Emergent Features in Rational Ehrhart Quasi-Polynomials

Ehrhart Theory presents a tool for the study of integer dilations of integral polytopes (convex polytopes whose vertices all have integer coordinates) via an associated polynomial in the dilation factor. This is then generalized to rational polytopes (allowing vertices to have rational coordinates)...

Full description

Autores:
Maldonado Baracaldo, Nicolás
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/64380
Acceso en línea:
http://hdl.handle.net/1992/64380
Palabra clave:
Ehrhart
Politopo
Polinomio
Cuasi-polinomio
Reticulo
Permutaedro
Matemáticas
Rights
openAccess
License
Attribution-NoDerivatives 4.0 Internacional
id UNIANDES2_89b5fc08725d71dbc3fe3940ea2e921f
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/64380
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Emergent Features in Rational Ehrhart Quasi-Polynomials
dc.title.alternative.none.fl_str_mv Características emergentes en los cuasi-polinomios racionales de Ehrhart
title Emergent Features in Rational Ehrhart Quasi-Polynomials
spellingShingle Emergent Features in Rational Ehrhart Quasi-Polynomials
Ehrhart
Politopo
Polinomio
Cuasi-polinomio
Reticulo
Permutaedro
Matemáticas
title_short Emergent Features in Rational Ehrhart Quasi-Polynomials
title_full Emergent Features in Rational Ehrhart Quasi-Polynomials
title_fullStr Emergent Features in Rational Ehrhart Quasi-Polynomials
title_full_unstemmed Emergent Features in Rational Ehrhart Quasi-Polynomials
title_sort Emergent Features in Rational Ehrhart Quasi-Polynomials
dc.creator.fl_str_mv Maldonado Baracaldo, Nicolás
dc.contributor.advisor.none.fl_str_mv Bogart, Tristram
dc.contributor.author.none.fl_str_mv Maldonado Baracaldo, Nicolás
dc.contributor.jury.none.fl_str_mv Rau, Johannes
dc.subject.keyword.none.fl_str_mv Ehrhart
Politopo
Polinomio
Cuasi-polinomio
Reticulo
Permutaedro
topic Ehrhart
Politopo
Polinomio
Cuasi-polinomio
Reticulo
Permutaedro
Matemáticas
dc.subject.themes.es_CO.fl_str_mv Matemáticas
description Ehrhart Theory presents a tool for the study of integer dilations of integral polytopes (convex polytopes whose vertices all have integer coordinates) via an associated polynomial in the dilation factor. This is then generalized to rational polytopes (allowing vertices to have rational coordinates) yielding a quasi-polynomial in the dilation factor. Linke presented in 2011 a further generalization by allowing the dilation to be rational which again results in a quasi-polynomial in the dilation factor whose coefficients are piecewise polynomial. We herein present our first foray into this field, beginning with a careful review of the literature and all the necessary concepts before tying it all up with a fleshed-out example and the beginnings of an exploration into the form a particular rational Ehrhart quasi-polynomial takes and the information about its associated polytope that may be gleaned from it.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-11-28
dc.date.accessioned.none.fl_str_mv 2023-01-31T20:07:52Z
dc.date.available.none.fl_str_mv 2023-01-31T20:07:52Z
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/64380
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/64380
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.relation.references.es_CO.fl_str_mv Federico Ardila, Matthias Beck, and Jodi McWhirter. The arithmetic of Coxeter permutahedra. In: Revista de la Academia Colombiana de Ciencias Exactas, Fisicas y Naturales 44.173 (Dec. 2021), pp. 1152-1166. issn: 23824980. doi: 10.18257/RACCEFYN.1189.
Federico Ardila, Anna Schindler, and Andrés R Vindas-Meléndez. The equivariant volumes of the permutahedron. In: Discrete & Computational Geometry 65 (2021), pp. 618-635. doi: https: //doi.org/10.1007/s00454-019-00146-2. url: https://arxiv. org/abs/1803.02377.
Federico Ardila, Mariel Supina, and Andrés R Vindas-Meléndez. The equivariant Ehrhart theory of the permutahedron. In: Proceedings of the American Mathematical Society 148 (2020), pp. 5091- 5107. doi: https://doi.org/10.1090/proc/15113. url: https: //arxiv.org/abs/1911.11159.
Matthias Beck, Sophia Elia, and Sophie Rehberg. Rational Ehrhart Theory. In: Seminaire Lotharingien de Combinatoire 86B (2022). url: https://arxiv.org/abs/2110.10204.
