Topological conditions in geometric and Maslov quantization
Among the most important theories in physics is quantum mechanics which, in contrast to classical mechanics, uses topology in addition to differential geometry. Specifically, in this work, we will study the well-known geometric quantization procedure due mainly to B. Kostant and J-M. Souriau, and th...
- Autores:
-
Villamarín Castro, Juan José
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2020
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/51303
- Acceso en línea:
- http://hdl.handle.net/1992/51303
- Palabra clave:
- Cuantificación geométrica
Topología algebraica
Geometría diferencial
Matemáticas
Matemáticas
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
UNIANDES2_900b9adf20b5b279854d2391cbacff15 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/51303 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cardona Guio, Alexandervirtual::2530-1Villamarín Castro, Juan José4f4b09f9-bb79-445b-82a5-e04a116f7038400Cortissoz Iriarte, Jean Carlos2021-08-10T18:19:28Z2021-08-10T18:19:28Z2020http://hdl.handle.net/1992/5130323543.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Among the most important theories in physics is quantum mechanics which, in contrast to classical mechanics, uses topology in addition to differential geometry. Specifically, in this work, we will study the well-known geometric quantization procedure due mainly to B. Kostant and J-M. Souriau, and then compare it to an alternative geometric quantization method using the Maslov index due to J. Czyz. Given a symplectic manifold, that generally models a classical physical system, we wish to quantize the Poisson algebra of observables on it. The idea is to construct a Hilbert Space associated to the symplectic manifold and associate to each smooth function a self-adjoint operator acting on H. This construction is done in such a way that the Dirac quantization conditions hold. The full process consists of three steps. The first is called prequantization, in which a topological condition (on the cohomology class of the symplectic form) gives rise to a geometric space...Entre las teorías más importantes de la física se encuentra la mecánica cuántica que, a diferencia de la mecánica clásica, utiliza la topología además de la geometría diferencial. En concreto, en este trabajo estudiaremos el conocido procedimiento de cuantización geométrica desarrollado principalmente por B. Kostant y J-M. Souriau, y luego lo comparamos con un método alternativo de cuantización geométrica que utiliza el índice de Maslov y fue desarrollado por J. Czyz. Dada una variedad simpléctica, que generalmente modela un sistema físico clásico, deseamos cuantizar el álgebra de Poisson de observables en esta. La idea es construir un espacio de Hilbert H asociado a la variedad simpléctica y asociar a cada función suave un operador autoadjunto que actúa sobre H. Esta construcción está hecha de tal manera que se cumplan las condiciones de cuantización de Dirac. El proceso completo consiste de tres pasos. El primero se llama precuantización, en el que una condición topológica...MatemáticoPregrado75 hojasapplication/pdfengUniversidad de los AndesMatemáticasFacultad de CienciasDepartamento de MatemáticasTopological conditions in geometric and Maslov quantizationTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPCuantificación geométricaTopología algebraicaGeometría diferencialMatemáticasMatemáticas201717135Publicationb65b9b87-c23b-4157-ac5a-55f34b071dc7virtual::2530-1b65b9b87-c23b-4157-ac5a-55f34b071dc7virtual::2530-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000055190virtual::2530-1TEXT23543.pdf.txt23543.pdf.txtExtracted texttext/plain119281https://repositorio.uniandes.edu.co/bitstreams/bcb59b9f-3036-4b1e-8b18-240dbe28a51b/download7e5f2749d39d85c627addfe93ff692a3MD54THUMBNAIL23543.pdf.jpg23543.pdf.jpgIM Thumbnailimage/jpeg7458https://repositorio.uniandes.edu.co/bitstreams/57bcf392-697a-4969-9d2e-809300421601/download1a116d2606a349d98798d27db9a88c7bMD55ORIGINAL23543.pdfapplication/pdf522185https://repositorio.uniandes.edu.co/bitstreams/b404f3e5-9e50-402b-9ced-ef6d1245deb1/downloaddb3ee2629b7130f828b6dc9300f5cf76MD511992/51303oai:repositorio.uniandes.edu.co:1992/513032024-03-13 12:13:27.435http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |
dc.title.spa.fl_str_mv |
Topological conditions in geometric and Maslov quantization |
title |
Topological conditions in geometric and Maslov quantization |
spellingShingle |
Topological conditions in geometric and Maslov quantization Cuantificación geométrica Topología algebraica Geometría diferencial Matemáticas Matemáticas |
title_short |
Topological conditions in geometric and Maslov quantization |
title_full |
Topological conditions in geometric and Maslov quantization |
title_fullStr |
Topological conditions in geometric and Maslov quantization |
title_full_unstemmed |
Topological conditions in geometric and Maslov quantization |
title_sort |
Topological conditions in geometric and Maslov quantization |
dc.creator.fl_str_mv |
Villamarín Castro, Juan José |
dc.contributor.advisor.none.fl_str_mv |
Cardona Guio, Alexander |
dc.contributor.author.none.fl_str_mv |
Villamarín Castro, Juan José |
dc.contributor.jury.none.fl_str_mv |
Cortissoz Iriarte, Jean Carlos |
dc.subject.armarc.spa.fl_str_mv |
Cuantificación geométrica Topología algebraica Geometría diferencial Matemáticas |
topic |
Cuantificación geométrica Topología algebraica Geometría diferencial Matemáticas Matemáticas |
dc.subject.themes.none.fl_str_mv |
Matemáticas |
description |
Among the most important theories in physics is quantum mechanics which, in contrast to classical mechanics, uses topology in addition to differential geometry. Specifically, in this work, we will study the well-known geometric quantization procedure due mainly to B. Kostant and J-M. Souriau, and then compare it to an alternative geometric quantization method using the Maslov index due to J. Czyz. Given a symplectic manifold, that generally models a classical physical system, we wish to quantize the Poisson algebra of observables on it. The idea is to construct a Hilbert Space associated to the symplectic manifold and associate to each smooth function a self-adjoint operator acting on H. This construction is done in such a way that the Dirac quantization conditions hold. The full process consists of three steps. The first is called prequantization, in which a topological condition (on the cohomology class of the symplectic form) gives rise to a geometric space... |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-08-10T18:19:28Z |
dc.date.available.none.fl_str_mv |
2021-08-10T18:19:28Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/51303 |
dc.identifier.pdf.none.fl_str_mv |
23543.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/51303 |
identifier_str_mv |
23543.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
75 hojas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Matemáticas |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Matemáticas |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/bcb59b9f-3036-4b1e-8b18-240dbe28a51b/download https://repositorio.uniandes.edu.co/bitstreams/57bcf392-697a-4969-9d2e-809300421601/download https://repositorio.uniandes.edu.co/bitstreams/b404f3e5-9e50-402b-9ced-ef6d1245deb1/download |
bitstream.checksum.fl_str_mv |
7e5f2749d39d85c627addfe93ff692a3 1a116d2606a349d98798d27db9a88c7b db3ee2629b7130f828b6dc9300f5cf76 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133833308372992 |