Seguridad de modelos de aprendizaje profundo: Análisis de vulnerabilidad a ataques de data poisoning en el modelo LUCID para la detección de ataques DDoS.

Este estudio aborda la vulnerabilidad de modelos de aprendizaje profundo a ataques de data poisoning, centrando el análisis en el modelo LUCID para la detección de ataques DDoS. Se emplearon técnicas de modificación de tráfico de red para explorar cómo la manipulación de datos puede influir en la ca...

Full description

Autores:
Castaño Lozano, Juan Felipe
Guillén Fonseca, Sergio Andrés
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/74780
Acceso en línea:
https://hdl.handle.net/1992/74780
Palabra clave:
Ataques DDoS
Data poisoning
Aprendizaje profundo
Modelo LUCID
Seguridad cibernética
DDoS attacks
Deep learning
LUCID model
Cyber security
Ingeniería
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNIANDES2_8bf311a35254e84b695e8548d24e4d2d
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/74780
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.spa.fl_str_mv Seguridad de modelos de aprendizaje profundo: Análisis de vulnerabilidad a ataques de data poisoning en el modelo LUCID para la detección de ataques DDoS.
title Seguridad de modelos de aprendizaje profundo: Análisis de vulnerabilidad a ataques de data poisoning en el modelo LUCID para la detección de ataques DDoS.
spellingShingle Seguridad de modelos de aprendizaje profundo: Análisis de vulnerabilidad a ataques de data poisoning en el modelo LUCID para la detección de ataques DDoS.
Ataques DDoS
Data poisoning
Aprendizaje profundo
Modelo LUCID
Seguridad cibernética
DDoS attacks
Deep learning
LUCID model
Cyber security
Ingeniería
title_short Seguridad de modelos de aprendizaje profundo: Análisis de vulnerabilidad a ataques de data poisoning en el modelo LUCID para la detección de ataques DDoS.
title_full Seguridad de modelos de aprendizaje profundo: Análisis de vulnerabilidad a ataques de data poisoning en el modelo LUCID para la detección de ataques DDoS.
title_fullStr Seguridad de modelos de aprendizaje profundo: Análisis de vulnerabilidad a ataques de data poisoning en el modelo LUCID para la detección de ataques DDoS.
title_full_unstemmed Seguridad de modelos de aprendizaje profundo: Análisis de vulnerabilidad a ataques de data poisoning en el modelo LUCID para la detección de ataques DDoS.
title_sort Seguridad de modelos de aprendizaje profundo: Análisis de vulnerabilidad a ataques de data poisoning en el modelo LUCID para la detección de ataques DDoS.
dc.creator.fl_str_mv Castaño Lozano, Juan Felipe
Guillén Fonseca, Sergio Andrés
dc.contributor.advisor.none.fl_str_mv Lozano Garzón, Carlos Andrés
Montoya Orozco, Germán Adolfo
dc.contributor.author.none.fl_str_mv Castaño Lozano, Juan Felipe
Guillén Fonseca, Sergio Andrés
dc.contributor.jury.none.fl_str_mv Lozano Garzón, Carlos Andrés
Montoya Orozco, Germán Adolfo
dc.subject.keyword.spa.fl_str_mv Ataques DDoS
Data poisoning
Aprendizaje profundo
Modelo LUCID
Seguridad cibernética
topic Ataques DDoS
Data poisoning
Aprendizaje profundo
Modelo LUCID
Seguridad cibernética
DDoS attacks
Deep learning
LUCID model
Cyber security
Ingeniería
dc.subject.keyword.eng.fl_str_mv DDoS attacks
Deep learning
LUCID model
dc.subject.keyword.none.fl_str_mv Cyber security
dc.subject.themes.none.fl_str_mv Ingeniería