Matthias Beck and Sinai Robins. Computing the Continuous Discretely. 2nd. Undergraduate Texts in Mathematics. New York, NY: Springer New York, 2015. isbn: 978-1-4939-2968-9. doi: 10. 1007/978-1-4939-2969-6. url: http://link.springer.com/ 10.1007/978-1-4939-2969-6.
Felix Breuer. An Invitation to Ehrhart Theory: Polyhedral Geometry and its Applications in Enumerative Combinatorics. In: Computer Algebra and Polynomials. Springer Cham, May 2014. Chap. 1, pp. 1-29. doi: 10.48550/arxiv.1405.7647. url: https: //arxiv.org/abs/1405.7647v2.
Jesús Antonio De Loera. Easy-to-Explain but Hard-to-Solve Problems About Convex Polytopes. 2012. url: http : / / www . math . ucdavis.edu/Ë¿deloera/1.
Branko Grünbaum. Convex Polytopes. Ed. by Volker Kaibel, Victor Klee, and Günter M. Ziegler. Graduate Texts in Mathematics. New York, NY: Springer New York, 2003. isbn: 978-0-387- 40409-7. doi: 10.1007/978-1-4613-0019-9. url: http://link. springer.com/10.1007/978-1-4613-0019-9.
Eva Linke. Rational Ehrhart quasi-polynomials. In: Journal of Combinatorial Theory, Series A 118.7 (Oct. 2011), pp. 1966-1978. issn: 0097-3165. doi: 10.1016/J.JCTA.2011.03.007.
PBS Infinite Series. Proving Pick's Theorem. 2017. url: https:// www.youtube.com/watch?v=bYW1zOMCQno&t=1s.
David Sharpe. Rings and Factorization. Cambridge University Press, Aug. 1987. isbn: 9780521330725. doi: 10.1017/CBO9780511565960. url: https://www.cambridge.org/core/product/identifier/ 9780511565960/type/book.
N. J. A. Sloane. A138464. 2008. url: https://oeis.org/A138464.
Alan Stapledon. Equivariant Ehrhart Theory. In: Advances in Mathematics 226.4 (2011), pp. 3622-3654. doi: https://doi.org/ 10.1016/j.aim.2010.10.019. url: https://arxiv.org/abs/ 1003.5875.
Terence Tao. Conversions between standard polynomial bases | What's new. 2019. url: https://terrytao.wordpress.com/2019/04/ 07/conversions-between-standard-polynomial-bases/.
Value of Vandermonde Determinant/Formulation 1. url: https : / / proofwiki . org / wiki / Value _ of _ Vandermonde _ Determinant / Formulation_1.
Günter M. Ziegler. Lectures on Polytopes. Vol. 152. Graduate Texts in Mathematics. New York, NY: Springer New York, 1995. isbn: 978-0-387-94365-7. doi: 10.1007/978-1-4613-8431-1. url: http://link.springer.com/10.1007/978-1-4613-8431-1.
spacematt. Pick's theorem: The wrong, amazing proof. 2021. url: https://www.youtube.com/watch?v=uh-yRNqLpOg.
dc.rights.license.spa.fl_str_mv Attribution-NoDerivatives 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 61 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Matemáticas
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Matemáticas
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/56060b94-0362-4dd6-b3a1-eb680af1dfc7/download
https://repositorio.uniandes.edu.co/bitstreams/732c2c10-827e-4d80-9cde-77d394969496/download
https://repositorio.uniandes.edu.co/bitstreams/73c8b3c3-eaec-4253-b229-f790760122fd/download
https://repositorio.uniandes.edu.co/bitstreams/0cb4c89c-ac2d-4a81-ab76-ef6840ea8763/download
https://repositorio.uniandes.edu.co/bitstreams/60efa6b9-555a-4bcc-b964-fba71c194320/download
https://repositorio.uniandes.edu.co/bitstreams/e6f714ce-8618-451a-a26b-14ce89e960b5/download
https://repositorio.uniandes.edu.co/bitstreams/65a8c5be-6052-41b7-b594-3c1da3746177/download
https://repositorio.uniandes.edu.co/bitstreams/28d6dc65-e948-435a-bdc7-f15b23c53771/download
bitstream.checksum.fl_str_mv f7d494f61e544413a13e6ba1da2089cd
5aa5c691a1ffe97abd12c2966efcb8d6
4da3f6f81e908b12e2862a69801d9eee
a23fa87c61239ba0c3772bde5d34ca83
012665554d082add727ddb755e8cc1c1
e5a858b830d6c260abdaca74f5d67e3c
2a3a0c37a9aa8cb2e9840cdc0f8a2f34
4491fe1afb58beaaef41a73cf7ff2e27
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1808390283254038528
