Bubble coalescence effects on the geochemical and physical fluctuations of intermediate magmas. Erebus volcano lava lake study case, Antarctica
Mount Erebus is a stratovolcano at 3794 masl with an approximate volume of 1670 km³ that overlies very thin continental crust (about 20 km width) at Terror Rift, at the Western boundary of the Western Antarctic Rift (Behrendt, 1999). Its main composition is characterized by interbedded pyroclastic p...
- Autores:
-
Duarte Lizarazo, Luis Felipe
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2018
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/45827
- Acceso en línea:
- http://hdl.handle.net/1992/45827
- Palabra clave:
- Magmatismo
Geoquímica
Magmas
Geociencias
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
UNIANDES2_8a24d438344b73ce8b9665161d4592bf |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/45827 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.es_CO.fl_str_mv |
Bubble coalescence effects on the geochemical and physical fluctuations of intermediate magmas. Erebus volcano lava lake study case, Antarctica |
title |
Bubble coalescence effects on the geochemical and physical fluctuations of intermediate magmas. Erebus volcano lava lake study case, Antarctica |
spellingShingle |
Bubble coalescence effects on the geochemical and physical fluctuations of intermediate magmas. Erebus volcano lava lake study case, Antarctica Magmatismo Geoquímica Magmas Geociencias |
title_short |
Bubble coalescence effects on the geochemical and physical fluctuations of intermediate magmas. Erebus volcano lava lake study case, Antarctica |
title_full |
Bubble coalescence effects on the geochemical and physical fluctuations of intermediate magmas. Erebus volcano lava lake study case, Antarctica |
title_fullStr |
Bubble coalescence effects on the geochemical and physical fluctuations of intermediate magmas. Erebus volcano lava lake study case, Antarctica |
title_full_unstemmed |
Bubble coalescence effects on the geochemical and physical fluctuations of intermediate magmas. Erebus volcano lava lake study case, Antarctica |
title_sort |
Bubble coalescence effects on the geochemical and physical fluctuations of intermediate magmas. Erebus volcano lava lake study case, Antarctica |
dc.creator.fl_str_mv |
Duarte Lizarazo, Luis Felipe |
dc.contributor.advisor.none.fl_str_mv |
Burgisser, Alain Molina Polanía, Claudia Indira |
dc.contributor.author.none.fl_str_mv |
Duarte Lizarazo, Luis Felipe |
dc.contributor.jury.none.fl_str_mv |
Despaigne Díaz, Ana Ibis |
dc.subject.armarc.es_CO.fl_str_mv |
Magmatismo Geoquímica Magmas |
topic |
Magmatismo Geoquímica Magmas Geociencias |
dc.subject.themes.none.fl_str_mv |
Geociencias |
description |
Mount Erebus is a stratovolcano at 3794 masl with an approximate volume of 1670 km³ that overlies very thin continental crust (about 20 km width) at Terror Rift, at the Western boundary of the Western Antarctic Rift (Behrendt, 1999). Its main composition is characterized by interbedded pyroclastic phonolites, bomb deposits y lavic flows surrounding a volcanic summit cone in which bottom lies a phonolitic lava lake. On the other hand, the lava lake is characterized by a convective flow and a permanent cyclic degassing. Such cyclicity stands out due as it consititutes changes in the mean level of the lava lake and the geochemical variation of the emitted gases throughout the surface (Molina et al, 2015). Additionally, these cycles are in phase with variations in the gas flux, temperature and velocity that shows off the lava lake surface (Jones et al. 2015; Oppenheimer et al, 2009; Alleti et al., 2004; Peters et al., 2014 a,b). The modeling of a physical phenomenon such as the magmatic ascent is a complex problem even when relatively simple considerations are established. As a consequence, this research work pretends to introduce the process of coalescence to the model proposed by Molina et al (2015). Specifically, the physical approach here proposed is similar to the ones made by Castro et al (2012), and Burgisser and Gardner (2008) through the introduction of three coalescence mechanisms for the volatiles bubbles inside the magma. At the same time, this process allows to modify other physical parameters of the magma such as the effective dynamic viscosity and the magma ascent velocity, in the model proposed by Molina et al (2015). The development of this research work is of great importance as bubble coalescence inside the magma allows to understand better the degassing phenomenon and is useful in later studies of other eruptive regimes and compositional systems. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-09-03T16:15:41Z |
dc.date.available.none.fl_str_mv |
2020-09-03T16:15:41Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/45827 |
dc.identifier.pdf.none.fl_str_mv |
u827022.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/45827 |
identifier_str_mv |
u827022.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
62 hojas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Geociencias |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Geociencias |
dc.source.es_CO.fl_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca |
instname_str |
Universidad de los Andes |
institution |
Universidad de los Andes |
reponame_str |
Repositorio Institucional Séneca |
collection |
Repositorio Institucional Séneca |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/5e077ac3-6e1f-4d35-8122-636534899b14/download https://repositorio.uniandes.edu.co/bitstreams/0bd21f12-6bc3-4023-b179-0b48a06ec2ce/download https://repositorio.uniandes.edu.co/bitstreams/cbcf4ae7-0739-4bfa-a9e5-ef65802c03ac/download |
