O-asymptotic classes of finite structures, pseudofinite dimension and forking

Abstract: My research aims to study the of ultraproducts of finite structures and the study of forking, pseudofinite dimensions and other model-theoretic properties, specifically in pseudofinite structures and classes of finite linearly ordered structures. The main results obtained during my Ph.D ca...

Full description

Autores:
García Rico, Darío Alejandro
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2014
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/7824
Acceso en línea:
http://hdl.handle.net/1992/7824
Palabra clave:
Teoría de modelos - Investigaciones
Grupos finitos - Investigaciones
Matemáticas
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UNIANDES2_87922154a8ee4c847d5758ce7c31276b
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/7824
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.es_CO.fl_str_mv O-asymptotic classes of finite structures, pseudofinite dimension and forking
title O-asymptotic classes of finite structures, pseudofinite dimension and forking
spellingShingle O-asymptotic classes of finite structures, pseudofinite dimension and forking
Teoría de modelos - Investigaciones
Grupos finitos - Investigaciones
Matemáticas
title_short O-asymptotic classes of finite structures, pseudofinite dimension and forking
title_full O-asymptotic classes of finite structures, pseudofinite dimension and forking
title_fullStr O-asymptotic classes of finite structures, pseudofinite dimension and forking
title_full_unstemmed O-asymptotic classes of finite structures, pseudofinite dimension and forking
title_sort O-asymptotic classes of finite structures, pseudofinite dimension and forking
dc.creator.fl_str_mv García Rico, Darío Alejandro
dc.contributor.advisor.none.fl_str_mv Scanlon, Thomas
Starchenko, Sergei
Martín-Pizarro, Amador
Onshuus Niño, Alf
Berenstein Opscholtens, Alexander Jonathan
dc.contributor.author.none.fl_str_mv García Rico, Darío Alejandro
dc.subject.keyword.es_CO.fl_str_mv Teoría de modelos - Investigaciones
Grupos finitos - Investigaciones
topic Teoría de modelos - Investigaciones
Grupos finitos - Investigaciones
Matemáticas
dc.subject.themes.none.fl_str_mv Matemáticas
description Abstract: My research aims to study the of ultraproducts of finite structures and the study of forking, pseudofinite dimensions and other model-theoretic properties, specifically in pseudofinite structures and classes of finite linearly ordered structures. The main results obtained during my Ph.D can be separated in two main topics: Pscudofinitc dimcnsions and forking, and 0-asymptotic classcs of finitc structurcs. Studying classes of finite structures (e.g 1-dimensional asymptotic classcxs) one can ask whether the notions of pseudofinite dimensions of Hrushovski and Wagner provide information about independence relations and other model-theoretic properties in their ultraproducts. In this setting, I proved that an instance of dividing in an ultraproduct of finite structures can be realized as a decrease in the pseudofinite dimension; thus implying, as a corollary, a generalization of a well-known result in 1-dimensional asymptotic classes; namely, that every infinite ultraproduct of models in such a class is supersimple of U-rank 1. In the study of classes of finite linearly ordered structures, I stated the definition of O-asymptotic classcs as a way to meld ideas from 1-dimensional asymptotic classes and 0-minimality. The main examples of these classes are the class of finite linear orders and the class of cyclic grolllxs Z/(2N + I)Z with the natural order inherited by the order in the integers when we take the representative-s - N < - (N-1) < ? <-1<0<1< ? < N ? 1 < N. Results obtained Include: a cell-decomposition result for 0-asymptotic classes melding ideas from the combinatorial cell decomposition for 1-dimensional asymptotic clas.scxs, and the cell decomposition theorem in O-minimal structures; and a classification of the ultraproducts of 0-asymptotic classes: if every ultraproduct of a class C is o-minimal, then C is an O-asymptotic class; every infinite ultraproduct of structures in an 0-asymptotic class is superrosy of U-thorn-rank 1 and NTP2 of inp-rank l. I also present a preliminary collection of results towards isolate conditions under which dense 0-minimal structures can be obtained as quotients of ultraproducts of 0-asymptotic classes
publishDate 2014
dc.date.issued.none.fl_str_mv 2014
dc.date.accessioned.none.fl_str_mv 2018-09-27T16:39:24Z
dc.date.available.none.fl_str_mv 2018-09-27T16:39:24Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/7824
dc.identifier.doi.none.fl_str_mv 10.57784/1992/7824
dc.identifier.pdf.none.fl_str_mv u703099.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/7824
identifier_str_mv 10.57784/1992/7824
u703099.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv spa
language spa
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 131 hojas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Uniandes
dc.publisher.program.es_CO.fl_str_mv Doctorado en Matemáticas
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Matemáticas