description Este estudio aborda la vulnerabilidad de modelos de aprendizaje profundo a ataques de data poisoning, centrando el análisis en el modelo LUCID para la detección de ataques DDoS. Se emplearon técnicas de modificación de tráfico de red para explorar cómo la manipulación de datos puede influir en la capacidad del modelo de identificar tráfico legítimo y malicioso. A través de un enfoque experimental que incluyó pruebas de caja blanca y negra, se evaluaron los efectos de diferentes estrategias de envenenamiento sobre la precisión, sensibilidad y robustez del modelo. Los resultados revelan que, a pesar de la eficacia inicial de LUCID en la clasificación de tráfico, su rendimiento se ve comprometido significativamente bajo condiciones de datos envenenados, lo que destaca la importancia de desarrollar estrategias más sofisticadas para fortalecer la seguridad en sistemas de detección de DDoS.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-30T14:18:38Z
dc.date.available.none.fl_str_mv 2024-07-30T14:18:38Z
dc.date.issued.none.fl_str_mv 2024-07-29
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/74780
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/74780
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv [1] R. Doriguzzi-Corin, S. Millar, S. Scott-Hayward, J. Martínez-del-Rincón and D. Siracusa, "Lucid: A Practical, Lightweight Deep Learning Solution for DDoS Attack Detection," in IEEE Transactions on Network and Service Management, vol. 17, no. 2, pp. 876-889, June 2020, doi: 10.1109/TNSM.2020.2971776.
[2] Chen, X., Liu, C., Li, B., Lu, K., & Song, D. (2017). Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning. arXiv.Org. https://doi.org/10.48550/arxiv.1712.05526
[3] A. Aljuhani, "Machine Learning Approaches for Combating Distributed Denial of Service Attacks in Modern Networking Environments," in IEEE Access, vol. 9, pp. 42236-42264, 2021, doi: 10.1109/ACCESS.2021.3062909. keywords: {Denial-of-service attack;Cloud computing;Internet of Things;Cyberattack;Network function virtualization;Floods;Machine learning;DDoS attacks and detection;Internet of Things (IoT);machine learning (ML);network functions virtualization (NFV);software-defined network (SDN)}.
[4] Satapathy, S. C., Joshi, A., Modi, N., & Pathak, N. (2016). UDP Flooding Attack Detection Using Information Metric Measure. In Proceedings of International Conference on ICT for Sustainable Development (Vol. 408, pp. 143–153). Springer Singapore Pte. Limited. https://doi.org/10.1007/978-981-10-0129-1_16
[5] Bhatia, S., Behal, S., & Ahmed, I. (2018). Distributed denial of service attacks and defense mechanisms: Current landscape and future directions. In Conti M., Somani G., Poovendran R. (Eds.). Versatile cybersecurity. Advances in information security (pp. 55-97). Cham, Switzerland: Springer. doi: 10.1007/978-3-319-97643-3_3
[6] Dang, V. T., Huong, T. T., Thanh, N. H., Nam, P. N., Thanh, N. N., & Marshall, A. (2019). SDN-Based SYN Proxy—A Solution to Enhance Performance of Attack Mitigation Under TCP SYN Flood. Computer Journal, 62(4), 518–534. https://doi.org/10.1093/comjnl/bxy117
[7] Mohammadi, R., Lal, C., & Conti, M. (2023). HTTPScout: A Machine Learning based Countermeasure for HTTP Flood Attacks in SDN. International Journal of Information Security, 22(2), 367–379. https://doi.org/10.1007/s10207-022-00641-3
[8] Alahmadi, A. A., Aljabri, M., Alhaidari, F., Alharthi, D. J., Rayani, G. E., Marghalani, L. A., Alotaibi, O. B., & Bajandouh, S. A. (2023). DDoS Attack Detection in IoT-Based Networks Using Machine Learning Models: A Survey and Research Directions. Electronics (Basel), 12(14), 3103-. https://doi.org/10.3390/electronics12143103
[9] Najafimehr, M., Zarifzadeh, S., & Mostafavi, S. (2023). DDoS attacks and machine‐learning‐based detection methods: A survey and taxonomy. Engineering Reports (Hoboken, N.J.), 5(12). https://doi.org/10.1002/eng2.12697
[10] Ramirez, Miguel A “New Data Poison Attacks on Machine Learning Classifiers for Mobile Exfiltration.” arXiv.Org, 2022, https://doi.org/10.48550/arxiv.2210.11592.
[11] Taheri, R., Javidan, R., Shojafar, M., Pooranian, Z., Miri, A., & Conti, M. (2020). On defending against label flipping attacks on malware detection systems. Neural Computing & Applications, 32(18), 14781–14800. https://doi.org/10.1007/s00521-020-04831-9
[12] Zhang, H., Cheng, N., Zhang, Y., & Li, Z. (2021). Label flipping attacks against Naive Bayes on spam filtering systems. Applied Intelligence (Dordrecht, Netherlands), 51(7), 4503–4514. https://doi.org/10.1007/s10489-020-02086-4
[13] Shafahi, Ali, et al. “Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks.” arXiv.Org, 2018, https://doi.org/10.48550/arxiv.1804.00792.
[14] Peri, N., Gupta, N., Huang, W. R., Fowl, L., Zhu, C., Feizi, S., Goldstein, T., & Dickerson, J. P. (2020). Deep k-NN Defense Against Clean-Label Data Poisoning Attacks. In Computer Vision – ECCV 2020 Workshops (pp. 55–70). Springer International Publishing. https://doi.org/10.1007/978-3-030-66415-2_4
[15] S. Ho, A. Reddy, S. Venkatesan, R. Izmailov, R. Chadha and A. Oprea, "Data Sanitization Approach to Mitigate Clean-Label Attacks Against Malware Detection Systems," MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM), Rockville, MD, USA, 2022, pp. 993-998, doi: 10.1109/MILCOM55135.2022.10017768. keywords: {Training;Military communication;Sensitivity;Art;Data integrity;Watermarking;Telecommunication traffic;Machine learning;Adversarial learning;Neural networks;Intrusion detection;Malware}
[16] Marijan, D., Gotlieb, A., & Ahuja, M.K. (2019). Challenges of Testing Machine Learning Based Systems. 2019 IEEE International Conference On Artificial Intelligence Testing (AITest), 101-102.
[17] Castiglione, G., Ding, G.W., Hashemi, M., Srinivasa, C., & Wu, G. (2022). Scalable Whitebox Attacks on Tree-based Models. ArXiv, abs/2204.00103.
[18] Corradini, D., Zampieri, A., Pasqua, M., Viglianisi, E., Dallago, M., & Ceccato, M. (2022). Automated black‐box testing of nominal and error scenarios in RESTful APIs. Software Testing, 32.
[19] DDoS evaluation dataset (CIC-DDoS2019), University of New Brunswick est.1785, https://www.unb.ca/cic/datasets/ddos-2019.html.
[20] Ataque DDoS de Inundación Syn | Cloudflare, https://www.cloudflare.com/es-es/learning/ddos/syn-flood-ddos-attack
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 50 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Ingeniería de Sistemas y Computación
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.department.none.fl_str_mv Departamento de Ingeniería de Sistemas y Computación
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/c64505cf-30a1-443b-af39-09745d113271/download
https://repositorio.uniandes.edu.co/bitstreams/e3d96040-ca0c-476c-9d8e-e838f93ab11c/download
https://repositorio.uniandes.edu.co/bitstreams/ece73f01-e5ab-44c8-b6c7-a8df35873798/download
https://repositorio.uniandes.edu.co/bitstreams/8e0d7724-0464-48d4-9365-fe00a4fd78c1/download
https://repositorio.uniandes.edu.co/bitstreams/1892a7e3-6524-41f3-82b5-149c6d5c3c37/download
https://repositorio.uniandes.edu.co/bitstreams/29c2e5c4-8e4c-4768-9641-93287d9b9969/download
https://repositorio.uniandes.edu.co/bitstreams/f0e0b158-cd95-4b15-bc4a-6252ef6c2263/download
https://repositorio.uniandes.edu.co/bitstreams/3d681303-ecfd-4ad5-9c0a-93ca0579d5e3/download
bitstream.checksum.fl_str_mv 42fa6f941a9438d76d28a6bf131a28fa
cef11361974b6781cbd0522721ea45ce
4460e5956bc1d1639be9ae6146a50347
