Emulating the Wigner function of an odd cat state by means of classical light fields

The undergraduate physics thesis presents an optical implementation of the Wigner distribution function of a one dimensional electric field. Then, it is compared with the Wigner distribution function of an odd cat state in quantum mechanics.

Autores:
Piñeros Lourenco, Pedro Enrique
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/67936
Acceso en línea:
http://hdl.handle.net/1992/67936
Palabra clave:
Fractional Fourier transform
Wigner distribution function
Cat state
Fourier optics
Inverse Radon transform
Física
Rights
openAccess
License
Attribution-NoDerivatives 4.0 Internacional
id UNIANDES2_8fd31095301ee635e5d07f0daa22a6a6
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/67936
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Emulating the Wigner function of an odd cat state by means of classical light fields
dc.title.alternative.none.fl_str_mv Emulando la función de Wigner de un estado de gato impar por medio de campos de luz clásicos
title Emulating the Wigner function of an odd cat state by means of classical light fields
spellingShingle Emulating the Wigner function of an odd cat state by means of classical light fields
Fractional Fourier transform
Wigner distribution function
Cat state
Fourier optics
Inverse Radon transform
Física
title_short Emulating the Wigner function of an odd cat state by means of classical light fields
title_full Emulating the Wigner function of an odd cat state by means of classical light fields
title_fullStr Emulating the Wigner function of an odd cat state by means of classical light fields
title_full_unstemmed Emulating the Wigner function of an odd cat state by means of classical light fields
title_sort Emulating the Wigner function of an odd cat state by means of classical light fields
dc.creator.fl_str_mv Piñeros Lourenco, Pedro Enrique
dc.contributor.advisor.none.fl_str_mv Valencia González, Alejandra Catalina
dc.contributor.author.none.fl_str_mv Piñeros Lourenco, Pedro Enrique
dc.contributor.jury.none.fl_str_mv Quiroga Puello, Luis
dc.contributor.researchgroup.es_CO.fl_str_mv Óptica Cuántica
dc.subject.keyword.none.fl_str_mv Fractional Fourier transform
Wigner distribution function
Cat state
Fourier optics
Inverse Radon transform
topic Fractional Fourier transform
Wigner distribution function
Cat state
Fourier optics
Inverse Radon transform
Física
dc.subject.themes.es_CO.fl_str_mv Física
description The undergraduate physics thesis presents an optical implementation of the Wigner distribution function of a one dimensional electric field. Then, it is compared with the Wigner distribution function of an odd cat state in quantum mechanics.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-06-27T19:56:41Z
dc.date.available.none.fl_str_mv 2023-06-27T19:56:41Z
dc.date.issued.none.fl_str_mv 2023-06-27
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/67936
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/67936
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.relation.references.es_CO.fl_str_mv M. Tse and N. Kijbunchoo. Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy. Phys. Rev. 123, (23): 231107, (2019).
G. Milburn P. Cochrane and W. Munro. Macroscopically distinct quantumsuperposition states as a bosonic code for amplitude damping. Phys.Rev. A 59, 2631, (1999)
E. Wigner. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749, (1932).
A. Martinez. Characterization of quantum states of light by means of homodyne detection and reconstruction of Wigner functions. Monografía de pregrado: Universidad de los Andes. Bogotá, Colombia, (2020).
U. Leonhardt. Measuring the quantum state of light. Cambridge University Press, (1997).
A. Furusawa. Quantum states of light. Springer, (2015).
C. Gerry and P. Knight. Introductory Quantum Optics. Cambridge University Press, (2004).
M. Fox. Quantum Optics an introduction. Oxford University Press Inc, (2006).
E. Condón. Immersion of the Fourier transform in a continuous group of functional transformations. Proc. Natl. Acad. Sci. 23, (3): 158-164, (1937).
V. Namias. The fractional order Fourier transform and its application to quantum mechanics. IMA Journal of Applied Mathematics 25, (3): 241-265, (1980).