bitstream.checksum.fl_str_mv |
8ae1d7e69b43e9c474d3dac12f7e61b0 89c6bc7c2123878b0b9078b7f29ea383 3d9f5b1cfb5fec2d76d5435a2c176cf5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133869583859712 |
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Burgisser, Alain5a42938d-0ab6-4b22-ba00-e28e74a460a6600Molina Polanía, Claudia Indiravirtual::4638-1Duarte Lizarazo, Luis Felipe8e570a4d-a30e-4a61-bba6-f17d627a379a600Despaigne Díaz, Ana Ibis2020-09-03T16:15:41Z2020-09-03T16:15:41Z2018http://hdl.handle.net/1992/45827u827022.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Mount Erebus is a stratovolcano at 3794 masl with an approximate volume of 1670 km³ that overlies very thin continental crust (about 20 km width) at Terror Rift, at the Western boundary of the Western Antarctic Rift (Behrendt, 1999). Its main composition is characterized by interbedded pyroclastic phonolites, bomb deposits y lavic flows surrounding a volcanic summit cone in which bottom lies a phonolitic lava lake. On the other hand, the lava lake is characterized by a convective flow and a permanent cyclic degassing. Such cyclicity stands out due as it consititutes changes in the mean level of the lava lake and the geochemical variation of the emitted gases throughout the surface (Molina et al, 2015). Additionally, these cycles are in phase with variations in the gas flux, temperature and velocity that shows off the lava lake surface (Jones et al. 2015; Oppenheimer et al, 2009; Alleti et al., 2004; Peters et al., 2014 a,b). The modeling of a physical phenomenon such as the magmatic ascent is a complex problem even when relatively simple considerations are established. As a consequence, this research work pretends to introduce the process of coalescence to the model proposed by Molina et al (2015). Specifically, the physical approach here proposed is similar to the ones made by Castro et al (2012), and Burgisser and Gardner (2008) through the introduction of three coalescence mechanisms for the volatiles bubbles inside the magma. At the same time, this process allows to modify other physical parameters of the magma such as the effective dynamic viscosity and the magma ascent velocity, in the model proposed by Molina et al (2015). The development of this research work is of great importance as bubble coalescence inside the magma allows to understand better the degassing phenomenon and is useful in later studies of other eruptive regimes and compositional systems.El Monte Erebus es un estratovolcán de 3794 msnm con un volumen aproximado de 1670 km³ que se asienta sobre una corteza continental muy delgada (aproximadamente 20 km de espesor) en el Rift Terror, al borde occidental del Sistema de Rift Antártico Occidental (Behrendt, 1999). Este volcán está compuesto por intercalaciones de fonolitas piroclásticas, depósitos de bomba y flujos de lava que rodean un cono volcánico en cuyo fondo reposa un lago de lava fonolítica. Por otro lado, este lago de lava se caracteriza por un flujo convectivo y una desgasificación cíclica permanente. Dicha ciclicidad resalta por constituir cambios en el nivel medio del lago y la variación geoquímica de los gases emitidos a través de su superficie (Molina et al, 2015). Adicionalmente, estos ciclos se encuentran en fase con las variaciones de flujo de gas, temperatura y velocidad que exhibe la superficie del lago de lava (Jones et al. 2015; Oppenheimer et al, 2009; Alleti et al., 2004; Peters et al., 2014 a,b). El modelamiento de un fenómeno físico como el ascenso magmático es un problema complejo aun cuando se tienen consideraciones físicas relativamente simples. En consecuencia, el presente trabajo de investigación pretende introducir el proceso de coalescencia al modelo propuesto por Molina et al (2015). Específicamente, la aproximación física que se plantea realizar es de carácter similar a la realizada por autores como Castro et al (2012), y Burgisser y Gardner (2008) mediante la introducción de tres mecanismos de coalescencia de burbujas en el magma, que a su vez permitirán modificar parámetros físicos del magma como la viscosidad dinámica efectiva y la velocidad de ascenso del magma en el modelo propuesto por Molina et al (2015). El desarrollo de este trabajo es de gran importancia, ya que la coalescencia de burbujas permite entender el fenómeno de desgasificación del magma y es de utilidad en el estudio posterior de otros regímenes eruptivos y sistemas composicionales.GeocientíficoPregrado62 hojasapplication/pdfengUniversidad de los AndesGeocienciasFacultad de CienciasDepartamento de Geocienciasinstname:Universidad de los Andesreponame:Repositorio Institucional SénecaBubble coalescence effects on the geochemical and physical fluctuations of intermediate magmas. Erebus volcano lava lake study case, AntarcticaTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPMagmatismoGeoquímicaMagmasGeocienciasPublicationed5b5713-eb3d-4403-bab3-5b954dbd7300virtual::4638-1ed5b5713-eb3d-4403-bab3-5b954dbd7300virtual::4638-1THUMBNAILu827022.pdf.jpgu827022.pdf.jpgIM Thumbnailimage/jpeg10292https://repositorio.uniandes.edu.co/bitstreams/5e077ac3-6e1f-4d35-8122-636534899b14/download8ae1d7e69b43e9c474d3dac12f7e61b0MD55TEXTu827022.pdf.txtu827022.pdf.txtExtracted texttext/plain120415https://repositorio.uniandes.edu.co/bitstreams/0bd21f12-6bc3-4023-b179-0b48a06ec2ce/download89c6bc7c2123878b0b9078b7f29ea383MD54ORIGINALu827022.pdfapplication/pdf4129188https://repositorio.uniandes.edu.co/bitstreams/cbcf4ae7-0739-4bfa-a9e5-ef65802c03ac/download3d9f5b1cfb5fec2d76d5435a2c176cf5MD511992/45827oai:repositorio.uniandes.edu.co:1992/458272024-03-13 12:44:20.566http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |