Astrophysical S-factor calculation for selected reactions
Project in theoretical nuclear physics. A literature survey was performed with calculations on S-factors performed computationally.
- Autores:
-
Calvachi Salas, Carlos Alberto
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/64404
- Acceso en línea:
- http://hdl.handle.net/1992/64404
- Palabra clave:
- Nuclear astrophysics
Astrophysical S-factor
Literature survey
Nuclear reactions
Resonant phenomena
Screening effect
Astrophysical environments
Experimental data fitting
Física
- Rights
- openAccess
- License
- Atribución 4.0 Internacional
id |
UNIANDES2_8811645b0b057b7055b13d96528b63d3 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/64404 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.none.fl_str_mv |
Astrophysical S-factor calculation for selected reactions |
title |
Astrophysical S-factor calculation for selected reactions |
spellingShingle |
Astrophysical S-factor calculation for selected reactions Nuclear astrophysics Astrophysical S-factor Literature survey Nuclear reactions Resonant phenomena Screening effect Astrophysical environments Experimental data fitting Física |
title_short |
Astrophysical S-factor calculation for selected reactions |
title_full |
Astrophysical S-factor calculation for selected reactions |
title_fullStr |
Astrophysical S-factor calculation for selected reactions |
title_full_unstemmed |
Astrophysical S-factor calculation for selected reactions |
title_sort |
Astrophysical S-factor calculation for selected reactions |
dc.creator.fl_str_mv |
Calvachi Salas, Carlos Alberto |
dc.contributor.advisor.none.fl_str_mv |
Kelkar, Neelima Govind |
dc.contributor.author.none.fl_str_mv |
Calvachi Salas, Carlos Alberto |
dc.contributor.jury.none.fl_str_mv |
Nowakowski, Marek |
dc.subject.keyword.none.fl_str_mv |
Nuclear astrophysics Astrophysical S-factor Literature survey Nuclear reactions Resonant phenomena Screening effect Astrophysical environments Experimental data fitting |
topic |
Nuclear astrophysics Astrophysical S-factor Literature survey Nuclear reactions Resonant phenomena Screening effect Astrophysical environments Experimental data fitting Física |
dc.subject.themes.es_CO.fl_str_mv |
Física |
description |
Project in theoretical nuclear physics. A literature survey was performed with calculations on S-factors performed computationally. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-01-31T20:57:57Z |
dc.date.available.none.fl_str_mv |
2023-01-31T20:57:57Z |
dc.date.issued.none.fl_str_mv |
2023-01-25 |
dc.type.es_CO.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.es_CO.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/64404 |
dc.identifier.instname.es_CO.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.es_CO.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.es_CO.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/64404 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.relation.references.es_CO.fl_str_mv |
[1] J. L. Basdevant, J. Rich, and M. Spiro. Fundamentals in Nuclear Physics: From Nuclear Structure to Cosmology. Springer New York, NY, 2004. [2] K. Heyde. Basic Ideas and Concepts in Nuclear Physics: An Introductory Approach. IOP Publishing, 2004. [3] A. Bohr and B. R. Mottelson. Nuclear structure. World Scientific, 1998. [4] C. Iliadis. Nuclear Physics of Stars. Wiley-VCH, 2015. [5] C. J. Joachain. Quantum collision theory. North-Holland Publishing, 1975. [6] R. G. Newton. Quantum Physics: A Text for Graduate Students. Graduate Texts in Contemporary Physics. Springer-Verlag, 2002. [7] R. Dick. Advanced Quantum Mechanics: Materials and photons. Springer Cham, 2016. [8] O. Iwamoto, N. Iwamoto, K. Shibata, A. Ichihara, S. Kunieda, F. Minato, and S. Nakayama. Status of JENDL. EPJ Web of Conferences, 239(09002), 2020. [9] P. Descouvemont and D. Baye. The R-matrix theory. Reports on Progress in Physics, 73(036301), 2010. [10] D. T. Tran, H. J. Ong, G. Hagen, T. D. Morris, N. Aoi, T. Suzuki, Y. Kanada-En¿yo, L. S. Geng, S. Terashima, I. Tanihata, and et al. Evidence for prevalent Z = 6 magic number in neutron-rich carbon isotopes. Nature Communications, 9(1594), 2018. [11] J. M. Blatt and V. F. Weisskopf. Theoretical nuclear physics. John Wiley & Sons, 1952. [12] C. Simenel, R. Keser, A. S. Umar, and V. E. Oberacker. Microscopic study of 16O+16O fusion. Physical Review C, 88(024617), 2013. [13] C. A. Bertulani. Nuclear Reactions, 2010. arXiv:0908.3275v2. [14] C. A. Bertulani and A. Bonaccorso. Direct Nuclear Reactions, 2022. arXiv:2201.00433. [15] C. R. Brune and B. Davids. Radiative Capture Reactions in Astrophysics. Annual Review of Nuclear and Particle Science, 65:87¿112, 2015. [16] Y. Xu, K. Takahashi, S. Goriely, M. Arnould, M. Ohta, and H. Utsunomiya. NACRE II: an update of the NACRE compilation of charged-particle-induced thermonuclear reaction rates for nuclei with mass number A < 16. Nuclear Physics A, 918:61¿169, 2013. [17] T. R. Whitehead, T. Poxon-Pearson, F. M. Nunes, and G. Potel. Prediction for (p, n) charge-exchange reactions with uncertainty quantification. Physical Review C, 105(054611), 2022. [18] M. Ueda, A. J. Sargeant, M. P. Pato, and M. S. Hussein. Resonances and thermonuclear reaction rates for charged particle collisions. Physical Review C, 70(025802), 2004. [19] H. J. Haubold and D. Kumar. Extension of thermonuclear functions through the pathway model including Maxwell¿Boltzmann and Tsallis distributions. Astroparticle Physics, 29(1):70¿76, 2008. [20] M. Ueda, A. J. Sargeant, M. P. Pato, and M. S. Hussein. Evaluation of effective astrophysical S factor for non-resonant reactions. Progress of Theoretical Physics Supplement, 146:634¿635, 2002. [21] S. Kimura and A. Bonasera. Gamow peak approximation near strong resonances. Physical Review C, 87(058801), 2013. 22] A. Coc and E. Vangioni. Big-Bang Nucleosynthesis with updated nuclear data. Journal of Physics: Conference Series, 202(012001), 2010. [23] C. Patrignani et. al (Particle Data Group). Review of Particle Physics. Chinese Physics C, 40(100001), 2016. [24] C. A. Bertulani. Big Bang Nucleosynthesis and the Lithium Problem. Journal of Physics: Conference Series, 1291(012002), 2019. [25] R. V. Wagoner, W. A. Fowler, and F. Hoyle. On the Synthesis of Elements at Very High Temperatures. The Astrophysical Journal, 148:3¿49, 1967. [26] H. Su-Qing, W. Kai-Su, C. Yong-Shou, S. Neng-Chuan, and L. Zhi-Hong. The Main Path to C, N, O Elements in Big Bang Nucleosynthesis. Chinese Physics Letters, 27(082601), 2010. [27] E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle. Synthesis of the Elements in Stars. Reviews of Modern Physics, 29(4):547¿650, 1957. [28] A. A. Arsentieva and I. I. Shevchenko. Host Stars of Planets on the Hertzsprung¿Russell Diagram. Astronomy Letters, 47(9):651¿660, 2021. [29] W. Kundt. Astrophysics: A New Approach. Astronomy and Astrophysics Library. Springer Berlin, Heidelberg, 2005. [30] C. A. Bertulani and T. Kajino. Frontiers in nuclear astrophysics. Progress in Particle and Nuclear Physics, 89:56¿100, 2016. [31] W. A. Fowler. Completion of the Proton-Proton Reaction Chain and the Possibility of Energetic Neutrino Emission by Hot Stars. The Astrophysical Journal, 127:551¿556, 1958. [32] A. Coc. Variation of fundamental constants and the triple- alpha reaction in Population III stars and BBN. Journal of Physics: Conference Series, 337(012037), 2012. [33] M. Wiescher, J. Görres, and H. Schatz. Break-out reactions from the CNO cycles. Journal of Physics G: Nuclear and Particle Physics, 25(6):R133¿R161, 1999. [34] M. Pignatari, R. Hirschi, M. Wiescher, R. Gallino, M. Bennett, M. Beard, C. Fryer, F. Herwig, G. Rockefeller, and F. X. Timmes. The 12C+12C reaction and the impact on nucleosynthesis in massive stars. The Astrophysical Journal, 762(1):31, 2012. [35] M. Notani, H. Esbensen, X. Fang, B. Bucher, P. Davies, C. L. Jiang, L. Lamm, C. J. Lin, C. Ma, E. Martin, and et al. Correlation between the 12C + 12C, 12C + 13C, and 13C + 13C fusion cross sections. Physical Review C, 85(014607), 2012. [36] N. T. Zhang, X. Y. Wang, D. Tudor, B. Bucher, I. Burducea, H. Chen, Z. J. Chen, D. Chesneanu, A. I. Chilug, L. R. Gasques, and et al. Constraining the 12C + 12C astrophysical S-factors with the 12C + 13C measurements at very low energies. Physics Letters B, 801(135170), 2020. [37] M. F. El Eid, B. S. Meyer, and L.-S. The. Evolution of Massive Stars Up to the End of Central Oxygen Burning. The Astrophysical Journal, 611(1):452¿465, 2004. [38] A. Kuronen, J. Keinonen, and P. Tikkanen. Cross section of 16O + 16O near the Coulomb barrier. Physical Review C, 35(2):591¿596, 1987. [39] J. Thomas, Y. T. Chen, S. Hinds, D. Meredith, and M. Olson. Sub-barrier fusion of the oxygen isotopes: A more complete picture. Physical Review C, 33(5):1679¿1689, 1986. [40] S. Y. Torilov, N. A. Maltsev, and V. I. Zherebchevsky. Studying Low-Energy Resonances in the 12C + 16O system. Bulletin of the Russian Academy of Sciences: Physics, 85(5):548¿551, 2021. [41] Y.-D. Chan, H. Bohn, R. Vandenbosch, R. Sielemann, J. G. Cramer, K. G. Bernhardt, H. C. Bhang, and D. T. Chiang. Influence of Extra Neutrons Added to the 12C + 16O System: Gross Structures in ¿- ray Yields Following the 13C + 16O and 12C + 18O reactions. Physical Review Letters, 42(11):687¿690, 1979. [42] F. Kaeppeler, M. Wiescher, U. Giesen, J. Goerres, I. Baraffe, M. El Eid, C. M. Raiteri, M. Busso, R. Gallino, M. Limongi, and et al. Reaction Rates for 18O(¿,¿)22Ne, 22Ne(¿,¿)26Mg, and 22Ne(¿,n)25Mg in Stellar Helium Burning and s-Process Nucleosynthesis in Massive Stars. The As- trophysical Journal, 437:396¿409, 1994. [43] W. D. Arnett. Advanced evolution of massive stars. V. Neon burning. The Astrophysical Journal, 193:169¿176, 1974. [44] G. Lotay, D. T. Doherty, R. V. Janssens, D. Seweryniak, H. M. Albers, S. Almaraz-Calderon, M. P. Carpenter, A. E. Champagne, C. J. Chiara, C. R. Hoffman, and et al. Revised decay properties of the key 93-keV resonance in the 25Mg(p,¿) reaction and its influence on the MgAl cycle in astrophysical environments. Physical Review C, 105(L042801), 2022. [45] D. Bodansky, D. D. Clayton, and W. A. Fowler. Nucleosynthesis During Silicon Burning. Physical Review Letters, 20(4):161¿164, 1968. [46] G. Montagnoli, A. M. Stefanini, C. L. Jiang, G. Colucci, A. Goasduff, D. Brugnara, M. Mazzocco, M. Siciliano, F. Scarlassara, L. Corradi, and et al. Study of fusion hindrance in the system 12C + 24Mg. Journal of Physics: Conference Series, 1643(012098), 2020. [47] N. Maroufi, V. Dehghani, and S. A. Alavi. Alpha and cluster decay of some deformed heavy and superheavy nuclei. Nuclear Physics A, 983:77¿89, 2019. [48] F. Käppeler. s-Process nucleosynthesis and the interior of Red Giants. Nuclear Physics A, 752:500¿509, 2005. [49] J. C. Lattanzio and M. A. Lugaro. What we do and do not know about the s-process in AGB stars. Nuclear Physics A, 758:477¿484, 2005. [50] Y.-Z. Qian, P. Vogel, and G. J. Wasserburg. Probing r-process Production of Nuclei Beyond 209Bi with Gamma Rays. The Astrophysical Journal, 524(1):213¿219, 1999. [51] S. Wanajo, M. Tamamura, N. Itoh, K. Nomoto, Y. Ishimaru, T. C. Beers, and S. Nozawa. The r- Process in Supernova Explosions from the Collapse of O-Ne-Mg Cores. The Astrophysical Journal, 593(2):968¿979, 2003. [52] S. E. Woosley and R. D. Hoffman. The alpha -Process and the r-Process. The Astrophysical Journal, 395:202¿239, 1992. [53] T. Suzuki, S. Shibagaki, T. Yoshida, T. Kajino, and T. Otsuka. ¿-decay Rates for Exotic Nuclei and r-process Nucleosynthesis up to Thorium and Uranium. The Astrophysical Journal, 859(133), 2018. [54] B. S. Meyer. r-Process Nucleosynthesis without Excess Neutrons. Physical Review Letters, 89(231101), 2002. [55] B. S. Meyer, G. C. McLaughlin, and G. M. Fuller. Neutrino capture and r-process nucleosynthesis. Physical Review C, 58(6):3696¿3710, 1998. [56] K. Langanke, G. Martínez-Pinedo, and R. G. T. Zegers. Electron capture in stars. Reports on Progress in Physics, 84(066301), 2021. [57] S. Harissopulos, A. Lagoyannis, A. Spyrou, C. Zarkadas, S. Galanopoulos, G. Perdikakis, H.-W. Becker, C.Rolfs,F.Strieder,R.Kunz,andetal. Protonandalpha-particlecapturereactionsatsub-Coulomb energies relevant to the p process. Journal of Physics G: Nuclear and Particle Physics, 31(10):S1417¿ S1420, 2005. [58] S. J. Quinn, A. Spyrou, A. Simon, A. Battaglia, M. Couder, P. A. DeYoung, A. C. Dombos, X. Fang, J. Görres, A. Kontos, and et al. Probing the production mechanism of the light p-process nuclei. Physical Review C, 88(011603(R)), 2013. [59] J. R. De Laeter. Abundances for p-process nucleosynthesis. Physical Review C, 77(045803), 2008. [60] N. N. Le, N. N. Duy, and N. Q. Hung. Examination of ¿-induced fusion reactions relevant to the production of p-nuclei. The European Physical Journal A, 57(187), 2021. [61] H. Schatz, A. Aprahamian, V. Barnard, L. Bildsten, A. Cumming, M. Ouellette, T. Rauscher, F.-K. Thielemann, and M. Wiescher. End Point of the rp Process on Accreting Neutron Stars. Physical Review Letters, 86(16):3471¿3474, 2001. [62] S. Harissopulos, A. Spyrou, A. Lagoyannis, C. Zarkadas, H.-W. Becker, C. Rolfs, F. Strieder, J. W. Hammer, A. Dewald, K.-O. Zell, and et al. Systematic measurements of proton- and alpha-capture cross sections relevant to the modelling of the p process. Nuclear Physics A, 758:505¿508, 2005. [63] G. G. Kiss, T. Szücs, G. Gyürky, Z. Fülöp, J. Farkas, Z. Kertész, E. Somorjai, M. Laubenstein, C. Fröhlich, T. Rauscher, and et al. Activation method combined with characteristic X-ray counting: A possibility to measure (¿, ¿) cross sections on heavy p-nuclei. Nuclear Physics A, 867(1):52¿65, 2011. [64] B.-S. Cai, G.-S. Chen, C.-X. Yuan, and J.-J. He. Shell-model study on properties of proton dripline nuclides with Z, N = 30-50 including uncertainty analysis. Chinese Physics C, 46(084104), 2022. [65] B. A. Brown, R. R. Clement, H. Schatz, A. Volya, and W. A. Richter. Proton drip-line calculations and the rp process. Physical Review C, 65(045802), 2002. [66] A. Arcones, D. W. Bardayan, T. C. Beers, L. A. Bernstein, J. C. Blackmon, B. Messer, B. A. Brown, E. F. Brown, C. R. Brune, A. E. Champagne, and et al. White paper on nuclear astrophysics and low energy nuclear physics Part 1: Nuclear astrophysics. Progress in Particle and Nuclear Physics, 94:1¿67, 2017. [67] J. Carlson, M. P. Carpenter, R. Casten, C. Elster, P. Fallon, A. Gade, C. Gross, G. Hagen, A. C. Hayes, D. W. Higinbotham, and et al. White paper on nuclear astrophysics and low-energy nuclear physics, Part 2: Low-energy nuclear physics. Progress in Particle and Nuclear Physics, 94:68¿124, 2017. [68] G. G. Adamian and N. V. Antonenko. Optimal ways to produce heavy and superheavy nuclei. The European Physical Journal A, 58(111), 2022. [69] B. R. Barrett, P. Navrátil, and J. P. Vary. Ab initio no core shell model. Progress in Particle and Nuclear Physics, 69:131¿181, 2013. [70] M. Freer, H. Horiuchi, Y. Kanada-En¿yo, D. Lee, and U.-G. Meißner. Microscopic clustering in light nuclei. Reviews of Modern Physics, 90(035004), 2018. [71] J. Dohet-Eraly, P. Navrátil, S. Quaglioni, W. Horiuchi, G. Hupin, and F. Raimondi. 3He(¿, ¿)7Be and 3H(¿,¿)7Li astrophysical S factors from the no-core shell model with continuum. Physics Letters B, 757:430¿436, 2016. [72] P. Navratil, C. A. Bertulani, and E. Caurier. 7Be(p,¿)8B S-factor from ab initio wave functions. Journal of Physics: Conference Series, 49:15¿20, 2006. [73] M. C. Atkinson, P. Navrátil, G. Hupin, K. Kravvaris, and S. Quaglioni. Ab initio calculation of the ¿ decay from 11Be to a 10Be + p resonance. Physical Review C, 105(054316), 2022. [74] L. E. Marcucci, K. M. Nollett, R. Schiavilla, and R. B. Wiringa. Modern theories of low-energy astrophysical reactions. Nuclear Physics A, 777:111¿136, 2006. [75] L. V. Grigorenko, B. V. Danilin, V. D. Efros, N. B. Shul¿gina, and M. V. Zhukov. Structure of the 8Li and 8B nuclei in an extended three-body model and astrophysical S17 factor. Physical Review C, 57(5):R2099¿R2103, 1998. [76] N. Le Anh and B. Minh Loc. Low-energy 7Li(n,¿)8Li and 7Be(p,¿)8B radiative capture reactions within the Skyrme Hartree-Fock approach. Physical Review C, 106(014605), 2022. [77] H. Sasaki, T. Kawano, and I. Stetcu. Noniterative finite amplitude methods for E1 and M1 giant resonances. Physical Review C, 105(044311), 2022. [78] E. V. Chimanski, E. J. In, J. E. Escher, S. Péru, and W. Younes. Towards a Predictive HFB+QRPA Framework for Deformed Nuclei: Selected Tools and Techniques. Journal of Physics: Conference Series, 2340(012033), 2022. [79] G. X. Dong, X. B. Wang, N. Michel, and M. P¿oszajczak. Gamow shell model description of the radiative capture reaction 8Li(n,¿)9Li. Physical Review C, 105(064608), 2022. [80] T. Tazawa. Nucleus-Nucleus potential in the Two-Center Shell Model. Progress of Theoretical Physics, 51(6):1764¿1782, 1974. [81] A. Diaz-Torres and M. Wiescher. Characterizing the astrophysical S factor for 12C + 12C fusion with wave-packet dynamics. Physical Review C, 97(055802), 2018. [82] T. Neff, H. Feldmeier, and K. Langanke. Towards microscopic ab initio calculations of astrophysical S-factors. Progress in Particle and Nuclear Physics, 66(2):341¿345, 2011. [83] Y. Taniguchi and M. Kimura. 12C + 12C fusion S¿-factor from a full-microscopic nuclear model. Physics Letters B, 823(136790), 2021. [84] T. Baba, Y. Taniguchi, and M. Kimura. 4¿ linear-chain state produced by 9Be+9Be collisions. Physical Review C, 105(L061301), 2022. [85] C. Beck. Clusters in nuclei, vol. 2. Lecture Notes in Physics. Springer Berlin, Heidelberg, 2012. [86] Shubhchintak and P. Descouvemont. Breakup effects in the 16C + p and 16C + d reactions. Physical Review C, 105(024605), 2022. [87] P. Descouvemont. Resonances in 12C and 24Mg: what do we learn from a microscopic cluster theory? The European Physical Journal A, 57(29), 2021. [88] K. Arai, S. Aoyama, Y. Suzuki, P. Descouvemont, and D. Baye. Tensor force manifestations in ab initio study of the 2H(d, ¿)4He, 2H(d, p)3H and 2H(d, n)3He reactions. Journal of Physics: Conference Series, 436(012024), 2013. [89] M. Dufour and P. Descouvemont. Multicluster study of the 12C + n and 12C + p systems. Physical Review C, 56(4):1831¿1839, 1997. [90] A. M. Lane and R. G. Thomas. R-matrix theory of nuclear reactions. Reviews of Modern Physics, 30(2):257¿353, 1958. [91] C. R. Brune. Alternative parametrization of R-matrix theory. Physical Review C, 66(044611), 2002. [92] R. Spartá, R. G. Pizzone, C. A. Bertulani, S. Hou, L. Lamia, and A. Tumino. Direct and Indirect Measurements for a Better Understanding of the Primordial Nucleosynthesis. Frontiers in Astronomy and Space Sciences, 7(560149), 2020. [93] D. F. Ramírez Jiménez and N. G. Kelkar. Different manifestations of S-matrix poles. Annals of Physics, 396:18¿43, 2018. [94] R. S. de Souza, C. Iliadis, and A. Coc. Astrophysical S-factors, Thermonuclear Rates, and Electron Screening Potential for the 3He(d,p)4He Big Bang Reaction via a Hierarchical Bayesian Model. The Astrophysical Journal, 872(1):75, 2019. [95] D. Odell, C. R. Brune, and D. R. Phillips. How bayesian methods can improve R-matrix analyses of data: The example of the dt reaction. Physical Review C, 105(014625), 2022. [96] J. Grineviciute, L. Lamia, A. M. Mukhamedzhanov, C. Spitaleri, and M. La Cognata. Low-energy R-matrix fits for the 6Li(d,¿)4He S factor. Physical Review C, 91(014601), 2015. [97] B. Vande Kolk, K. T. Macon, R. J. deBoer, T. Anderson, A. Boeltzig, K. Brandenburg, C. R. Brune, Y. Chen, A. M. Clark, T. Danley, and et al. Investigation of the 10B(p,¿)7Be reaction from 0.8 to 2.0 MeV. Physical Review C, 105(055802), 2022. [98] A. Sieverding, J. S. Randhawa, D. Zetterberg, R. J. deBoer, T. Ahn, R. Mancino, G. Martínez-Pinedo, and W. R. Hix. Role of low-lying resonances for the 10Be(p,¿)7Li reaction rate and implications for the formation of the Solar System. Physical Review C, 106(015803), 2022. [99] G. Kaur, V. Guimarães, J. C. Zamora, M. Assunção, J. Alcantara-Nuñez, A. L. de Lara, E. O. Zevallos, J. B. Ribeiro, R. Lichtenthäler, K. C. Pires, and et al. New resonances in 11C above the 10B+p threshold investigated by inverse kinematic resonant scattering. Physical Review C, 105(024609), 2022. [100] D. Schürmann, L. Gialanella, R. Kunz, and F. Strieder. The astrophysical S factor of 12C(¿,¿)16O at stellar energy. Physics Letters B, 711(1):35¿40, 2012. [101] J.-M. Sparenberg. Hybrid potential/R-matrix models for the 12C + ¿ system. Nuclear Physics A, 758:423¿426, 2005. [102] P. S. Prusachenko, T. L. Bobrovsky, I. P. Bondarenko, M. V. Bokhovko, A. F. Gurbich, and V. V. Ketlerov. Measurement of the cross section for the 13C(¿,n)16O reaction and determination of the cross section for the 16O(n,¿)13C reaction. Physical Review C, 105(024612), 2022. [103] N. Burtebaev, S. B. Igamov, R. J. Peterson, R. Yarmukhamedov, and D. M. Zazulin. New mea- surements of the astrophysical S factor for 12C(p,¿)13N reaction at low energies and the asymptotic normalization coefficient (nuclear vertex constant) for the p + 12C ¿ 13N reaction. Physical Review C, 78(035802), 2008. [104] S. Chakraborty, R. deBoer, A. Mukherjee, and S. Roy. Systematic R-matrix analysis of the 13C(p, ¿)14N capture reaction. Physical Review C, 91(045801), 2015. [105] G. Genard, P. Descouvemont, and G. Terwagne. S-factor measurement of the 13C(p,¿)14N reaction in reverse kinematics. Journal of Physics: Conference Series, 202(012015), 2010. [106] F. C. Barker. 15N(p,¿0)16O S factor. Physical Review C, 78(044612), 2008. [107] C. Angulo, A. E. Champagne, and H.-P. Trautvetter. R-matrix analysis of the 14N(p,¿)15O astrophysical S-factor. Nuclear Physics A, 758:391¿394, 2005. [108] A. Formicola, G. Imbriani, H. Costantini, C. Angulo, D. Bemmerer, R. Bonetti, C. Broggini, P. Corvisiero, J. Cruz, P. Descouvemont, and et al. Astrophysical S-factor of 14N(p,¿)15O. Physics Letters B, 591(1-2):61¿68, 2004. [109] F. Raiola, P. Migliardi, G. Gyürky, M. Aliotta, A. Formicola, R. Bonetti, C. Broggini, L. Campajola, P. Corvisiero, H. Costantini, and et al. Enhanced electron screening in d(d,p)t for deuterated Ta¿. The European Physical Journal A, 13(3):377¿382, 2002. [110] H. J. Assenbaum, K. Langanke, and C. Rolfs. Effects of electron screening on low-energy fusion cross sections. Zeitschrift für Physik A Atomic Nuclei, 327(4):461¿468, 1987. [111] F. Koyuncu and A. Soylu. Screening effects on 12 C + 12 C fusion reaction. Chinese Physics C, 42(054106), 2018. [112] D. G. Yakovlev, M. Beard, L. R. Gasques, and M. Wiescher. Simple analytic model for astrophysical S factors. Physical Review C, 82(044609), 2010. [113] S. B. Dubovichenko. Astrophysical S-factor for the radiative-capture reaction p13C ¿ 14N¿. Physics of Atomic Nuclei, 75(2):173¿181, 2012. [114] R. Bass. Nucleus-Nucleus Potential Deduced from Experimental Fusion Cross Sections. Physical Review Letters, 39(5):265¿268, 1977. [115] S. B. Dubovichenko and A. V. Dzhazairov-Kakhramanov. Astrophysical S -factor of p2H radiative capture. The European Physical Journal A, 39(2):139¿143, 2009. [116] M. Singh, Sukhvinder, and R. Kharab. Analysis of fusion excitation functions of various systems using modified Woods¿Saxon potential. Nuclear Physics A, 897:179¿197, 2013. [117] C. A. Bertulani. 7Be(p,¿)8B cross section from indirect breakup experiments. Zeitschrift für Physik A Hadrons and Nuclei, 356(1):293¿297, 1996. [118] A. Kabir and J.-U. Nabi. Re-examination of astrophysical S-factor of proton capture 9Be(p,¿)10B in stellar matter. Nuclear Physics A, 1007(122118), 2021. [119] P. Salamon, Á. Baran, and T. Vertse. Distributions of the S-matrix Poles in Woods¿Saxon and cut-off Woods¿Saxon potentials. Nuclear Physics A, 952:1¿17, 2016. [120] A. Kabir, B. F. Irgaziev, J.-U. Nabi, and S. Sagheer. Re-analysis of radiative capture 11C(p,¿)12N at low energy. Journal of Physics G: Nuclear and Particle Physics, 49(075101), 2022. [121] M. Singh, Sukhvinder, and R. Kharab. Analysis of fusion excitation function data by using an energy dependent potential model. Nuclear Physics A, 897:198¿217, 2013. [122] R. Ghasemi and H. Sadeghi. S-factor for radiative capture reactions for light nuclei at astrophysical energies. Results in Physics, 9:151¿165, 2018. [123] A. H. Amer and Y. E. Penionzhkevich. Elastic scattering analysis of isobar nuclei A = 6 projectiles on 12C using different models of optical potential. Nuclear Physics A, 1015(122300), 2021. [124] M. Assunção and P. Descouvemont. 12C + 12C and 16O + 16O fusion reactions at low energies. Journal of Physics: Conference Series, 590(012038), 2015. [125] G. P. A. Nobre, L. C. Chamon, L. R. Gasques, B. V. Carlson, and I. J. Thompson. Consistent analysis of fusion data without adjustable parameters for a wide variety of heavy-ion systems. Physical Review C, 75(044606), 2007. [126] J. G. Duarte, L. R. Gasques, J. R. B. Oliveira, V. A. B. Zagatto, L. C. Chamon, N. H. Medina, N. Added, W. A. Seale, J. A. Alcántara-Núñez, E. S. Rossi, Jr., and et al. Measurement of fusion cross sections for 16O + 16O. Journal of Physics G: Nuclear and Particle Physics, 42(065102), 2015. [127] D. L. Hill and J. A. Wheeler. Nuclear Constitution and the Interpretation of Fission Phenomena. Physical Review, 89(5):1102¿1145, 1953. [128] H. Esbensen. Structures in high-energy fusion data. Physical Review C, 85(064611), 2012. [129] M. Goldhaber and J. Weneser. Electromagnetic Transitions in Nuclei. Annual Review of Nuclear Science, 5(1):1¿24, 1955. [130] J. T. Huang, C. A. Bertulani, and V. Guimarães. Radiative capture of nucleons at astrophysical energies with single-particle states. Atomic Data and Nuclear Data Tables, 96(6):824¿847, 2010. [131] E. M. Tursunov, S. A. Turakulov, A. S. Kadyrov, and L. D. Blokhintsev. Astrophysical S factor and rate of 7Be(p, ¿)8B direct capture reaction in a potential model. Physical Review C, 104(045806), 2021. [132] L. Guimin, F. Deji, and C. Xiaowu. Sub-Barrier Fusion Coupled-Channels Calculations for 16O + 16,18O. Chinese Physics Letters, 9(11):577¿580, 1992. [133] M. Assunção and P. Descouvemont. 12C + 12C fusion in a multichannel folding model. Journal of Physics: Conference Series, 665(012010), 2016. [134] M. A. Hassanain and S. M. M. Al Sebiey. Analysis of 16O + 16O elastic and inelastic scattering using the optical model and the coupled-channels mechanism. Physical Review C, 90(054606), 2014. [135] K. Czerski, A. Huke, P. Heide, and G. Ruprecht. Experimental and theoretical screening energies for the 2H(d,p)3H reaction in metallic environments. The European Physical Journal A, 27(S1):83¿88, 2006. [136] F. Perey and B. Buck. A non-local potential model for the scattering of neutrons by nuclei. Nuclear Physics, 32:353¿380, 1962. [137] B. Golf, J. Hellmers, and F. Weber. Impact of strange quark matter nuggets on pycnonuclear reaction rates in the crusts of neutron stars. Physical Review C, 80(015804), 2009. [138] D. Bai and Z. Ren. Woods-Saxon-Gaussian potential and alpha-cluster structures of alpha + closed shell nuclei. Chinese Physics C, 42(124102), 2018. [139] L. C. Chamon. The São Paulo potential. Nuclear Physics A, 787(1-4):198¿205, 2007. [140] D. F. Rojas-Gamboa, J. E. Velasquez, N. G. Kelkar, and N. J. Upadhyay. Manifestation of deformation and nonlocality in ¿ and cluster decay. Physical Review C, 105(034311), 2022. [141] N. J. Upadhyay, A. Bhagwat, and B. K. Jain. A new treatment of nonlocality in scattering process. Journal of Physics G: Nuclear and Particle Physics, 45(015106), 2017. [142] J. E. Perez Velasquez, N. G. Kelkar, and N. J. Upadhyay. Assessment of nonlocal nuclear potentials in ¿ decay. Physical Review C, 99(024308), 2019. [143] W. H. Z. Cárdenas, L. F. Canto, R. Donangelo, M. S. Hussein, J. Lubian, and A. Romanelli. Ap- proximations in fusion and breakup reactions induced by radioactive beams. Nuclear Physics A, 703(3-4):633¿648, 2002. [144] B. K. Jennings, S. Karataglidis, and T. D. Shoppa. Direct capture astrophysical S factors at low energy. Physical Review C, 58(1):579¿581, 1998. [145] M. Beard, A. V. Afanasjev, L. C. Chamon, L. R. Gasques, M. Wiescher, and D. G. Yakovlev. Astro- physical S factors for fusion reactions involving C, O, Ne, and Mg isotopes. Atomic Data and Nuclear Data Tables, 96(5):541¿566, 2010. [146] D. G. Kovar, D. F. Geesaman, T. H. Braid, Y. Eisen, W. Henning, T. R. Ophel, M. Paul, K. E. Rehm, S. J. Sanders, P. Sperr, and et al. Systematics of carbon- and oxygen-induced fusion on nuclei with 12 ¿ A ¿ 19. Physical Review C, 20(4):1305¿1331, 1979. [147] G. Van Rossum and F. L. Drake. Python 3: Reference Manual. CreateSpace, 2009. [148] W. McKinney. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, page 56¿61, 2010. [149] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, and et al. Array programming with NumPy. Nature, 585:357¿362, 2020. [150] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, and et al. Scipy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17:261¿272, 2020. [151] J. D. Hunter. Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 9(3):90¿95, 2007. [152] A. M. Mukhamedzhanov, D. Y. Pang, and A. S. Kadyrov. Astrophysical factors of 12C + 12C fusion extracted using the Trojan horse method. Physical Review C, 99(064618), 2019. [153] P. Descouvemont, A. Adahchour, C. Angulo, A. Coc, and E. Vangioni-Flam. Compilation and R-matrix analysis of Big Bang nuclear reaction rates. Atomic Data and Nuclear Data Tables, 88(1):203¿236, 2004. [154] V. V. Zerkin, B. Pritychenko, J. Totans, L. Vrapcenjak, A. Rodionov, and G. I. Shulyak. EXFOR- NSR PDF database: a system for nuclear knowledge preservation and data curation. Journal of Instrumentation, 17(P03012), 2022. [155] V. M. Bystritsky, V. V. Gerasimov, A. R. Krylov, S. S. Parzhitskii, G. N. Dudkin, V. L. Kaminskii, B. A. Nechaev, V. N. Padalko, A. V. Petrov, G. A. Mesyats, and et al. Study of the pd reaction in the astrophysical energy region using the Hall accelerator. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 595(3):543¿548, 2008. [156] G. J. Schmid, R. M. Chasteler, C. M. Laymon, H. R. Weller, R. M. Prior, and D. R. Tilley. Po- larized proton capture by deuterium and the 2H(p,¿)3He astrophysical S factor. Physical Review C, 52(4):R1732¿R1735, 1995. [157] B. L. Berman, L. J. Koester, Jr., and J. H. Smith. Photodisintegration of He3. Physical Review, 133:B117¿B129, 1964. [158] J. B. Warren, K. L. Erdman, L. P. Robertson, D. A. Axen, and J. R. Macdonald. Photodisintegration of He3 near the Threshold. Physical Review, 132(4):1691¿1692, 1963 [159] U. Greife, F. Gorris, M. Junker, C. Rolfs, and D. Zahnow. Oppenheimer-Phillips effect and electron screening in d + d fusion reactions. Zeitschrift für Physik A Hadrons and Nuclei, 351(1):107¿112, 1995. [160] A. Krauss, H. W. Becker, H. P. Trautvetter, C. Rolfs, and K. Brand. Low-energy fusion cross sections of D + D and D + 3He reactions. Nuclear Physics A, 465(1):150¿172, 1987. [161] D. S. Leonard, H. J. Karwowski, C. R. Brune, B. M. Fisher, and E. J. Ludwig. Precision measurements of 2 H(d, p)3 H and 2 H(d, n)3 He total cross sections at Big Bang nucleosynthesis energies. Physical Review C, 73(045801), 2006. [162] R. L. Schulte, M. Cosack, A. W. Obst, and J. L. Weil. 2H + reactions from 1.96 to 6.20 MeV. Nuclear Physics A, 192(3):609¿624, 1972. [163] A. Tumino, C. Spitaleri, A. M. Mukhamedzhanov, S. Typel, M. Aliotta, V. Burjan, M. Gimenez del Santo, G. G. Kiss, V. Kroha, Z. Hons, and et al. Low-energy d + d fusion reactions via the Trojan Horse method. Physics Letters B, 700(2):111¿115, 2011. [164] LUNA Collaboration, C. Casella, H. Costantini, A. Lemut, B. Limata, R. Bonetti, C. Broggini, L. Cam- pajola, P. Corvisiero, J. Cruz, A. D¿Onofrio, and et al. First measurement of the d(p, ¿)3He cross section down to the solar Gamow peak. Nuclear Physics A, 706(1-2):203¿216, 2002. [165] V. N. Fetisov, A. N. Gorbunov, and A. T. Varfolomeev. Nuclear photoeffect on three-particle nuclei. Nuclear Physics, 71(2):305¿342, 1965. [166] K. N. Geller, E. G. Muirhead, and L. D. Cohen. The 2H(p,¿)3He reaction at the breakup threshold. Nuclear Physics A, 96(2):397¿400, 1967. [167] G. M. Griffiths, E. A. Larson, and L. P. Robertson. The capture of protons by deuterons. Canadian Journal of Physics, 40(4):402¿411, 1962. [168] L. Ma, H. J. Karwowski, C. R. Brune, Z. Ayer, T. C. Black, J. C. Blackmon, E. J. Ludwig, M. Viviani, A. Kievsky, and R. Schiavilla. Measurements of 1H(d¿,¿)3He and 2H(p¿,¿)3He at very low energies. Physical Review C, 55(2):588¿596, 1997. [169] G. J. Schmid, M. Viviani, B. J. Rice, R. M. Chasteler, M. A. Godwin, G. C. Kiang, L. L. Kiang, A. Kievsky, C. M. Laymon, R. M. Prior, and et al. Effects of Non-nucleonic Degrees of freedom in the D(p¿,¿)3He and p(d¿,¿)3He Reactions. Physical Review Letters, 76(17):3088¿3091, 1996. [170] W. Wölfli, R. Bösch, J. Lang, R. Müller, and P. Marmier. Einfang von Protonen durch Deuteronen. Helvetica Physica Acta, 40(7):946¿972, 1967. [171] L. T. Baby, C. Bordeanu, G. Goldring, M. Hass, L. Weissman, V. N. Fedoseyev, U. Köster, Y. Nir-El, G. Haquin, H. W. Gäggeler, R. Weinreich, and et al. New measurement of the proton capture rate on 7Be and the S17(0) factor. Physical Review C, 67(065805), 2003. [172] A. R. Junghans, E. C. Mohrmann, K. A. Snover, T. D. Steiger, E. G. Adelberger, J. M. Casandjian, H. E. Swanson, L. Buchmann, S. H. Park, A. Zyuzin, and A. M. Laird. Precise measurement of the 7Be(p,¿)8B S factor. Physical Review C, 68(065803), 2003. [173] A. R. Junghans, K. A. Snover, E. C. Mohrmann, E. G. Adelberger, and L. Buchmann. Updated S factors for the 7Be(p,¿)8B reaction. Physical Review C, 81(012801(R)), 2010. [174] F. Schümann, S. Typel, F. Hammache, K. Sümmerer, F. Uhlig, I. Böttcher, D. Cortina, A. Förster, M. Gai, H. Geissel, and et al. Low-energy cross section of the 7Be(p,¿)8B solar fusion reaction from the Coulomb dissociation of 8B. Physical Review C, 73(015806), 2006. [175] J. D. King, R. E. Azuma, J. B. Vise, J. Görres, C. Rolfs, H. P. Trautvetter, and A. E. Vlieks. Cross section and astrophysical S-factor for the 13C(p,¿)14N reaction. Nuclear Physics A, 567(2):354¿376, 1994. [176] E. J. Woodbury and W. A. Fowler. The Cross Section for the Radiative Capture of Protons by C13 at 129 kev. Physical Review, 85(1):51¿57, 1952. [177] H. W. Becker, K. U. Kettner, C. Rolfs, and H. P. Trautvetter. The 12C + 12C reaction at subcoulomb energies (II). Zeitschrift für Physik A Atoms and Nuclei, 303(4):305¿312, 1981. [178] G. Fruet, S. Courtin, M. Heine, D. G. Jenkins, P. Adsley, A. Brown, R. Canavan, W. N. Catford, E. Charon, D. Curien, and et al. Advances in the Direct Study of Carbon Burning in Massive Stars. Physical Review Letters, 124(192701), 2020 [179] T. Spillane, F. Raiola, C. Rolfs, D. Schürmann, F. Strieder, S. Zeng, H.-W. Becker, C. Bordeanu, L. Gialanella, M. Romano, and et al. 12C + 12C Fusion Reactions near the Gamow Energy. Physical Review Letters, 98(122501), 2007. [180] W. P. Tan, A. Boeltzig, C. Dulal, R. J. deBoer, B. Frentz, S. Henderson, K. B. Howard, R. Kelmar, J. J. Kolata, J. Long, and et al. New Measurement of 12C + 12C Fusion Reaction at Astrophysical Energies. Physical Review Letters, 124(192702), 2020. [181] H. Spinka and H. Winkler. Experimental determination of the total reaction cross section of the stellar nuclear reaction 16O + 16O. Nuclear Physics A, 233(2):456¿494, 1974. [182] D. Gaspard. Connection formulas between Coulomb wave functions. Journal of Mathematical Physics, 59(112104), 2018. [183] J. J. Moré. The Levenberg-Marquardt algorithm: Implementation and theory. In G. A. Watson, editor, Numerical Analysis, volume 630 of Lecture Notes in Mathematics, page 105¿116. Springer-Verlag, 1978. [184] D. Ramadasan, M. Chevaldonné, and T. Chateau. LMA: A generic and efficient implementation of the Levenberg-Marquardt Algorithm. Software: Practice and Experience, 47(11):1707¿1727, 2017. [185] M. A. Branch, T. F. Coleman, and Y. Li. A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems. SIAM Journal on Scientific Computing, 21(1):1¿23, 1999. [186] T. F. Coleman and Y. Li. On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds. Mathematical Programming, 67(1-3):189¿224, 1994. |
dc.rights.license.spa.fl_str_mv |
Atribución 4.0 Internacional |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
160 páginas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Física |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Física |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/8c83ee31-1102-40f1-8ffe-1e2f867631fa/download https://repositorio.uniandes.edu.co/bitstreams/cf628ff7-a804-4fb5-831b-fe82066c09c1/download https://repositorio.uniandes.edu.co/bitstreams/18676f42-0337-409d-a170-d159f45d938a/download https://repositorio.uniandes.edu.co/bitstreams/802311b7-9490-44d0-994f-d936bc9bd858/download https://repositorio.uniandes.edu.co/bitstreams/71e7824c-979b-4a04-8a2b-878992193e02/download https://repositorio.uniandes.edu.co/bitstreams/5a40547c-222a-4599-810f-19c37eeb01d1/download https://repositorio.uniandes.edu.co/bitstreams/c130f49d-acf1-4982-a5e9-13696624e813/download https://repositorio.uniandes.edu.co/bitstreams/432c2e81-c102-4366-be26-39cd64c285b9/download |
bitstream.checksum.fl_str_mv |
5aa5c691a1ffe97abd12c2966efcb8d6 a9c148d2dd8d2d2d1d8dec92827c1114 1539f28df61ba0535e4ba4d1e213ec2e 0175ea4a2d4caec4bbcc37e300941108 9b6bd42b5c95aa467eec4314af3dc5b3 7f938ba5b5851e9e3d101e09b8986bd0 2e9f95a1f90f5eada460a96878785f00 5c40a1c9aba33fd10b7c49ccdcace406 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133807564783616 |
spelling |
Atribución 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Kelkar, Neelima Govind09c3ba66-4853-4e46-b8b4-42b9c5fdd7ad600Calvachi Salas, Carlos Albertofc631f71-acda-4fb5-8396-71ccfd0cf304600Nowakowski, Marek2023-01-31T20:57:57Z2023-01-31T20:57:57Z2023-01-25http://hdl.handle.net/1992/64404instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Project in theoretical nuclear physics. A literature survey was performed with calculations on S-factors performed computationally.Despite the vast success of nuclear astrophysics in predicting the relative composition of the lightest elements in the early Universe, current theoretical and experimental knowledge of reactions at astrophysical low energies requires severe improvement. This work is centered in calculating the S-factor, which is a relevant quantity for low energy extrapolation. Initially, a literature survey is performed to present a diverse selection of models, which include empirical, potential, microscopical and R-matrix approaches. These models useful for S-factor computation at recurrent astrophysical environments, which generally comprehend Big Bang, stellar, explosive and exotic nucleosynthesis. Then, S-factor experimental data of relevant reactions is selected to be contrasted with predictions of potential and empirical models. Additionally, the effects of resonances and electron screening are analyzed for improving and consolidating the S-factor estimation.A pesar del gran éxito de la astrofísica nuclear en la predicción de la composición relativa de los elementos más ligeros en el Universo temprano, el conocimiento teórico y experimental de las reacciones a energías astrofísicas bajas requiere una mejora sustancial. Este trabajo se centra en el cálculo del factor S, que es una cantidad relevante para la extrapolación a bajas energías. Inicialmente, una revisión de literatura es realizada con el fin de presentar una diversa selección de modelos, que incluye las aproximaciones empíricas, potencial, microscópica y de matriz R. Estos modelos son útiles para el cómputo del factor S en ambientes astrofísicos usuales, los cuales comprenden en general nucleosíntesis en ambientes como el Big Bang, las estrellas y de tipo exótico y explosivo. En seguida, los datos experimentales del factor S son contrastados con predicciones de modelos potenciales y empíricos. Adicionalmente, los efectos de las resonancias, así como del apuntalamiento electrónico, son analizados para mejorar y consolidar la estimación del factor S.FísicoPregrado160 páginasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaAstrophysical S-factor calculation for selected reactionsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPNuclear astrophysicsAstrophysical S-factorLiterature surveyNuclear reactionsResonant phenomenaScreening effectAstrophysical environmentsExperimental data fittingFísica[1] J. L. Basdevant, J. Rich, and M. Spiro. Fundamentals in Nuclear Physics: From Nuclear Structure to Cosmology. Springer New York, NY, 2004.[2] K. Heyde. Basic Ideas and Concepts in Nuclear Physics: An Introductory Approach. IOP Publishing, 2004.[3] A. Bohr and B. R. Mottelson. Nuclear structure. World Scientific, 1998.[4] C. Iliadis. Nuclear Physics of Stars. Wiley-VCH, 2015.[5] C. J. Joachain. Quantum collision theory. North-Holland Publishing, 1975.[6] R. G. Newton. Quantum Physics: A Text for Graduate Students. Graduate Texts in Contemporary Physics. Springer-Verlag, 2002.[7] R. Dick. Advanced Quantum Mechanics: Materials and photons. Springer Cham, 2016.[8] O. Iwamoto, N. Iwamoto, K. Shibata, A. Ichihara, S. Kunieda, F. Minato, and S. Nakayama. Status of JENDL. EPJ Web of Conferences, 239(09002), 2020.[9] P. Descouvemont and D. Baye. The R-matrix theory. Reports on Progress in Physics, 73(036301), 2010.[10] D. T. Tran, H. J. Ong, G. Hagen, T. D. Morris, N. Aoi, T. Suzuki, Y. Kanada-En¿yo, L. S. Geng, S. Terashima, I. Tanihata, and et al. Evidence for prevalent Z = 6 magic number in neutron-rich carbon isotopes. Nature Communications, 9(1594), 2018.[11] J. M. Blatt and V. F. Weisskopf. Theoretical nuclear physics. John Wiley & Sons, 1952.[12] C. Simenel, R. Keser, A. S. Umar, and V. E. Oberacker. Microscopic study of 16O+16O fusion. Physical Review C, 88(024617), 2013.[13] C. A. Bertulani. Nuclear Reactions, 2010. arXiv:0908.3275v2.[14] C. A. Bertulani and A. Bonaccorso. Direct Nuclear Reactions, 2022. arXiv:2201.00433.[15] C. R. Brune and B. Davids. Radiative Capture Reactions in Astrophysics. Annual Review of Nuclear and Particle Science, 65:87¿112, 2015.[16] Y. Xu, K. Takahashi, S. Goriely, M. Arnould, M. Ohta, and H. Utsunomiya. NACRE II: an update of the NACRE compilation of charged-particle-induced thermonuclear reaction rates for nuclei with mass number A < 16. Nuclear Physics A, 918:61¿169, 2013.[17] T. R. Whitehead, T. Poxon-Pearson, F. M. Nunes, and G. Potel. Prediction for (p, n) charge-exchange reactions with uncertainty quantification. Physical Review C, 105(054611), 2022.[18] M. Ueda, A. J. Sargeant, M. P. Pato, and M. S. Hussein. Resonances and thermonuclear reaction rates for charged particle collisions. Physical Review C, 70(025802), 2004.[19] H. J. Haubold and D. Kumar. Extension of thermonuclear functions through the pathway model including Maxwell¿Boltzmann and Tsallis distributions. Astroparticle Physics, 29(1):70¿76, 2008.[20] M. Ueda, A. J. Sargeant, M. P. Pato, and M. S. Hussein. Evaluation of effective astrophysical S factor for non-resonant reactions. Progress of Theoretical Physics Supplement, 146:634¿635, 2002.[21] S. Kimura and A. Bonasera. Gamow peak approximation near strong resonances. Physical Review C, 87(058801), 2013.22] A. Coc and E. Vangioni. Big-Bang Nucleosynthesis with updated nuclear data. Journal of Physics: Conference Series, 202(012001), 2010.[23] C. Patrignani et. al (Particle Data Group). Review of Particle Physics. Chinese Physics C, 40(100001), 2016.[24] C. A. Bertulani. Big Bang Nucleosynthesis and the Lithium Problem. Journal of Physics: Conference Series, 1291(012002), 2019.[25] R. V. Wagoner, W. A. Fowler, and F. Hoyle. On the Synthesis of Elements at Very High Temperatures. The Astrophysical Journal, 148:3¿49, 1967.[26] H. Su-Qing, W. Kai-Su, C. Yong-Shou, S. Neng-Chuan, and L. Zhi-Hong. The Main Path to C, N, O Elements in Big Bang Nucleosynthesis. Chinese Physics Letters, 27(082601), 2010.[27] E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle. Synthesis of the Elements in Stars. Reviews of Modern Physics, 29(4):547¿650, 1957.[28] A. A. Arsentieva and I. I. Shevchenko. Host Stars of Planets on the Hertzsprung¿Russell Diagram. Astronomy Letters, 47(9):651¿660, 2021.[29] W. Kundt. Astrophysics: A New Approach. Astronomy and Astrophysics Library. Springer Berlin, Heidelberg, 2005.[30] C. A. Bertulani and T. Kajino. Frontiers in nuclear astrophysics. Progress in Particle and Nuclear Physics, 89:56¿100, 2016.[31] W. A. Fowler. Completion of the Proton-Proton Reaction Chain and the Possibility of Energetic Neutrino Emission by Hot Stars. The Astrophysical Journal, 127:551¿556, 1958.[32] A. Coc. Variation of fundamental constants and the triple- alpha reaction in Population III stars and BBN. Journal of Physics: Conference Series, 337(012037), 2012.[33] M. Wiescher, J. Görres, and H. Schatz. Break-out reactions from the CNO cycles. Journal of Physics G: Nuclear and Particle Physics, 25(6):R133¿R161, 1999.[34] M. Pignatari, R. Hirschi, M. Wiescher, R. Gallino, M. Bennett, M. Beard, C. Fryer, F. Herwig, G. Rockefeller, and F. X. Timmes. The 12C+12C reaction and the impact on nucleosynthesis in massive stars. The Astrophysical Journal, 762(1):31, 2012.[35] M. Notani, H. Esbensen, X. Fang, B. Bucher, P. Davies, C. L. Jiang, L. Lamm, C. J. Lin, C. Ma, E. Martin, and et al. Correlation between the 12C + 12C, 12C + 13C, and 13C + 13C fusion cross sections. Physical Review C, 85(014607), 2012.[36] N. T. Zhang, X. Y. Wang, D. Tudor, B. Bucher, I. Burducea, H. Chen, Z. J. Chen, D. Chesneanu, A. I. Chilug, L. R. Gasques, and et al. Constraining the 12C + 12C astrophysical S-factors with the 12C + 13C measurements at very low energies. Physics Letters B, 801(135170), 2020.[37] M. F. El Eid, B. S. Meyer, and L.-S. The. Evolution of Massive Stars Up to the End of Central Oxygen Burning. The Astrophysical Journal, 611(1):452¿465, 2004.[38] A. Kuronen, J. Keinonen, and P. Tikkanen. Cross section of 16O + 16O near the Coulomb barrier. Physical Review C, 35(2):591¿596, 1987.[39] J. Thomas, Y. T. Chen, S. Hinds, D. Meredith, and M. Olson. Sub-barrier fusion of the oxygen isotopes: A more complete picture. Physical Review C, 33(5):1679¿1689, 1986.[40] S. Y. Torilov, N. A. Maltsev, and V. I. Zherebchevsky. Studying Low-Energy Resonances in the 12C + 16O system. Bulletin of the Russian Academy of Sciences: Physics, 85(5):548¿551, 2021.[41] Y.-D. Chan, H. Bohn, R. Vandenbosch, R. Sielemann, J. G. Cramer, K. G. Bernhardt, H. C. Bhang, and D. T. Chiang. Influence of Extra Neutrons Added to the 12C + 16O System: Gross Structures in ¿- ray Yields Following the 13C + 16O and 12C + 18O reactions. Physical Review Letters, 42(11):687¿690, 1979.[42] F. Kaeppeler, M. Wiescher, U. Giesen, J. Goerres, I. Baraffe, M. El Eid, C. M. Raiteri, M. Busso, R. Gallino, M. Limongi, and et al. Reaction Rates for 18O(¿,¿)22Ne, 22Ne(¿,¿)26Mg, and 22Ne(¿,n)25Mg in Stellar Helium Burning and s-Process Nucleosynthesis in Massive Stars. The As- trophysical Journal, 437:396¿409, 1994.[43] W. D. Arnett. Advanced evolution of massive stars. V. Neon burning. The Astrophysical Journal, 193:169¿176, 1974.[44] G. Lotay, D. T. Doherty, R. V. Janssens, D. Seweryniak, H. M. Albers, S. Almaraz-Calderon, M. P. Carpenter, A. E. Champagne, C. J. Chiara, C. R. Hoffman, and et al. Revised decay properties of the key 93-keV resonance in the 25Mg(p,¿) reaction and its influence on the MgAl cycle in astrophysical environments. Physical Review C, 105(L042801), 2022.[45] D. Bodansky, D. D. Clayton, and W. A. Fowler. Nucleosynthesis During Silicon Burning. Physical Review Letters, 20(4):161¿164, 1968.[46] G. Montagnoli, A. M. Stefanini, C. L. Jiang, G. Colucci, A. Goasduff, D. Brugnara, M. Mazzocco, M. Siciliano, F. Scarlassara, L. Corradi, and et al. Study of fusion hindrance in the system 12C + 24Mg. Journal of Physics: Conference Series, 1643(012098), 2020.[47] N. Maroufi, V. Dehghani, and S. A. Alavi. Alpha and cluster decay of some deformed heavy and superheavy nuclei. Nuclear Physics A, 983:77¿89, 2019.[48] F. Käppeler. s-Process nucleosynthesis and the interior of Red Giants. Nuclear Physics A, 752:500¿509, 2005.[49] J. C. Lattanzio and M. A. Lugaro. What we do and do not know about the s-process in AGB stars. Nuclear Physics A, 758:477¿484, 2005.[50] Y.-Z. Qian, P. Vogel, and G. J. Wasserburg. Probing r-process Production of Nuclei Beyond 209Bi with Gamma Rays. The Astrophysical Journal, 524(1):213¿219, 1999.[51] S. Wanajo, M. Tamamura, N. Itoh, K. Nomoto, Y. Ishimaru, T. C. Beers, and S. Nozawa. The r- Process in Supernova Explosions from the Collapse of O-Ne-Mg Cores. The Astrophysical Journal, 593(2):968¿979, 2003.[52] S. E. Woosley and R. D. Hoffman. The alpha -Process and the r-Process. The Astrophysical Journal, 395:202¿239, 1992.[53] T. Suzuki, S. Shibagaki, T. Yoshida, T. Kajino, and T. Otsuka. ¿-decay Rates for Exotic Nuclei and r-process Nucleosynthesis up to Thorium and Uranium. The Astrophysical Journal, 859(133), 2018.[54] B. S. Meyer. r-Process Nucleosynthesis without Excess Neutrons. Physical Review Letters, 89(231101), 2002.[55] B. S. Meyer, G. C. McLaughlin, and G. M. Fuller. Neutrino capture and r-process nucleosynthesis. Physical Review C, 58(6):3696¿3710, 1998.[56] K. Langanke, G. Martínez-Pinedo, and R. G. T. Zegers. Electron capture in stars. Reports on Progress in Physics, 84(066301), 2021.[57] S. Harissopulos, A. Lagoyannis, A. Spyrou, C. Zarkadas, S. Galanopoulos, G. Perdikakis, H.-W. Becker, C.Rolfs,F.Strieder,R.Kunz,andetal. Protonandalpha-particlecapturereactionsatsub-Coulomb energies relevant to the p process. Journal of Physics G: Nuclear and Particle Physics, 31(10):S1417¿ S1420, 2005.[58] S. J. Quinn, A. Spyrou, A. Simon, A. Battaglia, M. Couder, P. A. DeYoung, A. C. Dombos, X. Fang, J. Görres, A. Kontos, and et al. Probing the production mechanism of the light p-process nuclei. Physical Review C, 88(011603(R)), 2013.[59] J. R. De Laeter. Abundances for p-process nucleosynthesis. Physical Review C, 77(045803), 2008.[60] N. N. Le, N. N. Duy, and N. Q. Hung. Examination of ¿-induced fusion reactions relevant to the production of p-nuclei. The European Physical Journal A, 57(187), 2021.[61] H. Schatz, A. Aprahamian, V. Barnard, L. Bildsten, A. Cumming, M. Ouellette, T. Rauscher, F.-K. Thielemann, and M. Wiescher. End Point of the rp Process on Accreting Neutron Stars. Physical Review Letters, 86(16):3471¿3474, 2001.[62] S. Harissopulos, A. Spyrou, A. Lagoyannis, C. Zarkadas, H.-W. Becker, C. Rolfs, F. Strieder, J. W. Hammer, A. Dewald, K.-O. Zell, and et al. Systematic measurements of proton- and alpha-capture cross sections relevant to the modelling of the p process. Nuclear Physics A, 758:505¿508, 2005.[63] G. G. Kiss, T. Szücs, G. Gyürky, Z. Fülöp, J. Farkas, Z. Kertész, E. Somorjai, M. Laubenstein, C. Fröhlich, T. Rauscher, and et al. Activation method combined with characteristic X-ray counting: A possibility to measure (¿, ¿) cross sections on heavy p-nuclei. Nuclear Physics A, 867(1):52¿65, 2011.[64] B.-S. Cai, G.-S. Chen, C.-X. Yuan, and J.-J. He. Shell-model study on properties of proton dripline nuclides with Z, N = 30-50 including uncertainty analysis. Chinese Physics C, 46(084104), 2022.[65] B. A. Brown, R. R. Clement, H. Schatz, A. Volya, and W. A. Richter. Proton drip-line calculations and the rp process. Physical Review C, 65(045802), 2002.[66] A. Arcones, D. W. Bardayan, T. C. Beers, L. A. Bernstein, J. C. Blackmon, B. Messer, B. A. Brown, E. F. Brown, C. R. Brune, A. E. Champagne, and et al. White paper on nuclear astrophysics and low energy nuclear physics Part 1: Nuclear astrophysics. Progress in Particle and Nuclear Physics, 94:1¿67, 2017.[67] J. Carlson, M. P. Carpenter, R. Casten, C. Elster, P. Fallon, A. Gade, C. Gross, G. Hagen, A. C. Hayes, D. W. Higinbotham, and et al. White paper on nuclear astrophysics and low-energy nuclear physics, Part 2: Low-energy nuclear physics. Progress in Particle and Nuclear Physics, 94:68¿124, 2017.[68] G. G. Adamian and N. V. Antonenko. Optimal ways to produce heavy and superheavy nuclei. The European Physical Journal A, 58(111), 2022.[69] B. R. Barrett, P. Navrátil, and J. P. Vary. Ab initio no core shell model. Progress in Particle and Nuclear Physics, 69:131¿181, 2013.[70] M. Freer, H. Horiuchi, Y. Kanada-En¿yo, D. Lee, and U.-G. Meißner. Microscopic clustering in light nuclei. Reviews of Modern Physics, 90(035004), 2018.[71] J. Dohet-Eraly, P. Navrátil, S. Quaglioni, W. Horiuchi, G. Hupin, and F. Raimondi. 3He(¿, ¿)7Be and 3H(¿,¿)7Li astrophysical S factors from the no-core shell model with continuum. Physics Letters B, 757:430¿436, 2016.[72] P. Navratil, C. A. Bertulani, and E. Caurier. 7Be(p,¿)8B S-factor from ab initio wave functions. Journal of Physics: Conference Series, 49:15¿20, 2006.[73] M. C. Atkinson, P. Navrátil, G. Hupin, K. Kravvaris, and S. Quaglioni. Ab initio calculation of the ¿ decay from 11Be to a 10Be + p resonance. Physical Review C, 105(054316), 2022.[74] L. E. Marcucci, K. M. Nollett, R. Schiavilla, and R. B. Wiringa. Modern theories of low-energy astrophysical reactions. Nuclear Physics A, 777:111¿136, 2006.[75] L. V. Grigorenko, B. V. Danilin, V. D. Efros, N. B. Shul¿gina, and M. V. Zhukov. Structure of the 8Li and 8B nuclei in an extended three-body model and astrophysical S17 factor. Physical Review C, 57(5):R2099¿R2103, 1998.[76] N. Le Anh and B. Minh Loc. Low-energy 7Li(n,¿)8Li and 7Be(p,¿)8B radiative capture reactions within the Skyrme Hartree-Fock approach. Physical Review C, 106(014605), 2022.[77] H. Sasaki, T. Kawano, and I. Stetcu. Noniterative finite amplitude methods for E1 and M1 giant resonances. Physical Review C, 105(044311), 2022.[78] E. V. Chimanski, E. J. In, J. E. Escher, S. Péru, and W. Younes. Towards a Predictive HFB+QRPA Framework for Deformed Nuclei: Selected Tools and Techniques. Journal of Physics: Conference Series, 2340(012033), 2022.[79] G. X. Dong, X. B. Wang, N. Michel, and M. P¿oszajczak. Gamow shell model description of the radiative capture reaction 8Li(n,¿)9Li. Physical Review C, 105(064608), 2022.[80] T. Tazawa. Nucleus-Nucleus potential in the Two-Center Shell Model. Progress of Theoretical Physics, 51(6):1764¿1782, 1974.[81] A. Diaz-Torres and M. Wiescher. Characterizing the astrophysical S factor for 12C + 12C fusion with wave-packet dynamics. Physical Review C, 97(055802), 2018.[82] T. Neff, H. Feldmeier, and K. Langanke. Towards microscopic ab initio calculations of astrophysical S-factors. Progress in Particle and Nuclear Physics, 66(2):341¿345, 2011.[83] Y. Taniguchi and M. Kimura. 12C + 12C fusion S¿-factor from a full-microscopic nuclear model. Physics Letters B, 823(136790), 2021.[84] T. Baba, Y. Taniguchi, and M. Kimura. 4¿ linear-chain state produced by 9Be+9Be collisions. Physical Review C, 105(L061301), 2022.[85] C. Beck. Clusters in nuclei, vol. 2. Lecture Notes in Physics. Springer Berlin, Heidelberg, 2012.[86] Shubhchintak and P. Descouvemont. Breakup effects in the 16C + p and 16C + d reactions. Physical Review C, 105(024605), 2022.[87] P. Descouvemont. Resonances in 12C and 24Mg: what do we learn from a microscopic cluster theory? The European Physical Journal A, 57(29), 2021.[88] K. Arai, S. Aoyama, Y. Suzuki, P. Descouvemont, and D. Baye. Tensor force manifestations in ab initio study of the 2H(d, ¿)4He, 2H(d, p)3H and 2H(d, n)3He reactions. Journal of Physics: Conference Series, 436(012024), 2013.[89] M. Dufour and P. Descouvemont. Multicluster study of the 12C + n and 12C + p systems. Physical Review C, 56(4):1831¿1839, 1997.[90] A. M. Lane and R. G. Thomas. R-matrix theory of nuclear reactions. Reviews of Modern Physics, 30(2):257¿353, 1958.[91] C. R. Brune. Alternative parametrization of R-matrix theory. Physical Review C, 66(044611), 2002.[92] R. Spartá, R. G. Pizzone, C. A. Bertulani, S. Hou, L. Lamia, and A. Tumino. Direct and Indirect Measurements for a Better Understanding of the Primordial Nucleosynthesis. Frontiers in Astronomy and Space Sciences, 7(560149), 2020.[93] D. F. Ramírez Jiménez and N. G. Kelkar. Different manifestations of S-matrix poles. Annals of Physics, 396:18¿43, 2018.[94] R. S. de Souza, C. Iliadis, and A. Coc. Astrophysical S-factors, Thermonuclear Rates, and Electron Screening Potential for the 3He(d,p)4He Big Bang Reaction via a Hierarchical Bayesian Model. The Astrophysical Journal, 872(1):75, 2019.[95] D. Odell, C. R. Brune, and D. R. Phillips. How bayesian methods can improve R-matrix analyses of data: The example of the dt reaction. Physical Review C, 105(014625), 2022.[96] J. Grineviciute, L. Lamia, A. M. Mukhamedzhanov, C. Spitaleri, and M. La Cognata. Low-energy R-matrix fits for the 6Li(d,¿)4He S factor. Physical Review C, 91(014601), 2015.[97] B. Vande Kolk, K. T. Macon, R. J. deBoer, T. Anderson, A. Boeltzig, K. Brandenburg, C. R. Brune, Y. Chen, A. M. Clark, T. Danley, and et al. Investigation of the 10B(p,¿)7Be reaction from 0.8 to 2.0 MeV. Physical Review C, 105(055802), 2022.[98] A. Sieverding, J. S. Randhawa, D. Zetterberg, R. J. deBoer, T. Ahn, R. Mancino, G. Martínez-Pinedo, and W. R. Hix. Role of low-lying resonances for the 10Be(p,¿)7Li reaction rate and implications for the formation of the Solar System. Physical Review C, 106(015803), 2022.[99] G. Kaur, V. Guimarães, J. C. Zamora, M. Assunção, J. Alcantara-Nuñez, A. L. de Lara, E. O. Zevallos, J. B. Ribeiro, R. Lichtenthäler, K. C. Pires, and et al. New resonances in 11C above the 10B+p threshold investigated by inverse kinematic resonant scattering. Physical Review C, 105(024609), 2022.[100] D. Schürmann, L. Gialanella, R. Kunz, and F. Strieder. The astrophysical S factor of 12C(¿,¿)16O at stellar energy. Physics Letters B, 711(1):35¿40, 2012.[101] J.-M. Sparenberg. Hybrid potential/R-matrix models for the 12C + ¿ system. Nuclear Physics A, 758:423¿426, 2005.[102] P. S. Prusachenko, T. L. Bobrovsky, I. P. Bondarenko, M. V. Bokhovko, A. F. Gurbich, and V. V. Ketlerov. Measurement of the cross section for the 13C(¿,n)16O reaction and determination of the cross section for the 16O(n,¿)13C reaction. Physical Review C, 105(024612), 2022.[103] N. Burtebaev, S. B. Igamov, R. J. Peterson, R. Yarmukhamedov, and D. M. Zazulin. New mea- surements of the astrophysical S factor for 12C(p,¿)13N reaction at low energies and the asymptotic normalization coefficient (nuclear vertex constant) for the p + 12C ¿ 13N reaction. Physical Review C, 78(035802), 2008.[104] S. Chakraborty, R. deBoer, A. Mukherjee, and S. Roy. Systematic R-matrix analysis of the 13C(p, ¿)14N capture reaction. Physical Review C, 91(045801), 2015.[105] G. Genard, P. Descouvemont, and G. Terwagne. S-factor measurement of the 13C(p,¿)14N reaction in reverse kinematics. Journal of Physics: Conference Series, 202(012015), 2010.[106] F. C. Barker. 15N(p,¿0)16O S factor. Physical Review C, 78(044612), 2008.[107] C. Angulo, A. E. Champagne, and H.-P. Trautvetter. R-matrix analysis of the 14N(p,¿)15O astrophysical S-factor. Nuclear Physics A, 758:391¿394, 2005.[108] A. Formicola, G. Imbriani, H. Costantini, C. Angulo, D. Bemmerer, R. Bonetti, C. Broggini, P. Corvisiero, J. Cruz, P. Descouvemont, and et al. Astrophysical S-factor of 14N(p,¿)15O. Physics Letters B, 591(1-2):61¿68, 2004.[109] F. Raiola, P. Migliardi, G. Gyürky, M. Aliotta, A. Formicola, R. Bonetti, C. Broggini, L. Campajola, P. Corvisiero, H. Costantini, and et al. Enhanced electron screening in d(d,p)t for deuterated Ta¿. The European Physical Journal A, 13(3):377¿382, 2002.[110] H. J. Assenbaum, K. Langanke, and C. Rolfs. Effects of electron screening on low-energy fusion cross sections. Zeitschrift für Physik A Atomic Nuclei, 327(4):461¿468, 1987.[111] F. Koyuncu and A. Soylu. Screening effects on 12 C + 12 C fusion reaction. Chinese Physics C, 42(054106), 2018.[112] D. G. Yakovlev, M. Beard, L. R. Gasques, and M. Wiescher. Simple analytic model for astrophysical S factors. Physical Review C, 82(044609), 2010.[113] S. B. Dubovichenko. Astrophysical S-factor for the radiative-capture reaction p13C ¿ 14N¿. Physics of Atomic Nuclei, 75(2):173¿181, 2012.[114] R. Bass. Nucleus-Nucleus Potential Deduced from Experimental Fusion Cross Sections. Physical Review Letters, 39(5):265¿268, 1977.[115] S. B. Dubovichenko and A. V. Dzhazairov-Kakhramanov. Astrophysical S -factor of p2H radiative capture. The European Physical Journal A, 39(2):139¿143, 2009.[116] M. Singh, Sukhvinder, and R. Kharab. Analysis of fusion excitation functions of various systems using modified Woods¿Saxon potential. Nuclear Physics A, 897:179¿197, 2013.[117] C. A. Bertulani. 7Be(p,¿)8B cross section from indirect breakup experiments. Zeitschrift für Physik A Hadrons and Nuclei, 356(1):293¿297, 1996.[118] A. Kabir and J.-U. Nabi. Re-examination of astrophysical S-factor of proton capture 9Be(p,¿)10B in stellar matter. Nuclear Physics A, 1007(122118), 2021.[119] P. Salamon, Á. Baran, and T. Vertse. Distributions of the S-matrix Poles in Woods¿Saxon and cut-off Woods¿Saxon potentials. Nuclear Physics A, 952:1¿17, 2016.[120] A. Kabir, B. F. Irgaziev, J.-U. Nabi, and S. Sagheer. Re-analysis of radiative capture 11C(p,¿)12N at low energy. Journal of Physics G: Nuclear and Particle Physics, 49(075101), 2022.[121] M. Singh, Sukhvinder, and R. Kharab. Analysis of fusion excitation function data by using an energy dependent potential model. Nuclear Physics A, 897:198¿217, 2013.[122] R. Ghasemi and H. Sadeghi. S-factor for radiative capture reactions for light nuclei at astrophysical energies. Results in Physics, 9:151¿165, 2018.[123] A. H. Amer and Y. E. Penionzhkevich. Elastic scattering analysis of isobar nuclei A = 6 projectiles on 12C using different models of optical potential. Nuclear Physics A, 1015(122300), 2021.[124] M. Assunção and P. Descouvemont. 12C + 12C and 16O + 16O fusion reactions at low energies. Journal of Physics: Conference Series, 590(012038), 2015.[125] G. P. A. Nobre, L. C. Chamon, L. R. Gasques, B. V. Carlson, and I. J. Thompson. Consistent analysis of fusion data without adjustable parameters for a wide variety of heavy-ion systems. Physical Review C, 75(044606), 2007.[126] J. G. Duarte, L. R. Gasques, J. R. B. Oliveira, V. A. B. Zagatto, L. C. Chamon, N. H. Medina, N. Added, W. A. Seale, J. A. Alcántara-Núñez, E. S. Rossi, Jr., and et al. Measurement of fusion cross sections for 16O + 16O. Journal of Physics G: Nuclear and Particle Physics, 42(065102), 2015.[127] D. L. Hill and J. A. Wheeler. Nuclear Constitution and the Interpretation of Fission Phenomena. Physical Review, 89(5):1102¿1145, 1953.[128] H. Esbensen. Structures in high-energy fusion data. Physical Review C, 85(064611), 2012.[129] M. Goldhaber and J. Weneser. Electromagnetic Transitions in Nuclei. Annual Review of Nuclear Science, 5(1):1¿24, 1955.[130] J. T. Huang, C. A. Bertulani, and V. Guimarães. Radiative capture of nucleons at astrophysical energies with single-particle states. Atomic Data and Nuclear Data Tables, 96(6):824¿847, 2010.[131] E. M. Tursunov, S. A. Turakulov, A. S. Kadyrov, and L. D. Blokhintsev. Astrophysical S factor and rate of 7Be(p, ¿)8B direct capture reaction in a potential model. Physical Review C, 104(045806), 2021.[132] L. Guimin, F. Deji, and C. Xiaowu. Sub-Barrier Fusion Coupled-Channels Calculations for 16O + 16,18O. Chinese Physics Letters, 9(11):577¿580, 1992.[133] M. Assunção and P. Descouvemont. 12C + 12C fusion in a multichannel folding model. Journal of Physics: Conference Series, 665(012010), 2016.[134] M. A. Hassanain and S. M. M. Al Sebiey. Analysis of 16O + 16O elastic and inelastic scattering using the optical model and the coupled-channels mechanism. Physical Review C, 90(054606), 2014.[135] K. Czerski, A. Huke, P. Heide, and G. Ruprecht. Experimental and theoretical screening energies for the 2H(d,p)3H reaction in metallic environments. The European Physical Journal A, 27(S1):83¿88, 2006.[136] F. Perey and B. Buck. A non-local potential model for the scattering of neutrons by nuclei. Nuclear Physics, 32:353¿380, 1962.[137] B. Golf, J. Hellmers, and F. Weber. Impact of strange quark matter nuggets on pycnonuclear reaction rates in the crusts of neutron stars. Physical Review C, 80(015804), 2009.[138] D. Bai and Z. Ren. Woods-Saxon-Gaussian potential and alpha-cluster structures of alpha + closed shell nuclei. Chinese Physics C, 42(124102), 2018.[139] L. C. Chamon. The São Paulo potential. Nuclear Physics A, 787(1-4):198¿205, 2007.[140] D. F. Rojas-Gamboa, J. E. Velasquez, N. G. Kelkar, and N. J. Upadhyay. Manifestation of deformation and nonlocality in ¿ and cluster decay. Physical Review C, 105(034311), 2022.[141] N. J. Upadhyay, A. Bhagwat, and B. K. Jain. A new treatment of nonlocality in scattering process. Journal of Physics G: Nuclear and Particle Physics, 45(015106), 2017.[142] J. E. Perez Velasquez, N. G. Kelkar, and N. J. Upadhyay. Assessment of nonlocal nuclear potentials in ¿ decay. Physical Review C, 99(024308), 2019.[143] W. H. Z. Cárdenas, L. F. Canto, R. Donangelo, M. S. Hussein, J. Lubian, and A. Romanelli. Ap- proximations in fusion and breakup reactions induced by radioactive beams. Nuclear Physics A, 703(3-4):633¿648, 2002.[144] B. K. Jennings, S. Karataglidis, and T. D. Shoppa. Direct capture astrophysical S factors at low energy. Physical Review C, 58(1):579¿581, 1998.[145] M. Beard, A. V. Afanasjev, L. C. Chamon, L. R. Gasques, M. Wiescher, and D. G. Yakovlev. Astro- physical S factors for fusion reactions involving C, O, Ne, and Mg isotopes. Atomic Data and Nuclear Data Tables, 96(5):541¿566, 2010.[146] D. G. Kovar, D. F. Geesaman, T. H. Braid, Y. Eisen, W. Henning, T. R. Ophel, M. Paul, K. E. Rehm, S. J. Sanders, P. Sperr, and et al. Systematics of carbon- and oxygen-induced fusion on nuclei with 12 ¿ A ¿ 19. Physical Review C, 20(4):1305¿1331, 1979.[147] G. Van Rossum and F. L. Drake. Python 3: Reference Manual. CreateSpace, 2009.[148] W. McKinney. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, page 56¿61, 2010.[149] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, and et al. Array programming with NumPy. Nature, 585:357¿362, 2020.[150] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, and et al. Scipy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17:261¿272, 2020.[151] J. D. Hunter. Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 9(3):90¿95, 2007.[152] A. M. Mukhamedzhanov, D. Y. Pang, and A. S. Kadyrov. Astrophysical factors of 12C + 12C fusion extracted using the Trojan horse method. Physical Review C, 99(064618), 2019.[153] P. Descouvemont, A. Adahchour, C. Angulo, A. Coc, and E. Vangioni-Flam. Compilation and R-matrix analysis of Big Bang nuclear reaction rates. Atomic Data and Nuclear Data Tables, 88(1):203¿236, 2004.[154] V. V. Zerkin, B. Pritychenko, J. Totans, L. Vrapcenjak, A. Rodionov, and G. I. Shulyak. EXFOR- NSR PDF database: a system for nuclear knowledge preservation and data curation. Journal of Instrumentation, 17(P03012), 2022.[155] V. M. Bystritsky, V. V. Gerasimov, A. R. Krylov, S. S. Parzhitskii, G. N. Dudkin, V. L. Kaminskii, B. A. Nechaev, V. N. Padalko, A. V. Petrov, G. A. Mesyats, and et al. Study of the pd reaction in the astrophysical energy region using the Hall accelerator. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 595(3):543¿548, 2008.[156] G. J. Schmid, R. M. Chasteler, C. M. Laymon, H. R. Weller, R. M. Prior, and D. R. Tilley. Po- larized proton capture by deuterium and the 2H(p,¿)3He astrophysical S factor. Physical Review C, 52(4):R1732¿R1735, 1995.[157] B. L. Berman, L. J. Koester, Jr., and J. H. Smith. Photodisintegration of He3. Physical Review, 133:B117¿B129, 1964.[158] J. B. Warren, K. L. Erdman, L. P. Robertson, D. A. Axen, and J. R. Macdonald. Photodisintegration of He3 near the Threshold. Physical Review, 132(4):1691¿1692, 1963[159] U. Greife, F. Gorris, M. Junker, C. Rolfs, and D. Zahnow. Oppenheimer-Phillips effect and electron screening in d + d fusion reactions. Zeitschrift für Physik A Hadrons and Nuclei, 351(1):107¿112, 1995.[160] A. Krauss, H. W. Becker, H. P. Trautvetter, C. Rolfs, and K. Brand. Low-energy fusion cross sections of D + D and D + 3He reactions. Nuclear Physics A, 465(1):150¿172, 1987.[161] D. S. Leonard, H. J. Karwowski, C. R. Brune, B. M. Fisher, and E. J. Ludwig. Precision measurements of 2 H(d, p)3 H and 2 H(d, n)3 He total cross sections at Big Bang nucleosynthesis energies. Physical Review C, 73(045801), 2006.[162] R. L. Schulte, M. Cosack, A. W. Obst, and J. L. Weil. 2H + reactions from 1.96 to 6.20 MeV. Nuclear Physics A, 192(3):609¿624, 1972.[163] A. Tumino, C. Spitaleri, A. M. Mukhamedzhanov, S. Typel, M. Aliotta, V. Burjan, M. Gimenez del Santo, G. G. Kiss, V. Kroha, Z. Hons, and et al. Low-energy d + d fusion reactions via the Trojan Horse method. Physics Letters B, 700(2):111¿115, 2011.[164] LUNA Collaboration, C. Casella, H. Costantini, A. Lemut, B. Limata, R. Bonetti, C. Broggini, L. Cam- pajola, P. Corvisiero, J. Cruz, A. D¿Onofrio, and et al. First measurement of the d(p, ¿)3He cross section down to the solar Gamow peak. Nuclear Physics A, 706(1-2):203¿216, 2002.[165] V. N. Fetisov, A. N. Gorbunov, and A. T. Varfolomeev. Nuclear photoeffect on three-particle nuclei. Nuclear Physics, 71(2):305¿342, 1965.[166] K. N. Geller, E. G. Muirhead, and L. D. Cohen. The 2H(p,¿)3He reaction at the breakup threshold. Nuclear Physics A, 96(2):397¿400, 1967.[167] G. M. Griffiths, E. A. Larson, and L. P. Robertson. The capture of protons by deuterons. Canadian Journal of Physics, 40(4):402¿411, 1962.[168] L. Ma, H. J. Karwowski, C. R. Brune, Z. Ayer, T. C. Black, J. C. Blackmon, E. J. Ludwig, M. Viviani, A. Kievsky, and R. Schiavilla. Measurements of 1H(d¿,¿)3He and 2H(p¿,¿)3He at very low energies. Physical Review C, 55(2):588¿596, 1997.[169] G. J. Schmid, M. Viviani, B. J. Rice, R. M. Chasteler, M. A. Godwin, G. C. Kiang, L. L. Kiang, A. Kievsky, C. M. Laymon, R. M. Prior, and et al. Effects of Non-nucleonic Degrees of freedom in the D(p¿,¿)3He and p(d¿,¿)3He Reactions. Physical Review Letters, 76(17):3088¿3091, 1996.[170] W. Wölfli, R. Bösch, J. Lang, R. Müller, and P. Marmier. Einfang von Protonen durch Deuteronen. Helvetica Physica Acta, 40(7):946¿972, 1967.[171] L. T. Baby, C. Bordeanu, G. Goldring, M. Hass, L. Weissman, V. N. Fedoseyev, U. Köster, Y. Nir-El, G. Haquin, H. W. Gäggeler, R. Weinreich, and et al. New measurement of the proton capture rate on 7Be and the S17(0) factor. Physical Review C, 67(065805), 2003.[172] A. R. Junghans, E. C. Mohrmann, K. A. Snover, T. D. Steiger, E. G. Adelberger, J. M. Casandjian, H. E. Swanson, L. Buchmann, S. H. Park, A. Zyuzin, and A. M. Laird. Precise measurement of the 7Be(p,¿)8B S factor. Physical Review C, 68(065803), 2003.[173] A. R. Junghans, K. A. Snover, E. C. Mohrmann, E. G. Adelberger, and L. Buchmann. Updated S factors for the 7Be(p,¿)8B reaction. Physical Review C, 81(012801(R)), 2010.[174] F. Schümann, S. Typel, F. Hammache, K. Sümmerer, F. Uhlig, I. Böttcher, D. Cortina, A. Förster, M. Gai, H. Geissel, and et al. Low-energy cross section of the 7Be(p,¿)8B solar fusion reaction from the Coulomb dissociation of 8B. Physical Review C, 73(015806), 2006.[175] J. D. King, R. E. Azuma, J. B. Vise, J. Görres, C. Rolfs, H. P. Trautvetter, and A. E. Vlieks. Cross section and astrophysical S-factor for the 13C(p,¿)14N reaction. Nuclear Physics A, 567(2):354¿376, 1994.[176] E. J. Woodbury and W. A. Fowler. The Cross Section for the Radiative Capture of Protons by C13 at 129 kev. Physical Review, 85(1):51¿57, 1952.[177] H. W. Becker, K. U. Kettner, C. Rolfs, and H. P. Trautvetter. The 12C + 12C reaction at subcoulomb energies (II). Zeitschrift für Physik A Atoms and Nuclei, 303(4):305¿312, 1981.[178] G. Fruet, S. Courtin, M. Heine, D. G. Jenkins, P. Adsley, A. Brown, R. Canavan, W. N. Catford, E. Charon, D. Curien, and et al. Advances in the Direct Study of Carbon Burning in Massive Stars. Physical Review Letters, 124(192701), 2020[179] T. Spillane, F. Raiola, C. Rolfs, D. Schürmann, F. Strieder, S. Zeng, H.-W. Becker, C. Bordeanu, L. Gialanella, M. Romano, and et al. 12C + 12C Fusion Reactions near the Gamow Energy. Physical Review Letters, 98(122501), 2007.[180] W. P. Tan, A. Boeltzig, C. Dulal, R. J. deBoer, B. Frentz, S. Henderson, K. B. Howard, R. Kelmar, J. J. Kolata, J. Long, and et al. New Measurement of 12C + 12C Fusion Reaction at Astrophysical Energies. Physical Review Letters, 124(192702), 2020.[181] H. Spinka and H. Winkler. Experimental determination of the total reaction cross section of the stellar nuclear reaction 16O + 16O. Nuclear Physics A, 233(2):456¿494, 1974.[182] D. Gaspard. Connection formulas between Coulomb wave functions. Journal of Mathematical Physics, 59(112104), 2018.[183] J. J. Moré. The Levenberg-Marquardt algorithm: Implementation and theory. In G. A. Watson, editor, Numerical Analysis, volume 630 of Lecture Notes in Mathematics, page 105¿116. Springer-Verlag, 1978.[184] D. Ramadasan, M. Chevaldonné, and T. Chateau. LMA: A generic and efficient implementation of the Levenberg-Marquardt Algorithm. Software: Practice and Experience, 47(11):1707¿1727, 2017.[185] M. A. Branch, T. F. Coleman, and Y. Li. A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems. SIAM Journal on Scientific Computing, 21(1):1¿23, 1999.[186] T. F. Coleman and Y. Li. On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds. Mathematical Programming, 67(1-3):189¿224, 1994.201822667PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/8c83ee31-1102-40f1-8ffe-1e2f867631fa/download5aa5c691a1ffe97abd12c2966efcb8d6MD56THUMBNAILmonograph-project.pdf.jpgmonograph-project.pdf.jpgIM Thumbnailimage/jpeg8752https://repositorio.uniandes.edu.co/bitstreams/cf628ff7-a804-4fb5-831b-fe82066c09c1/downloada9c148d2dd8d2d2d1d8dec92827c1114MD510Form-Filled-Carlos.pdf.jpgForm-Filled-Carlos.pdf.jpgIM Thumbnailimage/jpeg15932https://repositorio.uniandes.edu.co/bitstreams/18676f42-0337-409d-a170-d159f45d938a/download1539f28df61ba0535e4ba4d1e213ec2eMD512CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/802311b7-9490-44d0-994f-d936bc9bd858/download0175ea4a2d4caec4bbcc37e300941108MD57TEXTmonograph-project.pdf.txtmonograph-project.pdf.txtExtracted texttext/plain375960https://repositorio.uniandes.edu.co/bitstreams/71e7824c-979b-4a04-8a2b-878992193e02/download9b6bd42b5c95aa467eec4314af3dc5b3MD59Form-Filled-Carlos.pdf.txtForm-Filled-Carlos.pdf.txtExtracted texttext/plain1173https://repositorio.uniandes.edu.co/bitstreams/5a40547c-222a-4599-810f-19c37eeb01d1/download7f938ba5b5851e9e3d101e09b8986bd0MD511ORIGINALmonograph-project.pdfmonograph-project.pdfapplication/pdf2627916https://repositorio.uniandes.edu.co/bitstreams/c130f49d-acf1-4982-a5e9-13696624e813/download2e9f95a1f90f5eada460a96878785f00MD52Form-Filled-Carlos.pdfForm-Filled-Carlos.pdfHIDEapplication/pdf219118https://repositorio.uniandes.edu.co/bitstreams/432c2e81-c102-4366-be26-39cd64c285b9/download5c40a1c9aba33fd10b7c49ccdcace406MD581992/64404oai:repositorio.uniandes.edu.co:1992/644042023-10-10 15:20:00.079http://creativecommons.org/licenses/by/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg== |