H. Ozaktas and M. Kutay. The Fractional Fourier Transform. European Control Conference, (2001).
V. Christlein A. Maier S. Steidl and J. Hornegger. Medical Imaging Systems. Springer International Publishing, (2018).
G. Arfken and H. Weber. Mathematical Methods for Physicists. Academic Press, 4ta edición, (1995).
I. Hoover. Introducing the Fractional Fourier Transform. (2013).
D. Mendlovic A. Lohmann and Z. Zalevsky. Fractional transformations in Optics. Elsevier sciencie B.V., (1998).
J. Ville. Théorie et Applications de la Notion de Signal Analytique. Cables et Transmission, 2, 61-74, (1948).
L. Cohen. Time-frequency distributions-a review. Proceedings of the IEEE 77, 941, (1989).
M. Scully M. Hilley E. O'Cornell and E. Wigner. Distributions functions in physics: fundamentals. Physics Reports 106, 121-167, (1984).
B. Diu C. Cohen-Tannoudji and F. Laloe. Quantum Mechanics. John Wiley Sons, Vol. I, (1977).
J. Radon. Über die bestimmung von funktionen durch ihre integralwerte längs gewisser manngfaltigkeiten. (1983).
J. Radon and P. Parks. On the determination of functions from their integral values along certain manifols. IEEE transactions on Medical Imaging, 5 (4): 170-176, (1986).
V. Velázquez E. Barrios-Barocio and S. Cruz. Design and Construction of Homodyne Detectors for the Study of Quantum Optical States. J. Phys.: Conf. Ser. 1540, 012030, (2020).
A. Lohmann and B. Soffer. Relationships between the Radon-Wigner and fractional Fourier transforms. J. Opt. Soc. Am. A 11, pp. 1798-1801, (1994).
H. Yuen and V. Chan. Noise in homodyne and heterodyne detection. Opt. Lett. 8, pp. 177179, (1983).
K. Banaszek and K. Wódkiewicz. Direct Probing of Quantum Phase Space by Photon Counting. Phys. Rev. Lett. 76, 23, pp. 4344-4347, (1996).
N. Sridhar and et al. Direct measurement of the Wigner function by photonnumber-resolving detection. J. Opt. Soc. Am. B 31, 10, (2014).
L. Lutterbach and L. Davidovich. Method for Direct Measurement of the Wigner Function in Cavity QED and Ion Traps. Phys. Rev. Lett. 78, 13, (1997).
G. Molina-Terriza N. Gonzalez and J. Torres. Properties of the spatial Wigner function of entangled photon pairs. Phys. Review. A80, 043804, (2009).
T. Douce and et al. Direct measurement of the biphoton Wigner function through two-photon interference. Sci. Rep. 3, 3530, (2013).
A. Lohmann. Image rotation, Wigner rotation, and the fractional Fourier transform. J. Opt. Am. A 10, 10 (1993).
J. Goodman. Introduction to Fourier optics. The McGraw-Hill Companies. Second edition, (1996).
R. Guenther. Modern Optics. Duke University, (1990).
V. Arnold. Mathematical Methods of Classical Mechanics. Springer, second edition, (1989).
F. Lin and et al. Geometry for Computer Graphics. Student Notes, ITTI Gravigs Project, (1995).
K. Izuka. Elements of photonics. Wiley-Interscience, (2002).
dc.rights.license.spa.fl_str_mv Attribution-NoDerivatives 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 56 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Física
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Física
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/59949ea7-ff0e-4334-b68d-09cb5196e48e/download
https://repositorio.uniandes.edu.co/bitstreams/8ed3bc88-7905-481e-8102-c6cce658ec3b/download
https://repositorio.uniandes.edu.co/bitstreams/f939ac14-7b4a-48ec-96ee-635eea5dd099/download
https://repositorio.uniandes.edu.co/bitstreams/a499194e-9c51-4400-b928-9e355a74fb06/download
https://repositorio.uniandes.edu.co/bitstreams/ca1fd6be-6f7b-4914-84c8-00077607cd25/download
https://repositorio.uniandes.edu.co/bitstreams/8b3118c0-b9f6-446c-863e-4f9d309881ec/download
https://repositorio.uniandes.edu.co/bitstreams/cf6b07d3-23c4-4f77-af4c-3919b60f7ff1/download
https://repositorio.uniandes.edu.co/bitstreams/8faee1ad-238a-415d-a046-cee28186dd26/download
bitstream.checksum.fl_str_mv 6d803b2c4553da0416b08d9d03da199d
3e8c0d954b0277f92b23fcf6253b3fba
5aa5c691a1ffe97abd12c2966efcb8d6
43cfc13b1dfb42f83d5223a83c2d7d7c
0592b9f48b2dee3267095f54d33f0bd0
1c133dc2ae686939a2210204d3ad43c2
08b106dfeb12472e88207a069e15ba30
f7d494f61e544413a13e6ba1da2089cd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133963607572480
spelling Attribution-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Valencia González, Alejandra Catalinavirtual::10433-1Piñeros Lourenco, Pedro Enrique310e476d-c243-4072-abdd-4987cff751dc600Quiroga Puello, LuisÓptica Cuántica2023-06-27T19:56:41Z2023-06-27T19:56:41Z2023-06-27http://hdl.handle.net/1992/67936instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The undergraduate physics thesis presents an optical implementation of the Wigner distribution function of a one dimensional electric field. Then, it is compared with the Wigner distribution function of an odd cat state in quantum mechanics.The Wigner distribution function is a very useful tool in signal analysis because it provides a representation of a signal in the conjugate variables across phase space. In the context of quantum mechanics, this function represents a quasi-probability distribution in phase space for a quantum state. On the other hand, in signal processing, the Fourier transform and its generalization, the fractional Fourier transform (FFT), play an important role in time and frequency analysis. Moreover, research conducted in the late 1990s found that reconstruction of the Wigner function could be obtained from the collection of different fractional Fourier transforms. In this project, the Wigner function of a quantum state, called a cat state, was emulated by obtaining the fractional Fourier transforms in the spatial frequency variables of two Gaussian beams separated by "2d" distance. This will respond to the problem of generating lower cost methods that obtain properties of quantum states through their Wigner function, since, to generate, for example, a cat state, much more sophisticated and expensive equipment is needed.FísicoPregradoÓptica cuántica y clásica56 páginasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaEmulating the Wigner function of an odd cat state by means of classical light fieldsEmulando la función de Wigner de un estado de gato impar por medio de campos de luz clásicosTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPFractional Fourier transformWigner distribution functionCat stateFourier opticsInverse Radon transformFísicaM. Tse and N. Kijbunchoo. Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy. Phys. Rev. 123, (23): 231107, (2019).G. Milburn P. Cochrane and W. Munro. Macroscopically distinct quantumsuperposition states as a bosonic code for amplitude damping. Phys.Rev. A 59, 2631, (1999)E. Wigner. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749, (1932).A. Martinez. Characterization of quantum states of light by means of homodyne detection and reconstruction of Wigner functions. Monografía de pregrado: Universidad de los Andes. Bogotá, Colombia, (2020).U. Leonhardt. Measuring the quantum state of light. Cambridge University Press, (1997).A. Furusawa. Quantum states of light. Springer, (2015).C. Gerry and P. Knight. Introductory Quantum Optics. Cambridge University Press, (2004).M. Fox. Quantum Optics an introduction. Oxford University Press Inc, (2006).E. Condón. Immersion of the Fourier transform in a continuous group of functional transformations. Proc. Natl. Acad. Sci. 23, (3): 158-164, (1937).V. Namias. The fractional order Fourier transform and its application to quantum mechanics. IMA Journal of Applied Mathematics 25, (3): 241-265, (1980).H. Ozaktas and M. Kutay. The Fractional Fourier Transform. European Control Conference, (2001).V. Christlein A. Maier S. Steidl and J. Hornegger. Medical Imaging Systems. Springer International Publishing, (2018).G. Arfken and H. Weber. Mathematical Methods for Physicists. Academic Press, 4ta edición, (1995).I. Hoover. Introducing the Fractional Fourier Transform. (2013).D. Mendlovic A. Lohmann and Z. Zalevsky. Fractional transformations in Optics. Elsevier sciencie B.V., (1998).J. Ville. Théorie et Applications de la Notion de Signal Analytique. Cables et Transmission, 2, 61-74, (1948).L. Cohen. Time-frequency distributions-a review. Proceedings of the IEEE 77, 941, (1989).M. Scully M. Hilley E. O'Cornell and E. Wigner. Distributions functions in physics: fundamentals. Physics Reports 106, 121-167, (1984).B. Diu C. Cohen-Tannoudji and F. Laloe. Quantum Mechanics. John Wiley Sons, Vol. I, (1977).J. Radon. Über die bestimmung von funktionen durch ihre integralwerte längs gewisser manngfaltigkeiten. (1983).J. Radon and P. Parks. On the determination of functions from their integral values along certain manifols. IEEE transactions on Medical Imaging, 5 (4): 170-176, (1986).V. Velázquez E. Barrios-Barocio and S. Cruz. Design and Construction of Homodyne Detectors for the Study of Quantum Optical States. J. Phys.: Conf. Ser. 1540, 012030, (2020).A. Lohmann and B. Soffer. Relationships between the Radon-Wigner and fractional Fourier transforms. J. Opt. Soc. Am. A 11, pp. 1798-1801, (1994).H. Yuen and V. Chan. Noise in homodyne and heterodyne detection. Opt. Lett. 8, pp. 177179, (1983).K. Banaszek and K. Wódkiewicz. Direct Probing of Quantum Phase Space by Photon Counting. Phys. Rev. Lett. 76, 23, pp. 4344-4347, (1996).N. Sridhar and et al. Direct measurement of the Wigner function by photonnumber-resolving detection. J. Opt. Soc. Am. B 31, 10, (2014).L. Lutterbach and L. Davidovich. Method for Direct Measurement of the Wigner Function in Cavity QED and Ion Traps. Phys. Rev. Lett. 78, 13, (1997).G. Molina-Terriza N. Gonzalez and J. Torres. Properties of the spatial Wigner function of entangled photon pairs. Phys. Review. A80, 043804, (2009).T. Douce and et al. Direct measurement of the biphoton Wigner function through two-photon interference. Sci. Rep. 3, 3530, (2013).A. Lohmann. Image rotation, Wigner rotation, and the fractional Fourier transform. J. Opt. Am. A 10, 10 (1993).J. Goodman. Introduction to Fourier optics. The McGraw-Hill Companies. Second edition, (1996).R. Guenther. Modern Optics. Duke University, (1990).V. Arnold. Mathematical Methods of Classical Mechanics. Springer, second edition, (1989).F. Lin and et al. Geometry for Computer Graphics. Student Notes, ITTI Gravigs Project, (1995).K. Izuka. Elements of photonics. Wiley-Interscience, (2002).201913893Publicationhttps://scholar.google.es/citations?user=7Fa-MFYAAAAJvirtual::10433-10000-0002-7476-6119virtual::10433-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001337192virtual::10433-1e676d910-c320-4862-b7d4-2d8cc27eea1bvirtual::10433-1e676d910-c320-4862-b7d4-2d8cc27eea1bvirtual::10433-1THUMBNAILMonograph.pdf.jpgMonograph.pdf.jpgIM Thumbnailimage/jpeg12486https://repositorio.uniandes.edu.co/bitstreams/59949ea7-ff0e-4334-b68d-09cb5196e48e/download6d803b2c4553da0416b08d9d03da199dMD57autorizacion tesis.pdf.jpgautorizacion tesis.pdf.jpgIM Thumbnailimage/jpeg16780https://repositorio.uniandes.edu.co/bitstreams/8ed3bc88-7905-481e-8102-c6cce658ec3b/download3e8c0d954b0277f92b23fcf6253b3fbaMD59LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/f939ac14-7b4a-48ec-96ee-635eea5dd099/download5aa5c691a1ffe97abd12c2966efcb8d6MD55ORIGINALMonograph.pdfMonograph.pdfapplication/pdf2628501https://repositorio.uniandes.edu.co/bitstreams/a499194e-9c51-4400-b928-9e355a74fb06/download43cfc13b1dfb42f83d5223a83c2d7d7cMD53autorizacion tesis.pdfautorizacion tesis.pdfHIDEapplication/pdf322733https://repositorio.uniandes.edu.co/bitstreams/ca1fd6be-6f7b-4914-84c8-00077607cd25/download0592b9f48b2dee3267095f54d33f0bd0MD54TEXTMonograph.pdf.txtMonograph.pdf.txtExtracted texttext/plain106474https://repositorio.uniandes.edu.co/bitstreams/8b3118c0-b9f6-446c-863e-4f9d309881ec/download1c133dc2ae686939a2210204d3ad43c2MD56autorizacion tesis.pdf.txtautorizacion tesis.pdf.txtExtracted texttext/plain1161https://repositorio.uniandes.edu.co/bitstreams/cf6b07d3-23c4-4f77-af4c-3919b60f7ff1/download08b106dfeb12472e88207a069e15ba30MD58CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8799https://repositorio.uniandes.edu.co/bitstreams/8faee1ad-238a-415d-a046-cee28186dd26/downloadf7d494f61e544413a13e6ba1da2089cdMD521992/67936oai:repositorio.uniandes.edu.co:1992/679362024-03-13 14:11:05.095http://creativecommons.org/licenses/by-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==