O-asymptotic classes of finite structures, pseudofinite dimension and forking
Abstract: My research aims to study the of ultraproducts of finite structures and the study of forking, pseudofinite dimensions and other model-theoretic properties, specifically in pseudofinite structures and classes of finite linearly ordered structures. The main results obtained during my Ph.D ca...
- Autores:
-
García Rico, Darío Alejandro
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2014
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/7824
- Acceso en línea:
- http://hdl.handle.net/1992/7824
- Palabra clave:
- Teoría de modelos - Investigaciones
Grupos finitos - Investigaciones
Matemáticas
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
UNIANDES2_87922154a8ee4c847d5758ce7c31276b |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/7824 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.es_CO.fl_str_mv |
O-asymptotic classes of finite structures, pseudofinite dimension and forking |
title |
O-asymptotic classes of finite structures, pseudofinite dimension and forking |
spellingShingle |
O-asymptotic classes of finite structures, pseudofinite dimension and forking Teoría de modelos - Investigaciones Grupos finitos - Investigaciones Matemáticas |
title_short |
O-asymptotic classes of finite structures, pseudofinite dimension and forking |
title_full |
O-asymptotic classes of finite structures, pseudofinite dimension and forking |
title_fullStr |
O-asymptotic classes of finite structures, pseudofinite dimension and forking |
title_full_unstemmed |
O-asymptotic classes of finite structures, pseudofinite dimension and forking |
title_sort |
O-asymptotic classes of finite structures, pseudofinite dimension and forking |
dc.creator.fl_str_mv |
García Rico, Darío Alejandro |
dc.contributor.advisor.none.fl_str_mv |
Scanlon, Thomas Starchenko, Sergei Martín-Pizarro, Amador Onshuus Niño, Alf Berenstein Opscholtens, Alexander Jonathan |
dc.contributor.author.none.fl_str_mv |
García Rico, Darío Alejandro |
dc.subject.keyword.es_CO.fl_str_mv |
Teoría de modelos - Investigaciones Grupos finitos - Investigaciones |
topic |
Teoría de modelos - Investigaciones Grupos finitos - Investigaciones Matemáticas |
dc.subject.themes.none.fl_str_mv |
Matemáticas |
description |
Abstract: My research aims to study the of ultraproducts of finite structures and the study of forking, pseudofinite dimensions and other model-theoretic properties, specifically in pseudofinite structures and classes of finite linearly ordered structures. The main results obtained during my Ph.D can be separated in two main topics: Pscudofinitc dimcnsions and forking, and 0-asymptotic classcs of finitc structurcs. Studying classes of finite structures (e.g 1-dimensional asymptotic classcxs) one can ask whether the notions of pseudofinite dimensions of Hrushovski and Wagner provide information about independence relations and other model-theoretic properties in their ultraproducts. In this setting, I proved that an instance of dividing in an ultraproduct of finite structures can be realized as a decrease in the pseudofinite dimension; thus implying, as a corollary, a generalization of a well-known result in 1-dimensional asymptotic classes; namely, that every infinite ultraproduct of models in such a class is supersimple of U-rank 1. In the study of classes of finite linearly ordered structures, I stated the definition of O-asymptotic classcs as a way to meld ideas from 1-dimensional asymptotic classes and 0-minimality. The main examples of these classes are the class of finite linear orders and the class of cyclic grolllxs Z/(2N + I)Z with the natural order inherited by the order in the integers when we take the representative-s - N < - (N-1) < ? <-1<0<1< ? < N ? 1 < N. Results obtained Include: a cell-decomposition result for 0-asymptotic classes melding ideas from the combinatorial cell decomposition for 1-dimensional asymptotic clas.scxs, and the cell decomposition theorem in O-minimal structures; and a classification of the ultraproducts of 0-asymptotic classes: if every ultraproduct of a class C is o-minimal, then C is an O-asymptotic class; every infinite ultraproduct of structures in an 0-asymptotic class is superrosy of U-thorn-rank 1 and NTP2 of inp-rank l. I also present a preliminary collection of results towards isolate conditions under which dense 0-minimal structures can be obtained as quotients of ultraproducts of 0-asymptotic classes |
publishDate |
2014 |
dc.date.issued.none.fl_str_mv |
2014 |
dc.date.accessioned.none.fl_str_mv |
2018-09-27T16:39:24Z |
dc.date.available.none.fl_str_mv |
2018-09-27T16:39:24Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/7824 |
dc.identifier.doi.none.fl_str_mv |
10.57784/1992/7824 |
dc.identifier.pdf.none.fl_str_mv |
u703099.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/7824 |
identifier_str_mv |
10.57784/1992/7824 u703099.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
spa |
language |
spa |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
131 hojas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Uniandes |
dc.publisher.program.es_CO.fl_str_mv |
Doctorado en Matemáticas |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Matemáticas |
