Quantum dynamics and phase transitions in low-dimensional systems

Low-dimensional systems have attracted a main interest in current condensed matter physics due to novel quantum phenomena arising from their characteristic confinement. In this work we will review the quantum dynamics of two reduced dimensional systems: a zero-dimensional quantum dot under a Landau-...

Full description

Autores:
Higuera Quintero, Santiago
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/68998
Acceso en línea:
http://hdl.handle.net/1992/68998
Palabra clave:
Quantum phase transitions
Low-dimensional systems
Condensed matter physics
Quantum computing
Física
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id UNIANDES2_8ab2f9d4353e32deb67636a1bec64d17
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/68998
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Quantum dynamics and phase transitions in low-dimensional systems
dc.title.alternative.none.fl_str_mv Dinámicas cuánticas y transiciones de fase en sistemas de baja dimensionalidad
title Quantum dynamics and phase transitions in low-dimensional systems
spellingShingle Quantum dynamics and phase transitions in low-dimensional systems
Quantum phase transitions
Low-dimensional systems
Condensed matter physics
Quantum computing
Física
title_short Quantum dynamics and phase transitions in low-dimensional systems
title_full Quantum dynamics and phase transitions in low-dimensional systems
title_fullStr Quantum dynamics and phase transitions in low-dimensional systems
title_full_unstemmed Quantum dynamics and phase transitions in low-dimensional systems
title_sort Quantum dynamics and phase transitions in low-dimensional systems
dc.creator.fl_str_mv Higuera Quintero, Santiago
dc.contributor.advisor.none.fl_str_mv Rodríguez Dueñas, Ferney Javier
dc.contributor.author.none.fl_str_mv Higuera Quintero, Santiago
dc.contributor.jury.none.fl_str_mv Quiroga Puello, Luis
dc.contributor.researchgroup.es_CO.fl_str_mv Grupo de Fisica Teorica de la Materia Condensada
dc.subject.keyword.none.fl_str_mv Quantum phase transitions
Low-dimensional systems
Condensed matter physics
Quantum computing
topic Quantum phase transitions
Low-dimensional systems
Condensed matter physics
Quantum computing
Física
dc.subject.themes.es_CO.fl_str_mv Física
description Low-dimensional systems have attracted a main interest in current condensed matter physics due to novel quantum phenomena arising from their characteristic confinement. In this work we will review the quantum dynamics of two reduced dimensional systems: a zero-dimensional quantum dot under a Landau-Zener (LZ) Hamiltonian and the Wannier-Stark (WS) model of a one-dimensional chain. The purpose of this work will be to probe equilibrium quantum phase transitions through non-equilibrium dynamical processes. For the first system, the connection between the LZ dynamics and Kibble-Zurek mechanism (KZM) for continuous phase transitions is presented. In addition, experimental quantum simulations on digital quantum computers are shown that validate the link. Then, the equilibrium quantum phases of the WS model are characterized and a study of the Loschmidt echo is presented through numerical simulations of sudden quenches.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-08-01T19:03:54Z
dc.date.available.none.fl_str_mv 2023-08-01T19:03:54Z
dc.date.issued.none.fl_str_mv 2023-06-06
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/68998
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/68998
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.relation.references.es_CO.fl_str_mv Clarence Zener and Ralph Howard Fowler. Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 137(833):696-702, 1932.
M Morifuji and C Hamaguchi. Wannier stark effect in transport. In Mesoscopic Physics and Electronics, pages 104-108. Springer, 1998.
Paul N Butcher, Norman H March, and Mario P Tosi. Physics of low-dimensional semiconductor structures. Springer Science & Business Media, 2013.
Michael R Geller. Quantum phenomena in low-dimensional systems. Technical report, 2001.
Simon M Sze, Yiming Li, and Kwok K Ng. Physics of semiconductor devices. John wiley & sons, 2008.
Klaus von Klitzing, Tapash Chakraborty, Philip Kim, Vidya Madhavan, Xi Dai, James McIver, Yoshinori Tokura, Lucile Savary, Daria Smirnova, Ana Maria Rey, et al. 40 years of the quantum hall effect. Nature Reviews Physics, 2(8):397-401, 2020.
Klaus von Klitzing, Gerhard Dorda, and Michael Pepper. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Physical review letters, 45(6):494, 1980.
Yuan Cao, Valla Fatemi, Shiang Fang, Kenji Watanabe, Takashi Taniguchi, Efthimios Kaxiras, and Pablo Jarillo-Herrero. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 556(7699):43-50, 2018.
Wei Lu and Charles M Lieber. Semiconductor nanowires. Journal of Physics D: Applied Physics, 39(21):R387, 2006.
Daniel Loss and David P DiVincenzo. Quantum computation with quantum dots. Physical Review A, 57(1):120, 1998.
Shivaji Lal Sondhi, SM Girvin, JP Carini, and Dan Shahar. Continuous quantum phase transitions. Reviews of modern physics, 69(1):315, 1997.
Subir Sachdev. Quantum phase transitions. Physics world, 12(4):33, 1999.
Matthias Vojta. Quantum phase transitions. Reports on Progress in Physics, 66(12):2069, 2003.
Debasis Bera, Lei Qian, Teng-Kuan Tseng, and Paul H Holloway. Quantum dots and their multimodal applications: a review. Materials, 3(4):2260-2345, 2010.
Kushal Yadav, Prashant Kumar, Dharmasanam Ravi Teja, Sudipto Chakraborty, Monojit Chakraborty, Soumya Sanjeeb Mohapatra, Abanti Sahoo, Mitch MC Chou, Chi-Te Liang, and Da-Ren Hang. A review on low-dimensional nanomaterials: Nanofabrication, characterization and applications. Nanomaterials, 13(1):160, 2022.
Oleh V. Ivakhnenko, Sergey N. Shevchenko, and Franco Nori. Nonadiabatic landau zenerst¨uckelberg majorana transitions, dynamics, and interference. Physics Reports, 995:1-89, 2023. Nonadiabatic Landau-Zener-St¨uckelberg-Majorana transitions, dynamics, and interference.
Gang Cao, Hai-Ou Li, Tao Tu, Li Wang, Cheng Zhou, Ming Xiao, Guang-Can Guo, Hong-Wen Jiang, and Guo-Ping Guo. Ultrafast universal quantum control of a quantum-dot charge qubit using landauzenerst¨uckelberg interference. Nature Communications, 4(1):1401, 2013.
D. V. Khomitsky and S. A. Studenikin. Single-spin landau-zener-st¨uckelberg-majorana interferometry of zeeman-split states with strong spin-orbit interaction in a double quantum dot. Phys. Rev. B, 106:195414, Nov 2022.
Max Born and Vladimir Fock. Beweis des adiabatensatzes. Zeitschrift f¨ur Physik, 51(3-4):165-180, 1928.
Izrail Solomonovich Gradshteyn and Iosif Moiseevich Ryzhik. Table of integrals, series, and products. Academic press, 2014.
Junhong Goo, Younghoon Lim, and Yong-il Shin. Defect saturation in a rapidly quenched bose gas. Physical Review Letters, 127(11):115701, 2021.
Martin Anquez, BA Robbins, HM Bharath, M Boguslawski, TM Hoang, and MS Chapman. Quantum kibble-zurek mechanism in a spin-1 bose-einstein condensate. Physical review letters, 116(15):155301, 2016.
Ming Gong, Xueda Wen, Guozhu Sun, Dan-Wei Zhang, Dong Lan, Yu Zhou, Yunyi Fan, Yuhao Liu, Xinsheng Tan, Haifeng Yu, Yang Yu, Shi-Liang Zhu, Siyuan Han, and Peiheng Wu. Simulating the Kibble-Zurek mechanism of the ising model with a superconducting qubit system. Scientific Reports, 6:22667, 2016.
Jin-Ming Cui, Yun-Feng Huang, Zhao Wang, Dong-Yang Cao, Jian Wang, Wei-Min Lv, Le Luo, Adolfo del Campo, Yong-Jian Han, Chuan-Feng Li, and Guang-Can Guo. Experimental trapped-ion quantum simulation of the Kibble-Zurek dynamics in momentum space. Scientific Reports, 6(1), sep 2016.
