Técnicas de agrupamiento para métricas en difractogramas

In the present thesis starting from the dissimilarity introduced by Nicolás López, non-supervised algorithms are applied with the objective of finding natural groupings in the data of diffractograms and obtaining visual representations of the dataset. Clustering techniques like k-medoids or hierarch...

Full description

Autores:
Castiblanco Rodríguez, Juan Camilo
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/51546
Acceso en línea:
http://hdl.handle.net/1992/51546
Palabra clave:
Difractogramas
Difracción de rayos X
Aprendizaje no supervisado
Aprendizaje automático (Inteligencia artificial)
Ingeniería
Rights
openAccess
License
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
Description
Summary:In the present thesis starting from the dissimilarity introduced by Nicolás López, non-supervised algorithms are applied with the objective of finding natural groupings in the data of diffractograms and obtaining visual representations of the dataset. Clustering techniques like k-medoids or hierarchical clustering and also data representation algorithms like graph-oriented visualizations are implemented.