dc.source.es_CO.fl_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca |
instname_str |
Universidad de los Andes |
institution |
Universidad de los Andes |
reponame_str |
Repositorio Institucional Séneca |
collection |
Repositorio Institucional Séneca |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/bf2a33c0-f215-4ae0-91bd-90cb582bd2a3/download https://repositorio.uniandes.edu.co/bitstreams/dc72dc5f-e138-4517-8e83-10df687db75a/download https://repositorio.uniandes.edu.co/bitstreams/109709fd-a2dc-475c-b756-bc753ff507cf/download |
bitstream.checksum.fl_str_mv |
67f7f924548c4d43e49a2492ee8c1b59 54f68a03c217d017e55fbc28570c8034 41a150d3371229c8b82b8cb291953b3c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812134079462637568 |
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Scanlon, Thomas3cac2a74-401c-4776-b7cd-85622280a3e6500Starchenko, Sergei9b86560a-fcd5-4a4d-a25e-93bc67f33570500Martín-Pizarro, Amador71cdc14e-c830-4c9a-a84c-730301da10ea500Onshuus Niño, Alfvirtual::17576-1Berenstein Opscholtens, Alexander Jonathanvirtual::17577-1García Rico, Darío Alejandro9fd16ca7-0b84-4122-87e1-3571868051d95002018-09-27T16:39:24Z2018-09-27T16:39:24Z2014http://hdl.handle.net/1992/782410.57784/1992/7824u703099.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Abstract: My research aims to study the of ultraproducts of finite structures and the study of forking, pseudofinite dimensions and other model-theoretic properties, specifically in pseudofinite structures and classes of finite linearly ordered structures. The main results obtained during my Ph.D can be separated in two main topics: Pscudofinitc dimcnsions and forking, and 0-asymptotic classcs of finitc structurcs. Studying classes of finite structures (e.g 1-dimensional asymptotic classcxs) one can ask whether the notions of pseudofinite dimensions of Hrushovski and Wagner provide information about independence relations and other model-theoretic properties in their ultraproducts. In this setting, I proved that an instance of dividing in an ultraproduct of finite structures can be realized as a decrease in the pseudofinite dimension; thus implying, as a corollary, a generalization of a well-known result in 1-dimensional asymptotic classes; namely, that every infinite ultraproduct of models in such a class is supersimple of U-rank 1. In the study of classes of finite linearly ordered structures, I stated the definition of O-asymptotic classcs as a way to meld ideas from 1-dimensional asymptotic classes and 0-minimality. The main examples of these classes are the class of finite linear orders and the class of cyclic grolllxs Z/(2N + I)Z with the natural order inherited by the order in the integers when we take the representative-s - N < - (N-1) < ? <-1<0<1< ? < N ? 1 < N. Results obtained Include: a cell-decomposition result for 0-asymptotic classes melding ideas from the combinatorial cell decomposition for 1-dimensional asymptotic clas.scxs, and the cell decomposition theorem in O-minimal structures; and a classification of the ultraproducts of 0-asymptotic classes: if every ultraproduct of a class C is o-minimal, then C is an O-asymptotic class; every infinite ultraproduct of structures in an 0-asymptotic class is superrosy of U-thorn-rank 1 and NTP2 of inp-rank l. I also present a preliminary collection of results towards isolate conditions under which dense 0-minimal structures can be obtained as quotients of ultraproducts of 0-asymptotic classesDoctor en MatemáticasDoctorado131 hojasapplication/pdfspaUniandesDoctorado en MatemáticasFacultad de CienciasDepartamento de Matemáticasinstname:Universidad de los Andesreponame:Repositorio Institucional SénecaO-asymptotic classes of finite structures, pseudofinite dimension and forkingTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesishttp://purl.org/coar/resource_type/c_db06http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TDTeoría de modelos - InvestigacionesGrupos finitos - InvestigacionesMatemáticasPublicationhttps://scholar.google.es/citations?user=Ov2U9EoAAAAJvirtual::17576-1https://scholar.google.es/citations?user=MVlKsDoAAAAJvirtual::17577-10000-0001-7593-1553virtual::17576-10000-0002-1469-1864virtual::17577-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000246409virtual::17576-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000506192virtual::17577-15a750db4-a429-4f4f-af11-b70f91dd30eavirtual::17576-135d4330d-15bb-4966-b61d-b2dad6b185c8virtual::17577-15a750db4-a429-4f4f-af11-b70f91dd30eavirtual::17576-135d4330d-15bb-4966-b61d-b2dad6b185c8virtual::17577-1THUMBNAILu703099.pdf.jpgu703099.pdf.jpgIM Thumbnailimage/jpeg6966https://repositorio.uniandes.edu.co/bitstreams/bf2a33c0-f215-4ae0-91bd-90cb582bd2a3/download67f7f924548c4d43e49a2492ee8c1b59MD55TEXTu703099.pdf.txtu703099.pdf.txtExtracted texttext/plain179307https://repositorio.uniandes.edu.co/bitstreams/dc72dc5f-e138-4517-8e83-10df687db75a/download54f68a03c217d017e55fbc28570c8034MD54ORIGINALu703099.pdfapplication/pdf948499https://repositorio.uniandes.edu.co/bitstreams/109709fd-a2dc-475c-b756-bc753ff507cf/download41a150d3371229c8b82b8cb291953b3cMD511992/7824oai:repositorio.uniandes.edu.co:1992/78242024-08-26 15:27:50.602http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |