. Julia’s robust features and growing prominence in scientific computing motivate the choice of the language. The thesis details the foundational concepts, the implementation of the new module, and its validation through comparative analysis, demonstrating the reliability and utility.Pregrado40 páginasapplication/pdfengUniversidad de los AndesIngeniería de Sistemas y ComputaciónFacultad de IngenieríaDepartamento de Ingeniería de Sistemas y ComputaciónAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Homotopy gets realTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPJuliaHomotopy methodsProgramming languageComputational algebraic geometryIngenieríaSilviana Amethyst, Daniel J. Bates, Wenrui Hao, Jonathan D. Hauenstein, Andrew J. Sommese, and Charles W. Wampler, Bertini real: Numerical decomposition of real algebraic curves and surfaces.Silviana Amethyst, Daniel J. Bates, Wenrui Hao, Jonathan D. Hauenstein, Andrew J. Sommese, and Charles W. Wampler, Bertinireal: Software for numerical decomposition of real algebraic sets, 2024, Accessed: fecha de acceso.Daniel J. Bates, Jonathan D. Hauenstein, Andrew J. Sommese, and Charles W. Wampler, Bertini: Software for numerical algebraic geometry, 2023, Version actualizada.G.E. Bredon, Topology and geometry, Graduate texts in mathematics, Springer Verlag, 1993.Paul Breiding and Sascha Timme, Homotopycontinuation.jl, Julia Package, 2024.201911030Publicationhttps://scholar.google.es/citations?user=3iTzjQsAAAAJvirtual::18150-10000-0002-1094-9952virtual::18150-1a77ff528-fc33-44d6-9022-814f81ef407avirtual::18150-1a77ff528-fc33-44d6-9022-814f81ef407avirtual::18150-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.uniandes.edu.co/bitstreams/f7507026-2f0d-4390-8e20-81cd275632ac/download934f4ca17e109e0a05eaeaba504d7ce4MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/9eec017b-a2b5-42b3-8e8e-c68e4dabc841/downloadae9e573a68e7f92501b6913cc846c39fMD52ORIGINALHomotopy gets real.pdfHomotopy gets real.pdfapplication/pdf1655740https://repositorio.uniandes.edu.co/bitstreams/41c7a14d-c8f1-428a-9995-c2d1c6c4a51f/download37a73619799e587e1f8c14c4b9b1cef6MD52autorizacion tesis (2).pdfautorizacion tesis (2).pdfHIDEapplication/pdf305299https://repositorio.uniandes.edu.co/bitstreams/4033ac8d-900b-4126-ac6d-4faf80846f2a/download691daa6941fcef67b69db24989368f6aMD53TEXTHomotopy gets real.pdf.txtHomotopy gets real.pdf.txtExtracted texttext/plain58961https://repositorio.uniandes.edu.co/bitstreams/f1094135-347a-49dc-b01b-4000a1e143cf/downloadc75afd8751bfb7e667c9d9865f8b7113MD54autorizacion tesis (2).pdf.txtautorizacion tesis (2).pdf.txtExtracted texttext/plain1994https://repositorio.uniandes.edu.co/bitstreams/37a02dfe-4454-4d8d-a97e-c2bbc6ee0a30/downloadd653e4cbf12048508d83fdd41751f916MD56THUMBNAILHomotopy gets real.pdf.jpgHomotopy gets real.pdf.jpgGenerated Thumbnailimage/jpeg5391https://repositorio.uniandes.edu.co/bitstreams/dadbf28a-fbe2-4be4-9c31-2e7cbe5fc908/download89982ba955a3d159f57a7d1be544702aMD55autorizacion tesis (2).pdf.jpgautorizacion tesis (2).pdf.jpgGenerated Thumbnailimage/jpeg11115https://repositorio.uniandes.edu.co/bitstreams/cfae78a8-5420-4d65-a92c-1aaf2d2c523b/download41763a9aa46272e43e1d93f9bb0ef14cMD571992/75053oai:repositorio.uniandes.edu.co:1992/750532024-09-12 16:20:14.786http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K