Bubble coalescence effects on the geochemical and physical fluctuations of intermediate magmas. Erebus volcano lava lake study case, Antarctica

Mount Erebus is a stratovolcano at 3794 masl with an approximate volume of 1670 km³ that overlies very thin continental crust (about 20 km width) at Terror Rift, at the Western boundary of the Western Antarctic Rift (Behrendt, 1999). Its main composition is characterized by interbedded pyroclastic p...

Full description

Autores:
Duarte Lizarazo, Luis Felipe
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2018
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/45827
Acceso en línea:
http://hdl.handle.net/1992/45827
Palabra clave:
Magmatismo
Geoquímica
Magmas
Geociencias
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UNIANDES2_8a24d438344b73ce8b9665161d4592bf
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/45827
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.es_CO.fl_str_mv Bubble coalescence effects on the geochemical and physical fluctuations of intermediate magmas. Erebus volcano lava lake study case, Antarctica
title Bubble coalescence effects on the geochemical and physical fluctuations of intermediate magmas. Erebus volcano lava lake study case, Antarctica
spellingShingle Bubble coalescence effects on the geochemical and physical fluctuations of intermediate magmas. Erebus volcano lava lake study case, Antarctica
Magmatismo
Geoquímica
Magmas
Geociencias
title_short Bubble coalescence effects on the geochemical and physical fluctuations of intermediate magmas. Erebus volcano lava lake study case, Antarctica
title_full Bubble coalescence effects on the geochemical and physical fluctuations of intermediate magmas. Erebus volcano lava lake study case, Antarctica
title_fullStr Bubble coalescence effects on the geochemical and physical fluctuations of intermediate magmas. Erebus volcano lava lake study case, Antarctica
title_full_unstemmed Bubble coalescence effects on the geochemical and physical fluctuations of intermediate magmas. Erebus volcano lava lake study case, Antarctica
title_sort Bubble coalescence effects on the geochemical and physical fluctuations of intermediate magmas. Erebus volcano lava lake study case, Antarctica
dc.creator.fl_str_mv Duarte Lizarazo, Luis Felipe
dc.contributor.advisor.none.fl_str_mv Burgisser, Alain
Molina Polanía, Claudia Indira
dc.contributor.author.none.fl_str_mv Duarte Lizarazo, Luis Felipe
dc.contributor.jury.none.fl_str_mv Despaigne Díaz, Ana Ibis
dc.subject.armarc.es_CO.fl_str_mv Magmatismo
Geoquímica
Magmas
topic Magmatismo
Geoquímica
Magmas
Geociencias
dc.subject.themes.none.fl_str_mv Geociencias
description Mount Erebus is a stratovolcano at 3794 masl with an approximate volume of 1670 km³ that overlies very thin continental crust (about 20 km width) at Terror Rift, at the Western boundary of the Western Antarctic Rift (Behrendt, 1999). Its main composition is characterized by interbedded pyroclastic phonolites, bomb deposits y lavic flows surrounding a volcanic summit cone in which bottom lies a phonolitic lava lake. On the other hand, the lava lake is characterized by a convective flow and a permanent cyclic degassing. Such cyclicity stands out due as it consititutes changes in the mean level of the lava lake and the geochemical variation of the emitted gases throughout the surface (Molina et al, 2015). Additionally, these cycles are in phase with variations in the gas flux, temperature and velocity that shows off the lava lake surface (Jones et al. 2015; Oppenheimer et al, 2009; Alleti et al., 2004; Peters et al., 2014 a,b). The modeling of a physical phenomenon such as the magmatic ascent is a complex problem even when relatively simple considerations are established. As a consequence, this research work pretends to introduce the process of coalescence to the model proposed by Molina et al (2015). Specifically, the physical approach here proposed is similar to the ones made by Castro et al (2012), and Burgisser and Gardner (2008) through the introduction of three coalescence mechanisms for the volatiles bubbles inside the magma. At the same time, this process allows to modify other physical parameters of the magma such as the effective dynamic viscosity and the magma ascent velocity, in the model proposed by Molina et al (2015). The development of this research work is of great importance as bubble coalescence inside the magma allows to understand better the degassing phenomenon and is useful in later studies of other eruptive regimes and compositional systems.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-09-03T16:15:41Z
dc.date.available.none.fl_str_mv 2020-09-03T16:15:41Z
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/45827
dc.identifier.pdf.none.fl_str_mv u827022.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/45827
identifier_str_mv u827022.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 62 hojas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Geociencias
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Geociencias
dc.source.es_CO.fl_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
instname_str Universidad de los Andes
institution Universidad de los Andes
reponame_str Repositorio Institucional Séneca
collection Repositorio Institucional Séneca
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/5e077ac3-6e1f-4d35-8122-636534899b14/download
https://repositorio.uniandes.edu.co/bitstreams/0bd21f12-6bc3-4023-b179-0b48a06ec2ce/download
https://repositorio.uniandes.edu.co/bitstreams/cbcf4ae7-0739-4bfa-a9e5-ef65802c03ac/download
bitstream.checksum.fl_str_mv 8ae1d7e69b43e9c474d3dac12f7e61b0