Bogdan Damski. The simplest quantum model supporting the Kibble-Zurek mechanism of topological defect production: Landau-Zener transitions from a new perspective. Phys. Rev. Lett., 95:035701, Jul 2005.
Bogdan Damski and Wojciech H. Zurek. Adiabatic-impulse approximation for avoided level crossings: From phase-transition dynamics to Landau-Zener evolutions and back again. Phys. Rev. A, 73:063405, Jun 2006.
Morten Kjaergaard, Mollie E Schwartz, Jochen Braum¨uller, Philip Krantz, Joel I-J Wang, Simon Gustavsson, and William D Oliver. Superconducting qubits: Current state of play. Annual Review of Condensed Matter Physics, 11:369-395, 2020.
IBM-Corporation. Quantum computing IBM. https://quantum-computing.ibm.com, 2022. Accessed: 2022-07-27.
Santiago Higuera-Quintero, Ferney J. Rodríguez, Luis Quiroga, and Fernando J. Gómez-Ruiz. Experimental validation of the kibble-zurek mechanism on a digital quantum computer. Frontiers in Quantum Science and Technology, 1, 2022.
Florian Marquardt and Annett P¨uttmann. Introduction to dissipation and decoherence in quantum systems, 2008.
Thierry Giamarchi. Quantum physics in one dimension, volume 121. Clarendon press, 2003.
Johannes Voit. One-dimensional fermi liquids. Reports on Progress in Physics, 58(9):977, 1995.
Hidetoshi Fukuyama, Robert A Bari, and Hans C Fogedby. Tightly bound electrons in a uniform electric field. Physical Review B, 8(12):5579, 1973.
Timo Hartmann, F Keck, HJ Korsch, and S Mossmann. Dynamics of bloch oscillations. New Journal of Physics, 6(1):2, 2004.
Fabio Franchini et al. An introduction to integrable techniques for one-dimensional quantum systems, volume 940. Springer, 2017.
Markus Heyl. Dynamical quantum phase transitions: a review. Reports on Progress in Physics, 81(5):054001, 2018.
M. Faridfar, A. Ahmadi Fouladi, and J. Vahedi. Dynamical quantum phase transitions in stark quantum spin chains. Physica A: Statistical Mechanics and its Applications, 619:128732, 2023.
P Bosco and G Dattoli. Solution of the generalised raman-nath equation. Journal of Physics A: Mathematical and General, 16(18):4409, 1983.
Bultrini, D. , Gordon, M. , L´opez, E. and Sierra, G. Simple mitigation strategy for a systematic gate error in ibmq. Journal of Applied Mathematics and Physics, 9, 2021.
dc.rights.license.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 59 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Física
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Física
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/d1db9c4d-399a-4ed0-b2ab-7278f59a486a/download
https://repositorio.uniandes.edu.co/bitstreams/37bedd57-75e9-4c02-ae7c-dea6addad43c/download
https://repositorio.uniandes.edu.co/bitstreams/33c27027-3509-4f3c-92d7-38f9381a8d10/download
https://repositorio.uniandes.edu.co/bitstreams/1bea4c2e-9ce7-4795-a842-f55f1ed28e2c/download
https://repositorio.uniandes.edu.co/bitstreams/b89c1c38-c73c-4472-aa59-1a60cb7477d1/download
https://repositorio.uniandes.edu.co/bitstreams/5a668590-6c30-46fd-b149-c468c936915c/download
https://repositorio.uniandes.edu.co/bitstreams/a82be1a4-1e11-4e37-93f6-905cd9fefc19/download
https://repositorio.uniandes.edu.co/bitstreams/ca43133a-0d37-4536-9880-21fcd79c679c/download
bitstream.checksum.fl_str_mv c4d7bc39c69a65c78a33c98a2068eda4
08b106dfeb12472e88207a069e15ba30
848150f7f6225bf7b5c7708a0eb8a7f0
cd0cb72bd5f3bac5ec25b8c35e596dfa
5aa5c691a1ffe97abd12c2966efcb8d6
4460e5956bc1d1639be9ae6146a50347
275de11142c69af219b8653569cd6252
654bbbc84ebb5cfe0a312303be87e5bc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134082641920000
spelling Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rodríguez Dueñas, Ferney Javier7e9a57df-a656-423b-8e41-e4ebe93dcafd600Higuera Quintero, Santiagofd3a70d8-2357-4580-a88d-2506d6b012cd600Quiroga Puello, LuisGrupo de Fisica Teorica de la Materia Condensada2023-08-01T19:03:54Z2023-08-01T19:03:54Z2023-06-06http://hdl.handle.net/1992/68998instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Low-dimensional systems have attracted a main interest in current condensed matter physics due to novel quantum phenomena arising from their characteristic confinement. In this work we will review the quantum dynamics of two reduced dimensional systems: a zero-dimensional quantum dot under a Landau-Zener (LZ) Hamiltonian and the Wannier-Stark (WS) model of a one-dimensional chain. The purpose of this work will be to probe equilibrium quantum phase transitions through non-equilibrium dynamical processes. For the first system, the connection between the LZ dynamics and Kibble-Zurek mechanism (KZM) for continuous phase transitions is presented. In addition, experimental quantum simulations on digital quantum computers are shown that validate the link. Then, the equilibrium quantum phases of the WS model are characterized and a study of the Loschmidt echo is presented through numerical simulations of sudden quenches.Los sistemas de baja dimensionalidad han atraído un interés central en la física actual de la materia condensada debido a novedosos fenómenos cuánticos que surgen de su confinamiento característico. En este trabajo revisaremos la dinámica cuántica de dos sistemas de dimensionalidad reducida: un punto cuántico de dimensión cero bajo un Hamiltoniano de Landau-Zener (LZ) y el modelo de Wannier-Stark (WS) de una cadena unidimensional. El propósito de este trabajo será sondear las transiciones de fase cuánticas en equilibrio a través de procesos dinámicos de no equilibrio. Para el primer sistema, se presenta la conexión entre la dinámica de LZ y el mecanismo de Kibble-Zurek (KZM) para transiciones de fase continuas. Además, se muestran simulaciones cuánticas experimentales en computadoras cuánticas digitales que validan su relación. Luego, se caracterizan las fases cuánticas de equilibrio del modelo WS y se presenta un estudio del eco de Loschmidt a través de simulaciones numéricas de quenches repentinos.Facultad de Ciencias-UniAndes projects: INV-2021-128-2292, and INV-2019-84-1841European Commission FET-Open project AVaQus GA 899561FísicoPregrado59 páginasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaQuantum dynamics and phase transitions in low-dimensional systemsDinámicas cuánticas y transiciones de fase en sistemas de baja dimensionalidadTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPQuantum phase transitionsLow-dimensional systemsCondensed matter physicsQuantum computingFísicaClarence Zener and Ralph Howard Fowler. Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 137(833):696-702, 1932.M Morifuji and C Hamaguchi. Wannier stark effect in transport. In Mesoscopic Physics and Electronics, pages 104-108. Springer, 1998.Paul N Butcher, Norman H March, and Mario P Tosi. Physics of low-dimensional semiconductor structures. Springer Science & Business Media, 2013.Michael R Geller. Quantum phenomena in low-dimensional systems. Technical report, 2001.Simon M Sze, Yiming Li, and Kwok K Ng. Physics of semiconductor devices. John wiley & sons, 2008.Klaus von Klitzing, Tapash Chakraborty, Philip Kim, Vidya Madhavan, Xi Dai, James McIver, Yoshinori Tokura, Lucile Savary, Daria Smirnova, Ana Maria Rey, et al. 40 years of the quantum hall effect. Nature Reviews Physics, 2(8):397-401, 2020.Klaus von Klitzing, Gerhard Dorda, and Michael Pepper. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Physical review letters, 45(6):494, 1980.Yuan Cao, Valla Fatemi, Shiang Fang, Kenji Watanabe, Takashi Taniguchi, Efthimios Kaxiras, and Pablo Jarillo-Herrero. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 556(7699):43-50, 2018.Wei Lu and Charles M Lieber. Semiconductor nanowires. Journal of Physics D: Applied Physics, 39(21):R387, 2006.Daniel Loss and David P DiVincenzo. Quantum computation with quantum dots. Physical Review A, 57(1):120, 1998.Shivaji Lal Sondhi, SM Girvin, JP Carini, and Dan Shahar. Continuous quantum phase transitions. Reviews of modern physics, 69(1):315, 1997.Subir Sachdev. Quantum phase transitions. Physics world, 12(4):33, 1999.Matthias Vojta. Quantum phase transitions. Reports on Progress in Physics, 66(12):2069, 2003.Debasis Bera, Lei Qian, Teng-Kuan Tseng, and Paul H Holloway. Quantum dots and their multimodal applications: a review. Materials, 3(4):2260-2345, 2010.Kushal Yadav, Prashant Kumar, Dharmasanam Ravi Teja, Sudipto Chakraborty, Monojit Chakraborty, Soumya Sanjeeb Mohapatra, Abanti Sahoo, Mitch MC Chou, Chi-Te Liang, and Da-Ren Hang. A review on low-dimensional nanomaterials: Nanofabrication, characterization and applications. Nanomaterials, 13(1):160, 2022.Oleh V. Ivakhnenko, Sergey N. Shevchenko, and Franco Nori. Nonadiabatic landau zenerst¨uckelberg majorana transitions, dynamics, and interference. Physics Reports, 995:1-89, 2023. Nonadiabatic Landau-Zener-St¨uckelberg-Majorana transitions, dynamics, and interference.Gang Cao, Hai-Ou Li, Tao Tu, Li Wang, Cheng Zhou, Ming Xiao, Guang-Can Guo, Hong-Wen Jiang, and Guo-Ping Guo. Ultrafast universal quantum control of a quantum-dot charge qubit using landauzenerst¨uckelberg interference. Nature Communications, 4(1):1401, 2013.D. V. Khomitsky and S. A. Studenikin. Single-spin landau-zener-st¨uckelberg-majorana interferometry of zeeman-split states with strong spin-orbit interaction in a double quantum dot. Phys. Rev. B, 106:195414, Nov 2022.Max Born and Vladimir Fock. Beweis des adiabatensatzes. Zeitschrift f¨ur Physik, 51(3-4):165-180, 1928.Izrail Solomonovich Gradshteyn and Iosif Moiseevich Ryzhik. Table of integrals, series, and products. Academic press, 2014.Junhong Goo, Younghoon Lim, and Yong-il Shin. Defect saturation in a rapidly quenched bose gas. Physical Review Letters, 127(11):115701, 2021.Martin Anquez, BA Robbins, HM Bharath, M Boguslawski, TM Hoang, and MS Chapman. Quantum kibble-zurek mechanism in a spin-1 bose-einstein condensate. Physical review letters, 116(15):155301, 2016.Ming Gong, Xueda Wen, Guozhu Sun, Dan-Wei Zhang, Dong Lan, Yu Zhou, Yunyi Fan, Yuhao Liu, Xinsheng Tan, Haifeng Yu, Yang Yu, Shi-Liang Zhu, Siyuan Han, and Peiheng Wu. Simulating the Kibble-Zurek mechanism of the ising model with a superconducting qubit system. Scientific Reports, 6:22667, 2016.Jin-Ming Cui, Yun-Feng Huang, Zhao Wang, Dong-Yang Cao, Jian Wang, Wei-Min Lv, Le Luo, Adolfo del Campo, Yong-Jian Han, Chuan-Feng Li, and Guang-Can Guo. Experimental trapped-ion quantum simulation of the Kibble-Zurek dynamics in momentum space. Scientific Reports, 6(1), sep 2016.Bogdan Damski. The simplest quantum model supporting the Kibble-Zurek mechanism of topological defect production: Landau-Zener transitions from a new perspective. Phys. Rev. Lett., 95:035701, Jul 2005.Bogdan Damski and Wojciech H. Zurek. Adiabatic-impulse approximation for avoided level crossings: From phase-transition dynamics to Landau-Zener evolutions and