Topological conditions in geometric and Maslov quantization

Among the most important theories in physics is quantum mechanics which, in contrast to classical mechanics, uses topology in addition to differential geometry. Specifically, in this work, we will study the well-known geometric quantization procedure due mainly to B. Kostant and J-M. Souriau, and th...

Full description

Autores:
Villamarín Castro, Juan José
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/51303
Acceso en línea:
http://hdl.handle.net/1992/51303
Palabra clave:
Cuantificación geométrica
Topología algebraica
Geometría diferencial
Matemáticas
Matemáticas
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UNIANDES2_900b9adf20b5b279854d2391cbacff15
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/51303
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cardona Guio, Alexandervirtual::2530-1Villamarín Castro, Juan José4f4b09f9-bb79-445b-82a5-e04a116f7038400Cortissoz Iriarte, Jean Carlos2021-08-10T18:19:28Z2021-08-10T18:19:28Z2020http://hdl.handle.net/1992/5130323543.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Among the most important theories in physics is quantum mechanics which, in contrast to classical mechanics, uses topology in addition to differential geometry. Specifically, in this work, we will study the well-known geometric quantization procedure due mainly to B. Kostant and J-M. Souriau, and then compare it to an alternative geometric quantization method using the Maslov index due to J. Czyz. Given a symplectic manifold, that generally models a classical physical system, we wish to quantize the Poisson algebra of observables on it. The idea is to construct a Hilbert Space associated to the symplectic manifold and associate to each smooth function a self-adjoint operator acting on H. This construction is done in such a way that the Dirac quantization conditions hold. The full process consists of three steps. The first is called prequantization, in which a topological condition (on the cohomology class of the symplectic form) gives rise to a geometric space...Entre las teorías más importantes de la física se encuentra la mecánica cuántica que, a diferencia de la mecánica clásica, utiliza la topología además de la geometría diferencial. En concreto, en este trabajo estudiaremos el conocido procedimiento de cuantización geométrica desarrollado principalmente por B. Kostant y J-M. Souriau, y luego lo comparamos con un método alternativo de cuantización geométrica que utiliza el índice de Maslov y fue desarrollado por J. Czyz. Dada una variedad simpléctica, que generalmente modela un sistema físico clásico, deseamos cuantizar el álgebra de Poisson de observables en esta. La idea es construir un espacio de Hilbert H asociado a la variedad simpléctica y asociar a cada función suave un operador autoadjunto que actúa sobre H. Esta construcción está hecha de tal manera que se cumplan las condiciones de cuantización de Dirac. El proceso completo consiste de tres pasos. El primero se llama precuantización, en el que una condición topológica...MatemáticoPregrado75 hojasapplication/pdfengUniversidad de los AndesMatemáticasFacultad de CienciasDepartamento de MatemáticasTopological conditions in geometric and Maslov quantizationTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPCuantificación geométricaTopología algebraicaGeometría diferencialMatemáticasMatemáticas201717135Publicationb65b9b87-c23b-4157-ac5a-55f34b071dc7virtual::2530-1b65b9b87-c23b-4157-ac5a-55f34b071dc7virtual::2530-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000055190virtual::2530-1TEXT23543.pdf.txt23543.pdf.txtExtracted texttext/plain119281https://repositorio.uniandes.edu.co/bitstreams/bcb59b9f-3036-4b1e-8b18-240dbe28a51b/download7e5f2749d39d85c627addfe93ff692a3MD54THUMBNAIL23543.pdf.jpg23543.pdf.jpgIM Thumbnailimage/jpeg7458https://repositorio.uniandes.edu.co/bitstreams/57bcf392-697a-4969-9d2e-809300421601/download1a116d2606a349d98798d27db9a88c7bMD55ORIGINAL23543.pdfapplication/pdf522185https://repositorio.uniandes.edu.co/bitstreams/b404f3e5-9e50-402b-9ced-ef6d1245deb1/downloaddb3ee2629b7130f828b6dc9300f5cf76MD511992/51303oai:repositorio.uniandes.edu.co:1992/513032024-03-13 12:13:27.435http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co
dc.title.spa.fl_str_mv Topological conditions in geometric and Maslov quantization
title Topological conditions in geometric and Maslov quantization
spellingShingle Topological conditions in geometric and Maslov quantization
Cuantificación geométrica
Topología algebraica
Geometría diferencial
Matemáticas
Matemáticas
title_short Topological conditions in geometric and Maslov quantization
title_full Topological conditions in geometric and Maslov quantization
title_fullStr Topological conditions in geometric and Maslov quantization
title_full_unstemmed Topological conditions in geometric and Maslov quantization
title_sort Topological conditions in geometric and Maslov quantization
dc.creator.fl_str_mv Villamarín Castro, Juan José
dc.contributor.advisor.none.fl_str_mv Cardona Guio, Alexander
dc.contributor.author.none.fl_str_mv Villamarín Castro, Juan José
dc.contributor.jury.none.fl_str_mv Cortissoz Iriarte, Jean Carlos
dc.subject.armarc.spa.fl_str_mv Cuantificación geométrica
Topología algebraica
Geometría diferencial
Matemáticas
topic Cuantificación geométrica
Topología algebraica
Geometría diferencial
Matemáticas
Matemáticas
dc.subject.themes.none.fl_str_mv Matemáticas
description Among the most important theories in physics is quantum mechanics which, in contrast to classical mechanics, uses topology in addition to differential geometry. Specifically, in this work, we will study the well-known geometric quantization procedure due mainly to B. Kostant and J-M. Souriau, and then compare it to an alternative geometric quantization method using the Maslov index due to J. Czyz. Given a symplectic manifold, that generally models a classical physical system, we wish to quantize the Poisson algebra of observables on it. The idea is to construct a Hilbert Space associated to the symplectic manifold and associate to each smooth function a self-adjoint operator acting on H. This construction is done in such a way that the Dirac quantization conditions hold. The full process consists of three steps. The first is called prequantization, in which a topological condition (on the cohomology class of the symplectic form) gives rise to a geometric space...
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-08-10T18:19:28Z
dc.date.available.none.fl_str_mv 2021-08-10T18:19:28Z
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/51303
dc.identifier.pdf.none.fl_str_mv 23543.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/51303
identifier_str_mv 23543.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 75 hojas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Matemáticas
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Matemáticas
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/bcb59b9f-3036-4b1e-8b18-240dbe28a51b/download
https://repositorio.uniandes.edu.co/bitstreams/57bcf392-697a-4969-9d2e-809300421601/download
https://repositorio.uniandes.edu.co/bitstreams/b404f3e5-9e50-402b-9ced-ef6d1245deb1/download
bitstream.checksum.fl_str_mv 7e5f2749d39d85c627addfe93ff692a3
1a116d2606a349d98798d27db9a88c7b
db3ee2629b7130f828b6dc9300f5cf76
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133833308372992