spelling Attribution-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Bogart, Tristramb29b0027-3c4b-4654-a24e-5db1a4e5456d600Maldonado Baracaldo, Nicolás3c7f02b7-2a60-4525-ad54-58b987855ffd600Rau, Johannes2023-01-31T20:07:52Z2023-01-31T20:07:52Z2022-11-28http://hdl.handle.net/1992/64380instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Ehrhart Theory presents a tool for the study of integer dilations of integral polytopes (convex polytopes whose vertices all have integer coordinates) via an associated polynomial in the dilation factor. This is then generalized to rational polytopes (allowing vertices to have rational coordinates) yielding a quasi-polynomial in the dilation factor. Linke presented in 2011 a further generalization by allowing the dilation to be rational which again results in a quasi-polynomial in the dilation factor whose coefficients are piecewise polynomial. We herein present our first foray into this field, beginning with a careful review of the literature and all the necessary concepts before tying it all up with a fleshed-out example and the beginnings of an exploration into the form a particular rational Ehrhart quasi-polynomial takes and the information about its associated polytope that may be gleaned from it.La Teoría de Ehrhart presenta una herramienta para el estudio de dilataciones enteras de politopos integrales (politopos convexos cuyos vértices tienen todos coordenadas enteras) a través de un polinomio asociado en el factor de dilatación. Esto luego se generaliza a politopos racionales (permitiendo que los vértices tengan coordenadas racionales), lo cual produce un cuasi-polinomio en el factor de dilatación. Linke presentó en 2011 una generalización adicional al permitir que la dilatación sea racional, lo cual nuevamente da como resultado un cuasi-polinomio en el factor de dilatación cuyos coeficientes son polinomios por partes. Presentamos aquí nuestra primera incursión en este campo, comenzando con una revisión cuidadosa de la literatura y todos los conceptos necesarios antes de concluir con un ejemplo detallado y los comienzos de una exploración en la forma que toma un cuasi-polinomio racional de Ehrhart particular y la información sobre su politopo asociado que se puede extraer de él.MatemáticoPregrado61 páginasapplication/pdfengUniversidad de los AndesMatemáticasFacultad de CienciasDepartamento de MatemáticasEmergent Features in Rational Ehrhart Quasi-PolynomialsCaracterísticas emergentes en los cuasi-polinomios racionales de EhrhartTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPEhrhartPolitopoPolinomioCuasi-polinomioReticuloPermutaedroMatemáticasFederico Ardila, Matthias Beck, and Jodi McWhirter. The arithmetic of Coxeter permutahedra. In: Revista de la Academia Colombiana de Ciencias Exactas, Fisicas y Naturales 44.173 (Dec. 2021), pp. 1152-1166. issn: 23824980. doi: 10.18257/RACCEFYN.1189.Federico Ardila, Anna Schindler, and Andrés R Vindas-Meléndez. The equivariant volumes of the permutahedron. In: Discrete & Computational Geometry 65 (2021), pp. 618-635. doi: https: //doi.org/10.1007/s00454-019-00146-2. url: https://arxiv. org/abs/1803.02377.Federico Ardila, Mariel Supina, and Andrés R Vindas-Meléndez. The equivariant Ehrhart theory of the permutahedron. In: Proceedings of the American Mathematical Society 148 (2020), pp. 5091- 5107. doi: https://doi.org/10.1090/proc/15113. url: https: //arxiv.org/abs/1911.11159.Matthias Beck, Sophia Elia, and Sophie Rehberg. Rational Ehrhart Theory. In: Seminaire Lotharingien de Combinatoire 86B (2022). url: https://arxiv.org/abs/2110.10204.Matthias Beck and Sinai Robins. Computing the Continuous Discretely. 2nd. Undergraduate Texts in Mathematics. New York, NY: Springer New York, 2015. isbn: 978-1-4939-2968-9. doi: 10. 1007/978-1-4939-2969-6. url: http://link.springer.com/ 10.1007/978-1-4939-2969-6.Felix Breuer. An Invitation to Ehrhart Theory: Polyhedral Geometry and its Applications in Enumerative Combinatorics. In: Computer Algebra and Polynomials. Springer Cham, May 2014. Chap. 1, pp. 1-29. doi: 10.48550/arxiv.1405.7647. url: https: //arxiv.org/abs/1405.7647v2.Jesús Antonio De Loera. Easy-to-Explain but Hard-to-Solve Problems About Convex Polytopes. 2012. url: http : / / www . math . ucdavis.edu/Ë¿deloera/1.Branko Grünbaum. Convex Polytopes. Ed. by Volker Kaibel, Victor Klee, and Günter M. Ziegler. Graduate Texts in Mathematics. New York, NY: Springer New York, 2003. isbn: 978-0-387- 40409-7. doi: 10.1007/978-1-4613-0019-9. url: http://link. springer.com/10.1007/978-1-4613-0019-9.Eva Linke. Rational Ehrhart quasi-polynomials. In: Journal of Combinatorial Theory, Series A 118.7 (Oct. 2011), pp. 1966-1978. issn: 0097-3165. doi: 10.1016/J.JCTA.2011.03.007.PBS Infinite Series. Proving Pick's Theorem. 2017. url: https:// www.youtube.com/watch?v=bYW1zOMCQno&t=1s.David Sharpe. Rings and Factorization. Cambridge University Press, Aug. 1987. isbn: 9780521330725. doi: 10.1017/CBO9780511565960. url: https://www.cambridge.org/core/product/identifier/ 9780511565960/type/book.N. J. A. Sloane. A138464. 2008. url: https://oeis.org/A138464.Alan Stapledon. Equivariant Ehrhart Theory. In: Advances in Mathematics 226.4 (2011), pp. 3622-3654. doi: https://doi.org/ 10.1016/j.aim.2010.10.019. url: https://arxiv.org/abs/ 1003.5875.Terence Tao. Conversions between standard polynomial bases | What's new. 2019. url: https://terrytao.wordpress.com/2019/04/ 07/conversions-between-standard-polynomial-bases/.Value of Vandermonde Determinant/Formulation 1. url: https : / / proofwiki . org / wiki / Value _ of _ Vandermonde _ Determinant / Formulation_1.Günter M. Ziegler. Lectures on Polytopes. Vol. 152. Graduate Texts in Mathematics. New York, NY: Springer New York, 1995. isbn: 978-0-387-94365-7. doi: 10.1007/978-1-4613-8431-1. url: http://link.springer.com/10.1007/978-1-4613-8431-1.spacematt. Pick's theorem: The wrong, amazing proof. 2021. url: https://www.youtube.com/watch?v=uh-yRNqLpOg.201423809PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8799https://repositorio.uniandes.edu.co/bitstreams/56060b94-0362-4dd6-b3a1-eb680af1dfc7/downloadf7d494f61e544413a13e6ba1da2089cdMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/732c2c10-827e-4d80-9cde-77d394969496/download5aa5c691a1ffe97abd12c2966efcb8d6MD53ORIGINALEmergent_Features_in_Rational_Ehrhart_Quasi_polynomials.pdfEmergent_Features_in_Rational_Ehrhart_Quasi_polynomials.pdfTrabajo de gradoapplication/pdf2007853https://repositorio.uniandes.edu.co/bitstreams/73c8b3c3-eaec-4253-b229-f790760122fd/download4da3f6f81e908b12e2862a69801d9eeeMD54MaldonadoBaracaldo.pdfMaldonadoBaracaldo.pdfHIDEapplication/pdf296018https://repositorio.uniandes.edu.co/bitstreams/0cb4c89c-ac2d-4a81-ab76-ef6840ea8763/downloada23fa87c61239ba0c3772bde5d34ca83MD55THUMBNAILEmergent_Features_in_Rational_Ehrhart_Quasi_polynomials.pdf.jpgEmergent_Features_in_Rational_Ehrhart_Quasi_polynomials.pdf.jpgIM Thumbnailimage/jpeg4178https://repositorio.uniandes.edu.co/bitstreams/60efa6b9-555a-4bcc-b964-fba71c194320/download012665554d082add727ddb755e8cc1c1MD57MaldonadoBaracaldo.pdf.jpgMaldonadoBaracaldo.pdf.jpgIM Thumbnailimage/jpeg16385https://repositorio.uniandes.edu.co/bitstreams/e6f714ce-8618-451a-a26b-14ce89e960b5/downloade5a858b830d6c260abdaca74f5d67e3cMD59TEXTEmergent_Features_in_Rational_Ehrhart_Quasi_polynomials.pdf.txtEmergent_Features_in_Rational_Ehrhart_Quasi_polynomials.pdf.txtExtracted texttext/plain76593https://repositorio.uniandes.edu.co/bitstreams/65a8c5be-6052-41b7-b594-3c1da3746177/download2a3a0c37a9aa8cb2e9840cdc0f8a2f34MD56MaldonadoBaracaldo.pdf.txtMaldonadoBaracaldo.pdf.txtExtracted texttext/plain1163https://repositorio.uniandes.edu.co/bitstreams/28d6dc65-e948-435a-bdc7-f15b23c53771/download4491fe1afb58beaaef41a73cf7ff2e27MD581992/64380oai:repositorio.uniandes.edu.co:1992/643802023-10-10 16:54:46.452http://creativecommons.org/licenses/by-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==