89c6bc7c2123878b0b9078b7f29ea383
3d9f5b1cfb5fec2d76d5435a2c176cf5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133869583859712
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Burgisser, Alain5a42938d-0ab6-4b22-ba00-e28e74a460a6600Molina Polanía, Claudia Indiravirtual::4638-1Duarte Lizarazo, Luis Felipe8e570a4d-a30e-4a61-bba6-f17d627a379a600Despaigne Díaz, Ana Ibis2020-09-03T16:15:41Z2020-09-03T16:15:41Z2018http://hdl.handle.net/1992/45827u827022.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Mount Erebus is a stratovolcano at 3794 masl with an approximate volume of 1670 km³ that overlies very thin continental crust (about 20 km width) at Terror Rift, at the Western boundary of the Western Antarctic Rift (Behrendt, 1999). Its main composition is characterized by interbedded pyroclastic phonolites, bomb deposits y lavic flows surrounding a volcanic summit cone in which bottom lies a phonolitic lava lake. On the other hand, the lava lake is characterized by a convective flow and a permanent cyclic degassing. Such cyclicity stands out due as it consititutes changes in the mean level of the lava lake and the geochemical variation of the emitted gases throughout the surface (Molina et al, 2015). Additionally, these cycles are in phase with variations in the gas flux, temperature and velocity that shows off the lava lake surface (Jones et al. 2015; Oppenheimer et al, 2009; Alleti et al., 2004; Peters et al., 2014 a,b). The modeling of a physical phenomenon such as the magmatic ascent is a complex problem even when relatively simple considerations are established. As a consequence, this research work pretends to introduce the process of coalescence to the model proposed by Molina et al (2015). Specifically, the physical approach here proposed is similar to the ones made by Castro et al (2012), and Burgisser and Gardner (2008) through the introduction of three coalescence mechanisms for the volatiles bubbles inside the magma. At the same time, this process allows to modify other physical parameters of the magma such as the effective dynamic viscosity and the magma ascent velocity, in the model proposed by Molina et al (2015). The development of this research work is of great importance as bubble coalescence inside the magma allows to understand better the degassing phenomenon and is useful in later studies of other eruptive regimes and compositional systems.El Monte Erebus es un estratovolcán de 3794 msnm con un volumen aproximado de 1670 km³ que se asienta sobre una corteza continental muy delgada (aproximadamente 20 km de espesor) en el Rift Terror, al borde occidental del Sistema de Rift Antártico Occidental (Behrendt, 1999). Este volcán está compuesto por intercalaciones de fonolitas piroclásticas, depósitos de bomba y flujos de lava que rodean un cono volcánico en cuyo fondo reposa un lago de lava fonolítica. Por otro lado, este lago de lava se caracteriza por un flujo convectivo y una desgasificación cíclica permanente. Dicha ciclicidad resalta por constituir cambios en el nivel medio del lago y la variación geoquímica de los gases emitidos a través de su superficie (Molina et al, 2015). Adicionalmente, estos ciclos se encuentran en fase con las variaciones de flujo de gas, temperatura y velocidad que exhibe la superficie del lago de lava (Jones et al. 2015; Oppenheimer et al, 2009; Alleti et al., 2004; Peters et al., 2014 a,b). El modelamiento de un fenómeno físico como el ascenso magmático es un problema complejo aun cuando se tienen consideraciones físicas relativamente simples. En consecuencia, el presente trabajo de investigación pretende introducir el proceso de coalescencia al modelo propuesto por Molina et al (2015). Específicamente, la aproximación física que se plantea realizar es de carácter similar a la realizada por autores como Castro et al (2012), y Burgisser y Gardner (2008) mediante la introducción de tres mecanismos de coalescencia de burbujas en el magma, que a su vez permitirán modificar parámetros físicos del magma como la viscosidad dinámica efectiva y la velocidad de ascenso del magma en el modelo propuesto por Molina et al (2015). El desarrollo de este trabajo es de gran importancia, ya que la coalescencia de burbujas permite entender el fenómeno de desgasificación del magma y es de utilidad en el estudio posterior de otros regímenes eruptivos y sistemas composicionales.GeocientíficoPregrado62 hojasapplication/pdfengUniversidad de los AndesGeocienciasFacultad de CienciasDepartamento de Geocienciasinstname:Universidad de los Andesreponame:Repositorio Institucional SénecaBubble coalescence effects on the geochemical and physical fluctuations of intermediate magmas. Erebus volcano lava lake study case, AntarcticaTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPMagmatismoGeoquímicaMagmasGeocienciasPublicationed5b5713-eb3d-4403-bab3-5b954dbd7300virtual::4638-1ed5b5713-eb3d-4403-bab3-5b954dbd7300virtual::4638-1THUMBNAILu827022.pdf.jpgu827022.pdf.jpgIM Thumbnailimage/jpeg10292https://repositorio.uniandes.edu.co/bitstreams/5e077ac3-6e1f-4d35-8122-636534899b14/download8ae1d7e69b43e9c474d3dac12f7e61b0MD55TEXTu827022.pdf.txtu827022.pdf.txtExtracted texttext/plain120415https://repositorio.uniandes.edu.co/bitstreams/0bd21f12-6bc3-4023-b179-0b48a06ec2ce/download89c6bc7c2123878b0b9078b7f29ea383MD54ORIGINALu827022.pdfapplication/pdf4129188https://repositorio.uniandes.edu.co/bitstreams/cbcf4ae7-0739-4bfa-a9e5-ef65802c03ac/download3d9f5b1cfb5fec2d76d5435a2c176cf5MD511992/45827oai:repositorio.uniandes.edu.co:1992/458272024-03-13 12:44:20.566http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co