ae9e573a68e7f92501b6913cc846c39f
95cdb16fb37bb518f7d4be864b788828
f286cf9f131b37f3ac923c9c95796432
f9fd255feee46afc295d844e232cd759
858b7aab267a69d05c0e52de4cc8d3c5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134063073394688
spelling Lozano Garzón, Carlos Andrésvirtual::19391-1Montoya Orozco, Germán Adolfovirtual::19394-1Castaño Lozano, Juan FelipeGuillén Fonseca, Sergio AndrésLozano Garzón, Carlos AndrésMontoya Orozco, Germán Adolfo2024-07-30T14:18:38Z2024-07-30T14:18:38Z2024-07-29https://hdl.handle.net/1992/74780instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Este estudio aborda la vulnerabilidad de modelos de aprendizaje profundo a ataques de data poisoning, centrando el análisis en el modelo LUCID para la detección de ataques DDoS. Se emplearon técnicas de modificación de tráfico de red para explorar cómo la manipulación de datos puede influir en la capacidad del modelo de identificar tráfico legítimo y malicioso. A través de un enfoque experimental que incluyó pruebas de caja blanca y negra, se evaluaron los efectos de diferentes estrategias de envenenamiento sobre la precisión, sensibilidad y robustez del modelo. Los resultados revelan que, a pesar de la eficacia inicial de LUCID en la clasificación de tráfico, su rendimiento se ve comprometido significativamente bajo condiciones de datos envenenados, lo que destaca la importancia de desarrollar estrategias más sofisticadas para fortalecer la seguridad en sistemas de detección de DDoS.This study addresses the vulnerability of deep learning models to data poisoning attacks, focusing the analysis on the LUCID model for DDoS attack detection. Network traffic modification techniques were employed to explore how data manipulation can influence the model's ability to identify legitimate and malicious traffic. Through an experimental approach that included white and black box testing, the effects of different poisoning strategies on the accuracy, sensitivity and robustness of the model were evaluated. The results reveal that, despite LUCID's initial effectiveness in traffic classification, its performance is significantly compromised under poisoned data conditions, highlighting the importance of developing more sophisticated strategies to strengthen security in DDoS detection systems.Pregrado50 páginasapplication/pdfspaUniversidad de los AndesIngeniería de Sistemas y ComputaciónFacultad de IngenieríaDepartamento de Ingeniería de Sistemas y ComputaciónAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Seguridad de modelos de aprendizaje profundo: Análisis de vulnerabilidad a ataques de data poisoning en el modelo LUCID para la detección de ataques DDoS.Trabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPAtaques DDoSData poisoningAprendizaje profundoModelo LUCIDSeguridad cibernéticaDDoS attacksDeep learningLUCID modelCyber securityIngeniería[1] R. Doriguzzi-Corin, S. Millar, S. Scott-Hayward, J. Martínez-del-Rincón and D. Siracusa, "Lucid: A Practical, Lightweight Deep Learning Solution for DDoS Attack Detection," in IEEE Transactions on Network and Service Management, vol. 17, no. 2, pp. 876-889, June 2020, doi: 10.1109/TNSM.2020.2971776.[2] Chen, X., Liu, C., Li, B., Lu, K., & Song, D. (2017). Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning. arXiv.Org. https://doi.org/10.48550/arxiv.1712.05526[3] A. Aljuhani, "Machine Learning Approaches for Combating Distributed Denial of Service Attacks in Modern Networking Environments," in IEEE Access, vol. 9, pp. 42236-42264, 2021, doi: 10.1109/ACCESS.2021.3062909. keywords: {Denial-of-service attack;Cloud computing;Internet of Things;Cyberattack;Network function virtualization;Floods;Machine learning;DDoS attacks and detection;Internet of Things (IoT);machine learning (ML);network functions virtualization (NFV);software-defined network (SDN)}.[4] Satapathy, S. C., Joshi, A., Modi, N., & Pathak, N. (2016). UDP Flooding Attack Detection Using Information Metric Measure. In Proceedings of International Conference on ICT for Sustainable Development (Vol. 408, pp. 143–153). Springer Singapore Pte. Limited. https://doi.org/10.1007/978-981-10-0129-1_16[5] Bhatia, S., Behal, S., & Ahmed, I. (2018). Distributed denial of service attacks and defense mechanisms: Current landscape and future directions. In Conti M., Somani G., Poovendran R. (Eds.). Versatile cybersecurity. Advances in information security (pp. 55-97). Cham, Switzerland: Springer. doi: 10.1007/978-3-319-97643-3_3[6] Dang, V. T., Huong, T. T., Thanh, N. H., Nam, P. N., Thanh, N. N., & Marshall, A. (2019). SDN-Based SYN Proxy—A Solution to Enhance Performance of Attack Mitigation Under TCP SYN Flood. Computer Journal, 62(4), 518–534. https://doi.org/10.1093/comjnl/bxy117[7] Mohammadi, R., Lal, C., & Conti, M. (2023). HTTPScout: A Machine Learning based Countermeasure for HTTP Flood Attacks in SDN. International Journal of Information Security, 22(2), 367–379. https://doi.org/10.1007/s10207-022-00641-3[8] Alahmadi, A. A., Aljabri, M., Alhaidari, F., Alharthi, D. J., Rayani, G. E., Marghalani, L. A., Alotaibi, O. B., & Bajandouh, S. A. (2023). DDoS Attack Detection in IoT-Based Networks Using Machine Learning Models: A Survey and Research Directions. Electronics (Basel), 12(14), 3103-. https://doi.org/10.3390/electronics12143103[9] Najafimehr, M., Zarifzadeh, S., & Mostafavi, S. (2023). DDoS attacks and machine‐learning‐based detection methods: A survey and taxonomy. Engineering Reports (Hoboken, N.J.), 5(12). https://doi.org/10.1002/eng2.12697[10] Ramirez, Miguel A “New Data Poison Attacks on Machine Learning Classifiers for Mobile Exfiltration.” arXiv.Org, 2022, https://doi.org/10.48550/arxiv.2210.11592.[11] Taheri, R., Javidan, R., Shojafar, M., Pooranian, Z., Miri, A., & Conti, M. (2020). On defending against label flipping attacks on malware detection systems. Neural Computing & Applications, 32(18), 14781–14800. https://doi.org/10.1007/s00521-020-04831-9[12] Zhang, H., Cheng, N., Zhang, Y., & Li, Z. (2021). Label flipping attacks against Naive Bayes on spam filtering systems. Applied Intelligence (Dordrecht, Netherlands), 51(7), 4503–4514. https://doi.org/10.1007/s10489-020-02086-4[13] Shafahi, Ali, et al. “Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks.” arXiv.Org, 2018, https://doi.org/10.48550/arxiv.1804.00792.