Optimal rates for curvature flows on the circle

"In this thesis we will study the stability of the convergence for the solutions to the normalized p-curve shorteningflow (p-CSF). In the first chapter we Will explain what the p-curve shortening flow is, and the most important results regarding the convergence and stability of its solutions. I...

Full description

Autores:
Galindo Olarte, Andrés Felipe
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/61026
Acceso en línea:
http://hdl.handle.net/1992/61026
Palabra clave:
Curvas en superficies
Curvatura
Flujos (Sistemas dinámicos diferenciales)
Geometría diferencial
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UNIANDES2_84f815d30a10262cf6b016c47f9d2685
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/61026
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Giniatoulline, AndreiSanjuán Cuéllar, Alvaro ArturoCortissoz Iriarte, Jean Carlosvirtual::12082-1Galindo Olarte, Andrés Felipe265995002022-09-26T22:07:29Z2022-09-26T22:07:29Z2016http://hdl.handle.net/1992/61026instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/754001-1001"In this thesis we will study the stability of the convergence for the solutions to the normalized p-curve shorteningflow (p-CSF). In the first chapter we Will explain what the p-curve shortening flow is, and the most important results regarding the convergence and stability of its solutions. In chapter two, we Will explain what is the problem with the eigenvalues of the linearization of the p-curve shortening flow, and how this prevent us to use the standard methods to show stability for the p-CSF. In the third and final chapter, we Will present our main result which is that the normalized solution to the p-CSF converges at a rate of e-(3P-l) towards 1; what is really interesting is that 3p ? 1 is the second eigenvalue of the linearimtion of the original problem". -- Tomado del resumen.Magíster en MatemáticasMaestría41 hojasapplication/pdfengUniversidad de los AndesMaestría en MatemáticasFacultad de CienciasDepartamento de MatemáticasOptimal rates for curvature flows on the circleTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMCurvas en superficiesCurvaturaFlujos (Sistemas dinámicos diferenciales)Geometría diferencial201510192Publicationhttps://scholar.google.es/citations?user=44Ujs4QAAAAJvirtual::12082-10000-0002-7440-4425virtual::12082-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000821411virtual::12082-109606ca2-87c9-4df9-b557-b65295156fdfvirtual::12082-109606ca2-87c9-4df9-b557-b65295156fdfvirtual::12082-1THUMBNAIL11249.pdf.jpg11249.pdf.jpgIM Thumbnailimage/jpeg3098https://repositorio.uniandes.edu.co/bitstreams/42a85c9c-c968-414b-95e8-e02c3a63a3a2/download33c49bfc33ca2512519abef7705827c6MD53TEXT11249.pdf.txt11249.pdf.txtExtracted texttext/plain57822https://repositorio.uniandes.edu.co/bitstreams/0cfe1cdb-4f2e-40c0-ab74-21c8f6e41e7b/downloadeb738a1f34622bfa2ce8482fff9a92ceMD52ORIGINAL11249.pdfapplication/pdf352889https://repositorio.uniandes.edu.co/bitstreams/72fed390-24dc-447f-b8b8-abe8c20f8cc1/download3a95d382bc86ace14e5494f256554e1cMD511992/61026oai:repositorio.uniandes.edu.co:1992/610262024-03-13 14:35:37.511http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co
dc.title.spa.fl_str_mv Optimal rates for curvature flows on the circle
title Optimal rates for curvature flows on the circle
spellingShingle Optimal rates for curvature flows on the circle
Curvas en superficies
Curvatura
Flujos (Sistemas dinámicos diferenciales)
Geometría diferencial
title_short Optimal rates for curvature flows on the circle
title_full Optimal rates for curvature flows on the circle
title_fullStr Optimal rates for curvature flows on the circle
title_full_unstemmed Optimal rates for curvature flows on the circle
title_sort Optimal rates for curvature flows on the circle
dc.creator.fl_str_mv Galindo Olarte, Andrés Felipe
dc.contributor.advisor.none.fl_str_mv Giniatoulline, Andrei
Sanjuán Cuéllar, Alvaro Arturo
Cortissoz Iriarte, Jean Carlos
dc.contributor.author.none.fl_str_mv Galindo Olarte, Andrés Felipe
dc.subject.keyword.spa.fl_str_mv Curvas en superficies
Curvatura
Flujos (Sistemas dinámicos diferenciales)
Geometría diferencial
topic Curvas en superficies
Curvatura
Flujos (Sistemas dinámicos diferenciales)
Geometría diferencial
description "In this thesis we will study the stability of the convergence for the solutions to the normalized p-curve shorteningflow (p-CSF). In the first chapter we Will explain what the p-curve shortening flow is, and the most important results regarding the convergence and stability of its solutions. In chapter two, we Will explain what is the problem with the eigenvalues of the linearization of the p-curve shortening flow, and how this prevent us to use the standard methods to show stability for the p-CSF. In the third and final chapter, we Will present our main result which is that the normalized solution to the p-CSF converges at a rate of e-(3P-l) towards 1; what is really interesting is that 3p ? 1 is the second eigenvalue of the linearimtion of the original problem". -- Tomado del resumen.
publishDate 2016
dc.date.issued.spa.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2022-09-26T22:07:29Z
dc.date.available.none.fl_str_mv 2022-09-26T22:07:29Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/61026
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
dc.identifier.local.spa.fl_str_mv 754001-1001
url http://hdl.handle.net/1992/61026
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
754001-1001
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 41 hojas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de los Andes
dc.publisher.program.spa.fl_str_mv Maestría en Matemáticas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.department.spa.fl_str_mv Departamento de Matemáticas
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/42a85c9c-c968-414b-95e8-e02c3a63a3a2/download
https://repositorio.uniandes.edu.co/bitstreams/0cfe1cdb-4f2e-40c0-ab74-21c8f6e41e7b/download
https://repositorio.uniandes.edu.co/bitstreams/72fed390-24dc-447f-b8b8-abe8c20f8cc1/download
bitstream.checksum.fl_str_mv 33c49bfc33ca2512519abef7705827c6
eb738a1f34622bfa2ce8482fff9a92ce
3a95d382bc86ace14e5494f256554e1c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133989655248896