dc.source.es_CO.fl_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
instname_str Universidad de los Andes
institution Universidad de los Andes
reponame_str Repositorio Institucional Séneca
collection Repositorio Institucional Séneca
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/bf2a33c0-f215-4ae0-91bd-90cb582bd2a3/download
https://repositorio.uniandes.edu.co/bitstreams/dc72dc5f-e138-4517-8e83-10df687db75a/download
https://repositorio.uniandes.edu.co/bitstreams/109709fd-a2dc-475c-b756-bc753ff507cf/download
bitstream.checksum.fl_str_mv 67f7f924548c4d43e49a2492ee8c1b59
54f68a03c217d017e55fbc28570c8034
41a150d3371229c8b82b8cb291953b3c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134079462637568
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Scanlon, Thomas3cac2a74-401c-4776-b7cd-85622280a3e6500Starchenko, Sergei9b86560a-fcd5-4a4d-a25e-93bc67f33570500Martín-Pizarro, Amador71cdc14e-c830-4c9a-a84c-730301da10ea500Onshuus Niño, Alfvirtual::17576-1Berenstein Opscholtens, Alexander Jonathanvirtual::17577-1García Rico, Darío Alejandro9fd16ca7-0b84-4122-87e1-3571868051d95002018-09-27T16:39:24Z2018-09-27T16:39:24Z2014http://hdl.handle.net/1992/782410.57784/1992/7824u703099.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Abstract: My research aims to study the of ultraproducts of finite structures and the study of forking, pseudofinite dimensions and other model-theoretic properties, specifically in pseudofinite structures and classes of finite linearly ordered structures. The main results obtained during my Ph.D can be separated in two main topics: Pscudofinitc dimcnsions and forking, and 0-asymptotic classcs of finitc structurcs. Studying classes of finite structures (e.g 1-dimensional asymptotic classcxs) one can ask whether the notions of pseudofinite dimensions of Hrushovski and Wagner provide information about independence relations and other model-theoretic properties in their ultraproducts. In this setting, I proved that an instance of dividing in an ultraproduct of finite structures can be realized as a decrease in the pseudofinite dimension; thus implying, as a corollary, a generalization of a well-known result in 1-dimensional asymptotic classes; namely, that every infinite ultraproduct of models in such a class is supersimple of U-rank 1. In the study of classes of finite linearly ordered structures, I stated the definition of O-asymptotic classcs as a way to meld ideas from 1-dimensional asymptotic classes and 0-minimality. The main examples of these classes are the class of finite linear orders and the class of cyclic grolllxs Z/(2N + I)Z with the natural order inherited by the order in the integers when we take the representative-s - N < - (N-1) < ? <-1<0<1< ? < N ? 1 < N. Results obtained Include: a cell-decomposition result for 0-asymptotic classes melding ideas from the combinatorial cell decomposition for 1-dimensional asymptotic clas.scxs, and the cell decomposition theorem in O-minimal structures; and a classification of the ultraproducts of 0-asymptotic classes: if every ultraproduct of a class C is o-minimal, then C is an O-asymptotic class; every infinite ultraproduct of structures in an 0-asymptotic class is superrosy of U-thorn-rank 1 and NTP2 of inp-rank l. I also present a preliminary collection of results towards isolate conditions under which dense 0-minimal structures can be obtained as quotients of ultraproducts of 0-asymptotic classesDoctor en MatemáticasDoctorado131 hojasapplication/pdfspaUniandesDoctorado en MatemáticasFacultad de CienciasDepartamento de Matemáticasinstname:Universidad de los Andesreponame:Repositorio Institucional SénecaO-asymptotic classes of finite structures, pseudofinite dimension and forkingTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesishttp://purl.org/coar/resource_type/c_db06http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TDTeoría de modelos - InvestigacionesGrupos finitos - InvestigacionesMatemáticasPublicationhttps://scholar.google.es/citations?user=Ov2U9EoAAAAJvirtual::17576-1https://scholar.google.es/citations?user=MVlKsDoAAAAJvirtual::17577-10000-0001-7593-1553virtual::17576-10000-0002-1469-1864virtual::17577-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000246409virtual::17576-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000506192virtual::17577-15a750db4-a429-4f4f-af11-b70f91dd30eavirtual::17576-135d4330d-15bb-4966-b61d-b2dad6b185c8virtual::17577-15a750db4-a429-4f4f-af11-b70f91dd30eavirtual::17576-135d4330d-15bb-4966-b61d-b2dad6b185c8virtual::17577-1THUMBNAILu703099.pdf.jpgu703099.pdf.jpgIM Thumbnailimage/jpeg6966https://repositorio.uniandes.edu.co/bitstreams/bf2a33c0-f215-4ae0-91bd-90cb582bd2a3/download67f7f924548c4d43e49a2492ee8c1b59MD55TEXTu703099.pdf.txtu703099.pdf.txtExtracted texttext/plain179307https://repositorio.uniandes.edu.co/bitstreams/dc72dc5f-e138-4517-8e83-10df687db75a/download54f68a03c217d017e55fbc28570c8034MD54ORIGINALu703099.pdfapplication/pdf948499https://repositorio.uniandes.edu.co/bitstreams/109709fd-a2dc-475c-b756-bc753ff507cf/download41a150d3371229c8b82b8cb291953b3cMD511992/7824oai:repositorio.uniandes.edu.co:1992/78242024-08-26 15:27:50.602http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co