Cambio climático y maíz: cambios en las respuestas fisiológicas al estrés hídrico de Zea mays en presencia de bacterias promotoras de crecimiento (PGPB)

El cambio climático es uno de los retos actuales más importantes debido a los potenciales efectos adversos en la disponibilidad de agua y el crecimiento de cultivos y, por ende, en nuestra seguridad alimentaria. El cultivo de maíz es el tercer cultivo más importante a nivel global y se ve gravemente...

Full description

Autores:
Racedo Pulido, Camilo
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/69224
Acceso en línea:
http://hdl.handle.net/1992/69224
Palabra clave:
Irrigación
Maíz
PGPB
Porva
Sequía
Biología
Rights
openAccess
License
Atribución 4.0 Internacional
id UNIANDES2_7fb05772975744fd03146d52ea40c49a
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/69224
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Cambio climático y maíz: cambios en las respuestas fisiológicas al estrés hídrico de Zea mays en presencia de bacterias promotoras de crecimiento (PGPB)
title Cambio climático y maíz: cambios en las respuestas fisiológicas al estrés hídrico de Zea mays en presencia de bacterias promotoras de crecimiento (PGPB)
spellingShingle Cambio climático y maíz: cambios en las respuestas fisiológicas al estrés hídrico de Zea mays en presencia de bacterias promotoras de crecimiento (PGPB)
Irrigación
Maíz
PGPB
Porva
Sequía
Biología
title_short Cambio climático y maíz: cambios en las respuestas fisiológicas al estrés hídrico de Zea mays en presencia de bacterias promotoras de crecimiento (PGPB)
title_full Cambio climático y maíz: cambios en las respuestas fisiológicas al estrés hídrico de Zea mays en presencia de bacterias promotoras de crecimiento (PGPB)
title_fullStr Cambio climático y maíz: cambios en las respuestas fisiológicas al estrés hídrico de Zea mays en presencia de bacterias promotoras de crecimiento (PGPB)
title_full_unstemmed Cambio climático y maíz: cambios en las respuestas fisiológicas al estrés hídrico de Zea mays en presencia de bacterias promotoras de crecimiento (PGPB)
title_sort Cambio climático y maíz: cambios en las respuestas fisiológicas al estrés hídrico de Zea mays en presencia de bacterias promotoras de crecimiento (PGPB)
dc.creator.fl_str_mv Racedo Pulido, Camilo
dc.contributor.advisor.none.fl_str_mv Lasso de Paulis, Eloisa
Bernal Giraldo, Adriana Jimena
dc.contributor.author.none.fl_str_mv Racedo Pulido, Camilo
dc.contributor.researchgroup.es_CO.fl_str_mv ECOFIV
LIMMA
dc.subject.keyword.none.fl_str_mv Irrigación
Maíz
PGPB
Porva
Sequía
topic Irrigación
Maíz
PGPB
Porva
Sequía
Biología
dc.subject.themes.es_CO.fl_str_mv Biología
description El cambio climático es uno de los retos actuales más importantes debido a los potenciales efectos adversos en la disponibilidad de agua y el crecimiento de cultivos y, por ende, en nuestra seguridad alimentaria. El cultivo de maíz es el tercer cultivo más importante a nivel global y se ve gravemente afectado por períodos de sequía que reducen su productividad. Para asegurar nuestro futuro alimenticio debemos explorar estrategias de cultivo que aseguren mantener la productividad aún en escenarios de sequía. En este trabajo evaluamos la capacidad de la variedad del maíz 'porva' de crecer bajo sequía al ser inoculado con una bacteria promotora de crecimiento vegetal (PGPB), de forma que se pueda determinar su comportamiento ante el estrés hídrico y si la presencia de esta bacteria logra aliviar el estrés hídrico. Se tomaron medidas fisiológicas como fluorescencia (Fv/Fm), conductancia estomática (gs) y potencial hídrico, así como mediciones de área foliar y peso seco tanto de la parte aérea como de raíz. En respuesta al tratamiento de sequía las plantas disminuyeron la eficiencia del fotosistema PSII detectado por medio de fluorescencia, disminuyeron su conductancia estomática y tuvieron valores más negativos de potencial hídrico. Sin embargo, no se detectó ningún efecto asociado a la PGPB indicando que la bacteria no alivió el estrés hídrico. Se observó que las medidas de área foliar y peso seco no fueron significativamente diferentes entre los tratamientos, indicando que 21 días de sequía no afectan el crecimiento de esta variedad de maíz. Nuestros resultados sugieren que la variedad de maíz 'porva' sería una buena variedad para ser utilizado en climas áridos o en condiciones de cambio climático. Sin embargo, es necesario realizar más ensayos para poder comprobar la efectividad de esta variedad hasta la producción del grano.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-08-04T16:43:41Z
dc.date.available.none.fl_str_mv 2023-08-04T16:43:41Z
dc.date.issued.none.fl_str_mv 2023-08-03
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/69224
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/69224
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv spa
language spa
dc.relation.references.es_CO.fl_str_mv Ahmed, I., Ullah, A., Rahman, M. M., Ahmad, B., Wajid, S., Ahmad, A., & Ahmed, S. (2019). Climate Change Impacts and Adaptation Strategies for Agronomic Crops. En IntechOpen eBooks. IntechOpen. https://doi.org/10.5772/intechopen.82697
Aslam, M., Maqbool, M. A., & Cengiz, R. (2015). Drought Stress in Maize (Zea mays L.): Effects, Resistance Mechanisms, Global Achievements and Biological Strategies for Improvement. Springer.
Babalola, O. O. (2010). Beneficial bacteria of agricultural importance. Biotechnology Letters, 32(11), 1559-1570. https://doi.org/10.1007/s10529-010-0347-0
Badr, A. N., & Brüggemann, W. (2020). Special issue in honour of Prof. Reto J. Strasser - Comparative analysis of drought stress response of maize genotypes using chlorophyll fluorescence measurements and leaf relative water content. Photosynthetica, 58, 638-645. https://doi.org/10.32615/ps.2020.014
Basu, A., Prasad, P., Das, S. N., Kalam, S., Sayyed, R. Z., Reddy, M. S. & El Enshasy, H. (2021). Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability, 13(3), 1140. https://doi.org/10.3390/su13031140
Bevivino, A. (1998). Characterization of a free-living maize-rhizosphere population of Burkholderia cepacia: effect of seed treatment on disease suppression and growth promotion of maize. FEMS Microbiology Ecology, 27(3), 225-237. https://doi.org/10.1016/s0168-6496(98)00069-5
Bhaskar, R., & Ackerly, D. D. (2006). Ecological relevance of minimum seasonal water potentials. Physiologia Plantarum, 127(3), 353-359. https://doi.org/10.1111/j.1399-3054.2006.00718.x
Boyes, D., Zayed, A., Ascenzi, R., McCaskill, A. J., Hoffman, N. R., Davis, K. L., & Görlach, J. (2001). Growth Stage-Based Phenotypic Analysis of Arabidopsis. The Plant Cell, 13(7), 1499-1510. https://doi.org/10.1105/tpc.010011
Breedt, G., Labuschagne, N., & Coutinho, T. A. (2017). Seed treatment with selected plant growth-promoting rhizobacteria increases maize yield in the field. Annals of Applied Biology, 171(2), 229-236. https://doi.org/10.1111/aab.12366
Calvo, P., Nelson, L. M., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383(1-2), 3-41. https://doi.org/10.1007/s11104-014-2131-8
Chen, D., Wang, S., Beibei, C., Cao, D., Leng, G., Li, H., Yin, L., Shan, L., & Deng, X. (2016). Genotypic Variation in Growth and Physiological Response to Drought Stress and Re-Watering Reveals the Critical Role of Recovery in Drought Adaptation in Maize Seedlings. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.01241
Chitara, M. K., Chauhan, S., & Singh, R. (2021). Bioremediation of Polluted Soil by Using Plant Growth-Promoting Rhizobacteria. Microorganisms for sustainability, 203-226. https://doi.org/10.1007/978-981-15-7447-4_8
CIMMYT & CIAT. (2019). Maize for Colombia 2030 vision. https://repository.cimmyt.org/handle/10883/20382
Dane, J. H., & Topp, C. G. (2020). Methods of Soil Analysis, Part 4: Physical Methods: 20. Acsess.
Dasgupta, D., Kumar, K., Miglani, R., Mishra, R., Panda, A. K., & Bisht, S. S. (2021). Microbial biofertilizers: Recent trends and future outlook. Elsevier eBooks, 1-26. https://doi.org/10.1016/b978-0-12-822098-6.00001-x
Davoudpour, Y., Schmidt, M., Calabrese, F., Richnow, H. H., & Musat, N. (2020). High resolution microscopy to evaluate the efficiency of surface sterilization of Zea Mays seeds. PLOS ONE, 15(11), e0242247. https://doi.org/10.1371/journal.pone.0242247
De Araujo, V. A., De Andrade Lira, M., De Souza Júnior, V. S., De Araújo Filho, J. C., Fracetto, F. J. C., Andreote, F. D., De Araujo Pereira, A. P., Júnior, J. O. C. A., Barros, F. M. D. R., & Fracetto, G. G. M. (2020). Bacteria from tropical semiarid temporary ponds promote maize growth under hydric stress. Microbiological Research, 240, 126564. https://doi.org/10.1016/j.micres.2020.126564
De Redactores Legis, E. (2022). Importaciones de maíz en Colombia. Legis blog. https://blog.legis.com.co/comercio-exterior/importaciones-de-maiz-en-colombia
Desbrosses, G., Contesto, C., Varoquaux, F., Galland, M., & Touraine, B. (2009). PGPR-Arabidopsis interactions is a useful system to study signaling pathways involved in plant developmental control. Plant Signaling & Behavior, 4(4), 319-321. https://doi.org/10.4161/psb.4.4.8106
Djaman, K., Allen, S. M., Djaman, D. F., Koudahe, K., Irmak, S., Puppala, N., Darapuneni, M. K., & Angadi, S. V. (2021). Planting date and plant density effects on maize growth, yield and water use efficiency. Environmental challenges, 6, 100417. https://doi.org/10.1016/j.envc.2021.100417
Edreira, J. I. R., Çarpici, E. B., Sammarro, D., & Otegui, M. E. (2011). Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids. Field Crops Research, 123(2), 62-73. https://doi.org/10.1016/j.fcr.2011.04.015