back again. Phys. Rev. A, 73:063405, Jun 2006.Morten Kjaergaard, Mollie E Schwartz, Jochen Braum¨uller, Philip Krantz, Joel I-J Wang, Simon Gustavsson, and William D Oliver. Superconducting qubits: Current state of play. Annual Review of Condensed Matter Physics, 11:369-395, 2020.IBM-Corporation. Quantum computing IBM. https://quantum-computing.ibm.com, 2022. Accessed: 2022-07-27.Santiago Higuera-Quintero, Ferney J. Rodríguez, Luis Quiroga, and Fernando J. Gómez-Ruiz. Experimental validation of the kibble-zurek mechanism on a digital quantum computer. Frontiers in Quantum Science and Technology, 1, 2022.Florian Marquardt and Annett P¨uttmann. Introduction to dissipation and decoherence in quantum systems, 2008.Thierry Giamarchi. Quantum physics in one dimension, volume 121. Clarendon press, 2003.Johannes Voit. One-dimensional fermi liquids. Reports on Progress in Physics, 58(9):977, 1995.Hidetoshi Fukuyama, Robert A Bari, and Hans C Fogedby. Tightly bound electrons in a uniform electric field. Physical Review B, 8(12):5579, 1973.Timo Hartmann, F Keck, HJ Korsch, and S Mossmann. Dynamics of bloch oscillations. New Journal of Physics, 6(1):2, 2004.Fabio Franchini et al. An introduction to integrable techniques for one-dimensional quantum systems, volume 940. Springer, 2017.Markus Heyl. Dynamical quantum phase transitions: a review. Reports on Progress in Physics, 81(5):054001, 2018.M. Faridfar, A. Ahmadi Fouladi, and J. Vahedi. Dynamical quantum phase transitions in stark quantum spin chains. Physica A: Statistical Mechanics and its Applications, 619:128732, 2023.P Bosco and G Dattoli. Solution of the generalised raman-nath equation. Journal of Physics A: Mathematical and General, 16(18):4409, 1983.Bultrini, D. , Gordon, M. , L´opez, E. and Sierra, G. Simple mitigation strategy for a systematic gate error in ibmq. Journal of Applied Mathematics and Physics, 9, 2021.201821280PublicationTEXTmonografia_SHQ.pdf.txtmonografia_SHQ.pdf.txtExtracted texttext/plain149269https://repositorio.uniandes.edu.co/bitstreams/d1db9c4d-399a-4ed0-b2ab-7278f59a486a/downloadc4d7bc39c69a65c78a33c98a2068eda4MD56autorizacion tesis.pdf.txtautorizacion tesis.pdf.txtExtracted texttext/plain1161https://repositorio.uniandes.edu.co/bitstreams/37bedd57-75e9-4c02-ae7c-dea6addad43c/download08b106dfeb12472e88207a069e15ba30MD58ORIGINALmonografia_SHQ.pdfmonografia_SHQ.pdfDocumento finalapplication/pdf32250679https://repositorio.uniandes.edu.co/bitstreams/33c27027-3509-4f3c-92d7-38f9381a8d10/download848150f7f6225bf7b5c7708a0eb8a7f0MD55autorizacion tesis.pdfautorizacion tesis.pdfHIDEapplication/pdf275593https://repositorio.uniandes.edu.co/bitstreams/1bea4c2e-9ce7-4795-a842-f55f1ed28e2c/downloadcd0cb72bd5f3bac5ec25b8c35e596dfaMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/b89c1c38-c73c-4472-aa59-1a60cb7477d1/download5aa5c691a1ffe97abd12c2966efcb8d6MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/5a668590-6c30-46fd-b149-c468c936915c/download4460e5956bc1d1639be9ae6146a50347MD52THUMBNAILmonografia_SHQ.pdf.jpgmonografia_SHQ.pdf.jpgIM Thumbnailimage/jpeg9984https://repositorio.uniandes.edu.co/bitstreams/a82be1a4-1e11-4e37-93f6-905cd9fefc19/download275de11142c69af219b8653569cd6252MD57autorizacion tesis.pdf.jpgautorizacion tesis.pdf.jpgIM Thumbnailimage/jpeg15744https://repositorio.uniandes.edu.co/bitstreams/ca43133a-0d37-4536-9880-21fcd79c679c/download654bbbc84ebb5cfe0a312303be87e5bcMD591992/68998oai:repositorio.uniandes.edu.co:1992/689982023-10-10 19:58:27.009http://creativecommons.org/licenses/by-nc-nd/4.0/restrictedhttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==