Optimal rates for curvature flows on the circle
"In this thesis we will study the stability of the convergence for the solutions to the normalized p-curve shorteningflow (p-CSF). In the first chapter we Will explain what the p-curve shortening flow is, and the most important results regarding the convergence and stability of its solutions. I...
- Autores:
-
Galindo Olarte, Andrés Felipe
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/61026
- Acceso en línea:
- http://hdl.handle.net/1992/61026
- Palabra clave:
- Curvas en superficies
Curvatura
Flujos (Sistemas dinámicos diferenciales)
Geometría diferencial
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
UNIANDES2_84f815d30a10262cf6b016c47f9d2685 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/61026 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Giniatoulline, AndreiSanjuán Cuéllar, Alvaro ArturoCortissoz Iriarte, Jean Carlosvirtual::12082-1Galindo Olarte, Andrés Felipe265995002022-09-26T22:07:29Z2022-09-26T22:07:29Z2016http://hdl.handle.net/1992/61026instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/754001-1001"In this thesis we will study the stability of the convergence for the solutions to the normalized p-curve shorteningflow (p-CSF). In the first chapter we Will explain what the p-curve shortening flow is, and the most important results regarding the convergence and stability of its solutions. In chapter two, we Will explain what is the problem with the eigenvalues of the linearization of the p-curve shortening flow, and how this prevent us to use the standard methods to show stability for the p-CSF. In the third and final chapter, we Will present our main result which is that the normalized solution to the p-CSF converges at a rate of e-(3P-l) towards 1; what is really interesting is that 3p ? 1 is the second eigenvalue of the linearimtion of the original problem". -- Tomado del resumen.Magíster en MatemáticasMaestría41 hojasapplication/pdfengUniversidad de los AndesMaestría en MatemáticasFacultad de CienciasDepartamento de MatemáticasOptimal rates for curvature flows on the circleTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMCurvas en superficiesCurvaturaFlujos (Sistemas dinámicos diferenciales)Geometría diferencial201510192Publicationhttps://scholar.google.es/citations?user=44Ujs4QAAAAJvirtual::12082-10000-0002-7440-4425virtual::12082-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000821411virtual::12082-109606ca2-87c9-4df9-b557-b65295156fdfvirtual::12082-109606ca2-87c9-4df9-b557-b65295156fdfvirtual::12082-1THUMBNAIL11249.pdf.jpg11249.pdf.jpgIM Thumbnailimage/jpeg3098https://repositorio.uniandes.edu.co/bitstreams/42a85c9c-c968-414b-95e8-e02c3a63a3a2/download33c49bfc33ca2512519abef7705827c6MD53TEXT11249.pdf.txt11249.pdf.txtExtracted texttext/plain57822https://repositorio.uniandes.edu.co/bitstreams/0cfe1cdb-4f2e-40c0-ab74-21c8f6e41e7b/downloadeb738a1f34622bfa2ce8482fff9a92ceMD52ORIGINAL11249.pdfapplication/pdf352889https://repositorio.uniandes.edu.co/bitstreams/72fed390-24dc-447f-b8b8-abe8c20f8cc1/download3a95d382bc86ace14e5494f256554e1cMD511992/61026oai:repositorio.uniandes.edu.co:1992/610262024-03-13 14:35:37.511http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |
dc.title.spa.fl_str_mv |
Optimal rates for curvature flows on the circle |
title |
Optimal rates for curvature flows on the circle |
spellingShingle |
Optimal rates for curvature flows on the circle Curvas en superficies Curvatura Flujos (Sistemas dinámicos diferenciales) Geometría diferencial |
title_short |
Optimal rates for curvature flows on the circle |
title_full |
Optimal rates for curvature flows on the circle |
title_fullStr |
Optimal rates for curvature flows on the circle |
title_full_unstemmed |
Optimal rates for curvature flows on the circle |
title_sort |
Optimal rates for curvature flows on the circle |
dc.creator.fl_str_mv |
Galindo Olarte, Andrés Felipe |
dc.contributor.advisor.none.fl_str_mv |
Giniatoulline, Andrei Sanjuán Cuéllar, Alvaro Arturo Cortissoz Iriarte, Jean Carlos |
dc.contributor.author.none.fl_str_mv |
Galindo Olarte, Andrés Felipe |
dc.subject.keyword.spa.fl_str_mv |
Curvas en superficies Curvatura Flujos (Sistemas dinámicos diferenciales) Geometría diferencial |
topic |
Curvas en superficies Curvatura Flujos (Sistemas dinámicos diferenciales) Geometría diferencial |
description |
"In this thesis we will study the stability of the convergence for the solutions to the normalized p-curve shorteningflow (p-CSF). In the first chapter we Will explain what the p-curve shortening flow is, and the most important results regarding the convergence and stability of its solutions. In chapter two, we Will explain what is the problem with the eigenvalues of the linearization of the p-curve shortening flow, and how this prevent us to use the standard methods to show stability for the p-CSF. In the third and final chapter, we Will present our main result which is that the normalized solution to the p-CSF converges at a rate of e-(3P-l) towards 1; what is really interesting is that 3p ? 1 is the second eigenvalue of the linearimtion of the original problem". -- Tomado del resumen. |
publishDate |
2016 |
dc.date.issued.spa.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2022-09-26T22:07:29Z |
dc.date.available.none.fl_str_mv |
2022-09-26T22:07:29Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/61026 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
dc.identifier.local.spa.fl_str_mv |
754001-1001 |
url |
http://hdl.handle.net/1992/61026 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ 754001-1001 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
41 hojas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.spa.fl_str_mv |
Maestría en Matemáticas |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.spa.fl_str_mv |
Departamento de Matemáticas |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/42a85c9c-c968-414b-95e8-e02c3a63a3a2/download https://repositorio.uniandes.edu.co/bitstreams/0cfe1cdb-4f2e-40c0-ab74-21c8f6e41e7b/download https://repositorio.uniandes.edu.co/bitstreams/72fed390-24dc-447f-b8b8-abe8c20f8cc1/download |
bitstream.checksum.fl_str_mv |
33c49bfc33ca2512519abef7705827c6 eb738a1f34622bfa2ce8482fff9a92ce 3a95d382bc86ace14e5494f256554e1c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133989655248896 |