Efeoglu, B., Ekmekçi, Y., & Çiçek, N. (2009). Physiological responses of three maize cultivars to drought stress and recovery. South African Journal of Botany, 75(1), 34-42. https://doi.org/10.1016/j.sajb.2008.06.005
EPA (2023). Causes of Climate Change | US EPA. (2023, April 24). US EPA. https://www.epa.gov/climatechange-science/causes-climate-change
Gao, J., Yang, M., Wei, Y., Huang, Y., Zhang, H., He, W., Sheng, H., & An, L. (2019). Screening of plant growth promoting bacteria (PGPB) from rhizosphere and bulk soil of Caragana microphylla in different habitats and their effects on the growth of Arabidopsis seedlings. Biotechnology & Biotechnological Equipment. https://doi.org/10.1080/13102818.2019.1629841
Gezahegn, A. M. (2021). Role of Integrated Nutrient Management for Sustainable Maize Production. International Journal of Agronomy, 2021, 1-7. https://doi.org/10.1155/2021/9982884
Gleason, S. M., Cooper, M. A., Wiggans, D. R., Bliss, C. A., Romay, M. C., Gore, M. A., Mickelbart, M. V., Topp, C. N., Zhang, H., Hansen, N. C., & Comas, L. H. (2019). Stomatal conductance, xylem water transport, and root traits underpin improved performance under drought and well-watered conditions across a diverse panel of maize inbred lines. Field Crops Research, 234, 119-128. https://doi.org/10.1016/j.fcr.2019.02.001
Glick, B. R. (2012). Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica, 2012, 1-15. https://doi.org/10.6064/2012/963401Gupta, S., & Pandey, S. (2019). ACC Deaminase Producing Bacteria With Multifarious Plant Growth Promoting Traits Alleviates Salinity Stress in French Bean (Phaseolus vulgaris) Plants. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.01506
Hatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L. H., Izaurralde, R. C., Ort, D. R., Thomson, A. M., & Wolfe, D. A. (2011). Climate Impacts on Agriculture: Implications for Crop Production. Agronomy Journal, 103(2), 351-370. https://doi.org/10.2134/agronj2010.0303
Imadi, S. R., Gul, A., Dikilitas, M., Karakas, S., Sharma, I., & Ahmad, P. (2016). Water stress. John Wiley & Sons, Ltd eBooks, 343-355. https://doi.org/10.1002/9781119054450.ch21
IPCC, 2023: Summary for Policymakers. In: Climate Change 2023: Synthesis Report.A Report of the Intergovernmental Panel on Climate Change. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, (in press).
Jägerbrand, A. K., & Kudo, G. (2016). Short-Term Responses in Maximum Quantum Yield of PSII (Fv/Fm) to ex situ Temperature Treatment of Populations of Bryophytes Originating from Different Sites in Hokkaido, Northern Japan. Plants, 5(2), 22. https://doi.org/10.3390/plants5020022
Jeanguenin, L., Mir, A. P., & Chaumont, F. (2017). Uptake, Loss and Control. En Elsevier eBooks (pp. 135-140). https://doi.org/10.1016/b978-0-12-394807-6.00087-3
Kang, Y., Khan, S. & Ma, X. (2009). Climate change impacts on crop yield, crop water productivity and food security - A review. Progress in Natural Science, 19(12), 1665-1674. https://doi.org/10.1016/j.pnsc.2009.08.001
Kar, M. M., & Raichaudhuri, A. (2021). Overview of Arabidopsis as a Genetics Model System and Its Limitation, Leading to the Development of Emerging Plant Model Systems. IntechOpen eBooks. https://doi.org/10.5772/intechopen.99818
Maazou, A. S., Tu, J., Qiu, J., & Liu, Z. (2016). Breeding for Drought Tolerance in Maize (<i>Zea mays</i> L.). American Journal of Plant Sciences, 07(14), 1858-1870. https://doi.org/10.4236/ajps.2016.714172
Martínez-Vilalta, J., & Garcia-Forner, N. (2017). Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept. Plant Cell and Environment, 40(6), 962-976. https://doi.org/10.1111/pce.12846
Min, H., Chen, C., Wei, S., Shang, X., Sun, M., Xia, R., Liu, X., Hao, D., Chen, H., & Xie, Q. (2016). Identification of Drought Tolerant Mechanisms in Maize Seedlings Based on Transcriptome Analysis of Recombination Inbred Lines. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01080
Murashige, T. & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Naseem, H., Ahsan, M., Shahid, M., & Khan, N. (2018). Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. Journal of Basic Microbiology, 58(12), 1009-1022. https://doi.org/10.1002/jobm.201800309
Navarro Cerrillo, Rafael & Ariza, David & Maldonado Rodriguez, Ronald. (2004). Chlorophyll Fluorescence Response in Five Provenances of Pinus Pinus halepensis Mill. to Drought Stress. Cuadernos de la Sociedad Española de Ciencias Forestales. 17. 69-74.