[14] Peri, N., Gupta, N., Huang, W. R., Fowl, L., Zhu, C., Feizi, S., Goldstein, T., & Dickerson, J. P. (2020). Deep k-NN Defense Against Clean-Label Data Poisoning Attacks. In Computer Vision – ECCV 2020 Workshops (pp. 55–70). Springer International Publishing. https://doi.org/10.1007/978-3-030-66415-2_4[15] S. Ho, A. Reddy, S. Venkatesan, R. Izmailov, R. Chadha and A. Oprea, "Data Sanitization Approach to Mitigate Clean-Label Attacks Against Malware Detection Systems," MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM), Rockville, MD, USA, 2022, pp. 993-998, doi: 10.1109/MILCOM55135.2022.10017768. keywords: {Training;Military communication;Sensitivity;Art;Data integrity;Watermarking;Telecommunication traffic;Machine learning;Adversarial learning;Neural networks;Intrusion detection;Malware}[16] Marijan, D., Gotlieb, A., & Ahuja, M.K. (2019). Challenges of Testing Machine Learning Based Systems. 2019 IEEE International Conference On Artificial Intelligence Testing (AITest), 101-102.[17] Castiglione, G., Ding, G.W., Hashemi, M., Srinivasa, C., & Wu, G. (2022). Scalable Whitebox Attacks on Tree-based Models. ArXiv, abs/2204.00103.[18] Corradini, D., Zampieri, A., Pasqua, M., Viglianisi, E., Dallago, M., & Ceccato, M. (2022). Automated black‐box testing of nominal and error scenarios in RESTful APIs. Software Testing, 32.[19] DDoS evaluation dataset (CIC-DDoS2019), University of New Brunswick est.1785, https://www.unb.ca/cic/datasets/ddos-2019.html.[20] Ataque DDoS de Inundación Syn | Cloudflare, https://www.cloudflare.com/es-es/learning/ddos/syn-flood-ddos-attack201820865201912757Publication9a0ca46c-ed4d-4da2-af46-db6aa9454a0dvirtual::19391-1a197a9f7-96e5-47cb-a497-2ee4c9cdce71virtual::19394-19a0ca46c-ed4d-4da2-af46-db6aa9454a0dvirtual::19391-1a197a9f7-96e5-47cb-a497-2ee4c9cdce71virtual::19394-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000219541virtual::19391-1ORIGINALSeguridad de Modelos de Aprendizaje Profundo.pdfSeguridad de Modelos de Aprendizaje Profundo.pdfapplication/pdf1305619https://repositorio.uniandes.edu.co/bitstreams/c64505cf-30a1-443b-af39-09745d113271/download42fa6f941a9438d76d28a6bf131a28faMD51autorizacionTesis Juan Felipe y Sergio.pdfautorizacionTesis Juan Felipe y Sergio.pdfHIDEapplication/pdf249508https://repositorio.uniandes.edu.co/bitstreams/e3d96040-ca0c-476c-9d8e-e838f93ab11c/downloadcef11361974b6781cbd0522721ea45ceMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/ece73f01-e5ab-44c8-b6c7-a8df35873798/download4460e5956bc1d1639be9ae6146a50347MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/8e0d7724-0464-48d4-9365-fe00a4fd78c1/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTSeguridad de Modelos de Aprendizaje Profundo.pdf.txtSeguridad de Modelos de Aprendizaje Profundo.pdf.txtExtracted texttext/plain81375https://repositorio.uniandes.edu.co/bitstreams/1892a7e3-6524-41f3-82b5-149c6d5c3c37/download95cdb16fb37bb518f7d4be864b788828MD55autorizacionTesis Juan Felipe y Sergio.pdf.txtautorizacionTesis Juan Felipe y Sergio.pdf.txtExtracted texttext/plain1430https://repositorio.uniandes.edu.co/bitstreams/29c2e5c4-8e4c-4768-9641-93287d9b9969/downloadf286cf9f131b37f3ac923c9c95796432MD57THUMBNAILSeguridad de Modelos de Aprendizaje Profundo.pdf.jpgSeguridad de Modelos de Aprendizaje Profundo.pdf.jpgGenerated Thumbnailimage/jpeg9939https://repositorio.uniandes.edu.co/bitstreams/f0e0b158-cd95-4b15-bc4a-6252ef6c2263/downloadf9fd255feee46afc295d844e232cd759MD56autorizacionTesis Juan Felipe y Sergio.pdf.jpgautorizacionTesis Juan Felipe y Sergio.pdf.jpgGenerated Thumbnailimage/jpeg11449https://repositorio.uniandes.edu.co/bitstreams/3d681303-ecfd-4ad5-9c0a-93ca0579d5e3/download858b7aab267a69d05c0e52de4cc8d3c5MD581992/74780oai:repositorio.uniandes.edu.co:1992/747802024-09-12 16:20:17.473http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K