Notununu, I., Moleleki, L. N., Roopnarain, A., & Adeleke, R. (2022). Effects of plant growth-promoting rhizobacteria on the molecular responses of maize under drought and heat stresses: A review. Pedosphere, 32(1), 90-106. https://doi.org/10.1016/s1002-0160(21)60051-6
O'Callaghan, K. J., Dixon, R. A., & Cocking, E. C. (2001). Arabidopsis thaliana: a model for studies of colonization by non-pathogenic and plant-growth-promoting rhizobacteria. Functional Plant Biology, 28(9), 975. https://doi.org/10.1071/pp01048
Pereira, S. A., Abreu, D., Ditroilo, M., Vega, A., & Castro, P. M. L. (2020). Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize (Zea mays L.) under water deficit conditions. Heliyon, 6(10), e05106. https://doi.org/10.1016/j.heliyon.2020.e05106
Prasad, M., Srinivasan, R., Chaudhary, M. K., Choudhary, M., & Jat, L. K. (2019). Plant Growth Promoting Rhizobacteria (PGPR) for Sustainable Agriculture. Elsevier eBooks, 129-157. https://doi.org/10.1016/b978-0-12-815879-1.00007-0
Ren, X., Sun, D., & Wang, Q. (2016). Modeling the effects of plant density on maize productivity and water balance in the Loess Plateau of China. Agricultural Water Management, 171, 40-48. https://doi.org/10.1016/j.agwat.2016.03.014
Riaz, U., Murtaza, G., Anum, W., Samreen, T., Sarfraz, M., & Nazir, M. (2021). Plant Growth-Promoting Rhizobacteria (PGPR) as Biofertilizers and Biopesticides. Springer eBooks, 181-196. https://doi.org/10.1007/978-3-030-48771-3_11
RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/.
Ryu, C., Hu, C., Locy, R. D., & Kloepper, J. W. (2005). Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant and Soil, 268(1), 285-292. https://doi.org/10.1007/s11104-004-0301-9
Santos, R. A. D., Díaz, P., Lobo, L. L. B., & Rigobelo, E. C. (2020). Use of Plant Growth-Promoting Rhizobacteria in Maize and Sugarcane: Characteristics and Applications. Frontiers in sustainable food systems, 4. https://doi.org/10.3389/fsufs.2020.00136
Schneider, C.A., Rasband, W.S., Eliceiri, K.W. "NIH Image to ImageJ: 25 years of image analysis". Nature Methods 9, 671-675, 2012
Shah, A., Nazari, M., Antar, M., Msimbira, L. A., Naamala, J., Lyu, D., Rabileh, M. A., Zajonc, J., & Smith, D. L. (2021). PGPR in Agriculture: A Sustainable Approach to Increasing Climate Change Resilience. Frontiers in sustainable food systems, 5. https://doi.org/10.3389/fsufs.2021.667546
Shiferaw, B., Prasanna, B. M., Hellin, J., & Bänziger, M. (2011). Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security, 3(3), 307-327. https://doi.org/10.1007/s12571-011-0140-5
Skoufogianni, E., Solomou, A. D., Charvalas, G., & Danalatos, N. (2020). Maize as Energy Crop. En Maize as Energy Crop. IntechOpen. https://doi.org/10.5772/intechopen.88969
Sobejano-Paz, V., Mikkelsen, T. N., Baum, A., Mo, X., Liu, S., Köppl, C. J., Johnson, M. H., Gulyas, L., & García, M. C. (2020). Hyperspectral and Thermal Sensing of Stomatal Conductance, Transpiration, and Photosynthesis for Soybean and Maize under Drought. Remote Sensing, 12(19), 3182. https://doi.org/10.3390/rs12193182
Sommer, S. G., Han, E., Li, X., Rosenqvist, E., & Liu, F. (2023). The Chlorophyll Fluorescence Parameter Fv/Fm Correlates with Loss of Grain Yield after Severe Drought in Three Wheat Genotypes Grown at Two CO2 Concentrations. Plants, 12(3), 436. https://doi.org/10.3390/plants12030436
Strable, J., & Scanlon, M. J. (2009). Maize (Zea mays): A Model Organism for Basic and Applied Research in Plant Biology. CSH Protocols, 2009(10), pdb.emo132. https://doi.org/10.1101/pdb.emo132
Tabassum, B., Khan, A. U., Tariq, M., Ramzan, M., Khan, M. S., Shahid, N., & Aaliya, K. (2017). Bottlenecks in commercialisation and future prospects of PGPR. Applied Soil Ecology, 121, 102-117. https://doi.org/10.1016/j.apsoil.2017.09.030
Tesfaye, K., Zaidi, P. H., Gbegbelegbe, S., Boeber, C., Rahut, D. B., Getaneh, F., Seetharam, K., Erenstein, O., & Stirling, C. M. (2017). Climate change impacts and potential benefits of heat-tolerant maize in South Asia. Theoretical and Applied Climatology, 130(3-4), 959-970. https://doi.org/10.1007/s00704-016-1931-6
Wheeler, T., & Von Braun, J. (2013). Climate Change Impacts on Global Food Security. Science, 341(6145), 508-513. https://doi.org/10.1126/science.1239402
Wu, J., Zhang, J., Ge, Z., Liwei, X., Shuqing, H., Shen, C., & Kong, F. (2021). Impact of climate change on maize yield in China from 1979 to 2016. Journal of Integrative Agriculture, 20(1), 289-299. https://doi.org/10.1016/s2095-3119(20)63244-0
Yadav, O. P., Hossain, F., Karjagi, C. G., Kumar, B. V. K. V., Zaidi, P. H., Jat, S. L., Chawla, J. S., Kaul, J., Hooda, K. S., Kumar, P. S., Yadava, P. C., & Dhillon, B. S. (2015). Genetic Improvement of Maize in India: Retrospect and Prospects. Agricultural research. https://doi.org/10.1007/s40003-015-0180-8
dc.rights.license.*.fl_str_mv Atribución 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 21 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Biología
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Ciencias Biológicas
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/eb82ac9c-9af5-4f73-8fc6-9ce69511062d/download
https://repositorio.uniandes.edu.co/bitstreams/878a94cb-18c8-4ff0-b472-b226b5219924/download
https://repositorio.uniandes.edu.co/bitstreams/1c81e4b6-816a-4aeb-a6fe-5f6c40ce569c/download
https://repositorio.uniandes.edu.co/bitstreams/1cf1078c-dfc3-429a-ab74-9c8cd9eb9e8f/download
https://repositorio.uniandes.edu.co/bitstreams/194ed99a-3f48-4ff4-87b9-68d5b3041b93/download
https://repositorio.uniandes.edu.co/bitstreams/69fa1dbb-d43b-4e51-a597-795950cf494c/download
https://repositorio.uniandes.edu.co/bitstreams/ecac6671-d282-441a-91e9-89e71ed5ddcb/download
https://repositorio.uniandes.edu.co/bitstreams/b7f362b2-8be2-49a7-8fa9-52d278b42fc8/download
bitstream.checksum.fl_str_mv e5c7ce88ca1f40617f35822a013e7784
83ae6abe15efed426a1bca41b6bda29a
0175ea4a2d4caec4bbcc37e300941108
5aa5c691a1ffe97abd12c2966efcb8d6
9cbc71048d766e3b890a2fe5e8ad11ae
a614dcc53c7dbefbef4b8a3e3fbda878
7edd0a911f6a11254148fb5cfe68a9fa
08b106dfeb12472e88207a069e15ba30
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133969375789056
spelling Atribución 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lasso de Paulis, Eloisa034704f5-c235-430c-96bd-7c0ebf3f836c600Bernal Giraldo, Adriana Jimena721a9490-6cc8-4365-b58a-154fb21deb4a600Racedo Pulido, Camilo74b30f32-fb8d-4214-9d43-967c1e4ce14b600ECOFIVLIMMA2023-08-04T16:43:41Z2023-08-04T16:43:41Z2023-08-03http://hdl.handle.net/1992/69224instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/El cambio climático es uno de los retos actuales más importantes debido a los potenciales efectos adversos en la disponibilidad de agua y el crecimiento de cultivos y, por ende, en nuestra seguridad alimentaria. El cultivo de maíz es el tercer cultivo más importante a nivel global y se ve gravemente afectado por períodos de sequía que reducen su productividad. Para asegurar nuestro futuro alimenticio debemos explorar estrategias de cultivo que aseguren mantener la productividad aún en escenarios de sequía. En este trabajo evaluamos la capacidad de la variedad del maíz 'porva' de crecer bajo sequía al ser inoculado con una bacteria promotora de crecimiento vegetal (PGPB), de forma que se pueda determinar su comportamiento ante el estrés hídrico y si la presencia de esta bacteria logra aliviar el estrés hídrico. Se tomaron medidas fisiológicas como fluorescencia (Fv/Fm), conductancia estomática (gs) y potencial hídrico, así como mediciones de área foliar y peso seco tanto de la parte aérea como de raíz. En respuesta al tratamiento de sequía las plantas disminuyeron la eficiencia del fotosistema PSII detectado por medio de fluorescencia, disminuyeron su conductancia estomática y tuvieron valores más negativos de potencial hídrico. Sin embargo, no se detectó ningún efecto asociado a la PGPB indicando que la bacteria no alivió el estrés hídrico. Se observó que las medidas de área foliar y peso seco no fueron significativamente diferentes entre los tratamientos, indicando que 21 días de sequía no afectan el crecimiento de esta variedad de maíz. Nuestros resultados sugieren que la variedad de maíz 'porva' sería una buena variedad para ser utilizado en climas áridos o en condiciones de cambio climático. Sin embargo, es necesario realizar más ensayos para poder comprobar la efectividad de esta variedad hasta la producción del grano.BiólogoPregradoCambio climáticoCultivosPromotores de crecimiento21 páginasapplication/pdfspaUniversidad de los AndesBiologíaFacultad de CienciasDepartamento de Ciencias BiológicasCambio climático y maíz: cambios en las respuestas fisiológicas al estrés hídrico de Zea mays en presencia de bacterias promotoras de crecimiento (PGPB)Trabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPIrrigaciónMaízPGPBPorvaSequíaBiologíaAhmed, I., Ullah, A., Rahman, M. M., Ahmad, B., Wajid, S., Ahmad, A., & Ahmed, S. (2019). Climate Change Impacts and Adaptation Strategies for Agronomic Crops. En IntechOpen eBooks. IntechOpen. https://doi.org/10.5772/intechopen.82697Aslam, M., Maqbool, M. A., & Cengiz, R. (2015). Drought Stress in Maize (Zea mays L.): Effects, Resistance Mechanisms, Global Achievements and Biological Strategies for Improvement. Springer.Babalola, O. O. (2010). Beneficial bacteria of agricultural importance. Biotechnology Letters, 32(11), 1559-1570. https://doi.org/10.1007/s10529-010-0347-0Badr, A. N., & Brüggemann, W. (2020). Special issue in honour of Prof. Reto J. Strasser - Comparative analysis of drought stress response of maize genotypes using chlorophyll fluorescence measurements and leaf relative water content. Photosynthetica, 58, 638-645. https://doi.org/10.32615/ps.2020.014Basu, A., Prasad, P., Das, S. N., Kalam, S., Sayyed, R. Z., Reddy, M. S. & El Enshasy, H. (2021). Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability, 13(3), 1140. https://doi.org/10.3390/su13031140Bevivino, A. (1998). Characterization of a free-living maize-rhizosphere population of Burkholderia cepacia: effect of seed treatment on disease suppression and growth promotion of maize. FEMS Microbiology Ecology, 27(3), 225-237. https://doi.org/10.1016/s0168-6496(98)00069-5Bhaskar, R., & Ackerly, D. D. (2006). Ecological relevance of minimum seasonal water potentials. Physiologia Plantarum, 127(3), 353-359. https://doi.org/10.1111/j.1399-3054.2006.00718.xBoyes, D., Zayed, A., Ascenzi, R., McCaskill, A. J., Hoffman, N. R., Davis, K. L., & Görlach, J. (2001). Growth Stage-Based Phenotypic Analysis of Arabidopsis. The Plant Cell, 13(7), 1499-1510. https://doi.org/10.1105/tpc.010011Breedt, G., Labuschagne, N., & Coutinho, T. A. (2017). Seed treatment with selected plant growth-promoting rhizobacteria increases maize yield in the field. Annals of Applied Biology, 171(2), 229-236. https://doi.org/10.1111/aab.12366Calvo, P., Nelson, L. M., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383(1-2), 3-41. https://doi.org/10.1007/s11104-014-2131-8Chen, D., Wang, S., Beibei, C., Cao, D., Leng, G., Li, H., Yin, L., Shan, L., & Deng, X. (2016). Genotypic Variation in Growth and Physiological Response to Drought Stress and Re-Watering Reveals the Critical Role of Recovery in Drought Adaptation in Maize Seedlings. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.01241Chitara, M. K., Chauhan, S., & Singh, R. (2021). Bioremediation of Polluted Soil by Using Plant Growth-Promoting Rhizobacteria. Microorganisms for sustainability, 203-226. https://doi.org/10.1007/978-981-15-7447-4_8CIMMYT & CIAT. (2019). Maize for Colombia 2030 vision. https://repository.cimmyt.org/handle/10883/20382Dane, J. H., & Topp, C. G. (2020). Methods of Soil Analysis, Part 4: Physical Methods: 20. Acsess.Dasgupta, D., Kumar, K., Miglani, R., Mishra, R., Panda, A. K., & Bisht, S. S. (2021). Microbial biofertilizers: Recent trends and future outlook. Elsevier eBooks, 1-26. https://doi.org/10.1016/b978-0-12-822098-6.00001-xDavoudpour, Y., Schmidt, M., Calabrese, F., Richnow, H. H., & Musat, N. (2020). High resolution microscopy to evaluate the efficiency of surface sterilization of Zea Mays seeds. PLOS ONE, 15(11), e0242247. https://doi.org/10.1371/journal.pone.0242247De Araujo, V. A., De Andrade Lira, M., De Souza Júnior, V. S., De Araújo Filho, J. C., Fracetto, F. J. C., Andreote, F. D., De Araujo Pereira, A. P., Júnior, J. O. C. A., Barros, F. M. D. R., & Fracetto, G. G. M. (2020). Bacteria from tropical semiarid temporary ponds promote maize growth under hydric stress. Microbiological Research, 240, 126564. https://doi.org/10.1016/j.micres.2020.126564De Redactores Legis, E. (2022). Importaciones de maíz en Colombia. Legis blog. https://blog.legis.com.co/comercio-exterior/importaciones-de-maiz-en-colombiaDesbrosses, G., Contesto, C., Varoquaux, F., Galland, M., & Touraine, B. (2009). PGPR-Arabidopsis interactions is a useful system to study signaling pathways involved in plant developmental control. Plant Signaling & Behavior, 4(4), 319-321. https://doi.org/10.4161/psb.4.4.8106Djaman, K., Allen, S. M., Djaman, D. F., Koudahe, K., Irmak, S., Puppala, N., Darapuneni, M. K., & Angadi, S. V. (2021). Planting date and plant density effects on maize growth, yield and water use efficiency. Environmental challenges, 6, 100417. https://doi.org/10.1016/j.envc.2021.100417Edreira, J. I. R., Çarpici, E. B., Sammarro, D., & Otegui, M. E. (2011). Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids. Field Crops Research, 123(2), 62-73. https://doi.org/10.1016/j.fcr.2011.04.015Efeoglu, B., Ekmekçi, Y., & Çiçek, N. (2009). Physiological responses of three maize cultivars to drought stress and recovery. South African Journal of Botany, 75(1), 34-42. https://doi.org/10.1016/j.sajb.2008.06.005EPA (2023). Causes of Climate Change | US EPA. (2023, April 24). US EPA. https://www.epa.gov/climatechange-science/causes-climate-changeGao, J., Yang, M., Wei, Y., Huang, Y., Zhang, H., He, W., Sheng, H., & An, L. (2019). Screening of plant growth promoting bacteria (PGPB) from rhizosphere and bulk soil of Caragana microphylla in different habitats and their effects on the growth of Arabidopsis seedlings. Biotechnology & Biotechnological Equipment. https://doi.org/10.1080/13102818.2019.1629841Gezahegn, A. M. (2021). Role of Integrated Nutrient Management for Sustainable Maize Production. International Journal of Agronomy, 2021, 1-7. https://doi.org/10.1155/2021/9982884Gleason, S. M., Cooper, M. A., Wiggans, D. R., Bliss, C. A., Romay, M. C., Gore, M. A., Mickelbart, M. V., Topp, C. N., Zhang, H., Hansen, N. C., & Comas, L. H. (2019). Stomatal conductance, xylem water transport, and root traits underpin improved performance under drought and well-watered conditions across a diverse panel of maize inbred lines. Field Crops Research, 234, 119-128. https://doi.org/10.1016/j.fcr.2019.02.001Glick, B. R. (2012). Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica, 2012, 1-15. https://doi.org/10.6064/2012/963401Gupta, S., & Pandey, S. (2019). ACC Deaminase Producing Bacteria With Multifarious Plant Growth Promoting Traits Alleviates Salinity Stress in French Bean (Phaseolus vulgaris) Plants. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.01506Hatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L. H., Izaurralde, R. C., Ort, D. R., Thomson, A. M., & Wolfe, D. A. (2011). Climate Impacts on Agriculture: Implications for Crop Production. Agronomy Journal, 103(2), 351-370. https://doi.org/10.2134/agronj2010.0303Imadi, S. R., Gul, A., Dikilitas, M., Karakas, S., Sharma, I., & Ahmad, P. (2016). Water stress. John Wiley & Sons, Ltd eBooks, 343-355. https://doi.org/10.1002/9781119054450.ch21IPCC, 2023: Summary for Policymakers. In: Climate Change 2023: Synthesis Report.A Report of the Intergovernmental Panel on Climate Change. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, (in press).Jägerbrand, A. K., & Kudo, G. (2016). Short-Term Responses in Maximum Quantum Yield of PSII (Fv/Fm) to ex situ Temperature Treatment of Populations of Bryophytes Originating from Different Sites in Hokkaido, Northern Japan. Plants, 5(2), 22. https://doi.org/10.3390/plants5020022Jeanguenin, L., Mir, A. P., & Chaumont, F. (2017). Uptake, Loss and Control. En Elsevier eBooks (pp. 135-140). https://doi.org/10.1016/b978-0-12-394807-6.00087-3Kang, Y., Khan, S. & Ma, X. (2009). Climate change impacts on crop yield, crop water productivity and food security - A review. Progress in Natural Science, 19(12), 1665-1674. https://doi.org/10.1016/j.pnsc.2009.08.001Kar, M. M., & Raichaudhuri, A. (2021). Overview of Arabidopsis as a Genetics Model System and Its Limitation, Leading to the Development of Emerging Plant Model Systems. IntechOpen eBooks. https://doi.org/10.5772/intechopen.99818Maazou, A. S., Tu, J., Qiu, J., & Liu, Z. (2016). Breeding for Drought Tolerance in Maize (<i>Zea mays</i> L.). American Journal of Plant Sciences, 07(14), 1858-1870. https://doi.org/10.4236/ajps.2016.714172Martínez-Vilalta, J., & Garcia-Forner, N. (2017). Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept. Plant Cell and Environment, 40(6), 962-976. https://doi.org/10.1111/pce.12846Min, H., Chen, C., Wei, S., Shang, X., Sun, M., Xia, R., Liu, X., Hao, D., Chen, H., & Xie, Q. (2016). Identification of Drought Tolerant Mechanisms in Maize Seedlings Based on Transcriptome Analysis of Recombination Inbred Lines. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01080Murashige, T. & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.xNaseem, H., Ahsan, M., Shahid, M., & Khan, N. (2018). Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. Journal of Basic Microbiology, 58(12), 1009-1022. https://doi.org/10.1002/jobm.201800309Navarro Cerrillo, Rafael & Ariza, David & Maldonado Rodriguez, Ronald. (2004). Chlorophyll Fluorescence Response in Five Provenances of Pinus Pinus halepensis Mill. to Drought Stress. Cuadernos de la Sociedad Española de Ciencias Forestales. 17. 69-74.Notununu, I., Moleleki, L. N., Roopnarain, A., & Adeleke, R. (2022). Effects of plant growth-promoting rhizobacteria on the molecular responses of maize under drought and heat stresses: A review. Pedosphere, 32(1), 90-106. https://doi.org/10.1016/s1002-0160(21)60051-6O'Callaghan, K. J., Dixon, R. A., & Cocking, E. C. (2001). Arabidopsis thaliana: a model for studies of colonization by non-pathogenic and plant-growth-promoting rhizobacteria. Functional Plant Biology, 28(9), 975. https://doi.org/10.1071/pp01048Pereira, S. A., Abreu, D., Ditroilo, M., Vega, A., & Castro, P. M. L. (2020). Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize (Zea mays L.) under water deficit conditions. Heliyon, 6(10), e05106. https://doi.org/10.1016/j.heliyon.2020.e05106Prasad, M., Srinivasan, R., Chaudhary, M. K., Choudhary, M., & Jat, L. K. (2019). Plant Growth Promoting Rhizobacteria (PGPR) for Sustainable Agriculture. Elsevier eBooks, 129-157. https://doi.org/10.1016/b978-0-12-815879-1.00007-0Ren, X., Sun, D., & Wang, Q. (2016). Modeling the effects of plant density on maize productivity and water balance in the Loess Plateau of China. Agricultural Water Management, 171, 40-48. https://doi.org/10.1016/j.agwat.2016.03.014Riaz, U., Murtaza, G., Anum, W., Samreen, T., Sarfraz, M., & Nazir, M. (2021). Plant Growth-Promoting Rhizobacteria (PGPR) as Biofertilizers and Biopesticides. Springer eBooks, 181-196. https://doi.org/10.1007/978-3-030-48771-3_11RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/.Ryu, C., Hu, C., Locy, R. D., & Kloepper, J. W. (2005). Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant and Soil, 268(1), 285-292. https://doi.org/10.1007/s11104-004-0301-9Santos, R. A. D., Díaz, P., Lobo, L. L. B., & Rigobelo, E. C. (2020). Use of Plant Growth-Promoting Rhizobacteria in Maize and Sugarcane: Characteristics and Applications. Frontiers in sustainable food systems, 4. https://doi.org/10.3389/fsufs.2020.00136Schneider, C.A., Rasband, W.S., Eliceiri, K.W. "NIH Image to ImageJ: 25 years of image analysis". Nature Methods 9, 671-675, 2012Shah, A., Nazari, M., Antar, M., Msimbira, L. A., Naamala, J., Lyu, D., Rabileh, M. A., Zajonc, J., & Smith, D. L. (2021). PGPR in Agriculture: A Sustainable Approach to Increasing Climate Change Resilience. Frontiers in sustainable food systems, 5. https://doi.org/10.3389/fsufs.2021.667546Shiferaw, B., Prasanna, B. M., Hellin, J., & Bänziger, M. (2011). Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security, 3(3), 307-327. https://doi.org/10.1007/s12571-011-0140-5Skoufogianni, E., Solomou, A. D., Charvalas, G., & Danalatos, N. (2020). Maize as Energy Crop. En Maize as Energy Crop. IntechOpen. https://doi.org/10.5772/intechopen.88969Sobejano-Paz, V., Mikkelsen, T. N., Baum, A., Mo, X., Liu, S., Köppl, C. J., Johnson, M. H., Gulyas, L., & García, M. C. (2020). Hyperspectral and Thermal Sensing of Stomatal Conductance, Transpiration, and Photosynthesis for Soybean and Maize under Drought. Remote Sensing, 12(19), 3182. https://doi.org/10.3390/rs12193182Sommer, S. G., Han, E., Li, X., Rosenqvist, E., & Liu, F. (2023). The Chlorophyll Fluorescence Parameter Fv/Fm Correlates with Loss of Grain Yield after Severe Drought in Three Wheat Genotypes Grown at Two CO2 Concentrations. Plants, 12(3), 436. https://doi.org/10.3390/plants12030436Strable, J., & Scanlon, M. J. (2009). Maize (Zea mays): A Model Organism for Basic and Applied Research in Plant Biology. CSH Protocols, 2009(10), pdb.emo132. https://doi.org/10.1101/pdb.emo132Tabassum, B., Khan, A. U., Tariq, M., Ramzan, M., Khan, M. S., Shahid, N., & Aaliya, K. (2017). Bottlenecks in commercialisation and future prospects of PGPR. Applied Soil Ecology, 121, 102-117. https://doi.org/10.1016/j.apsoil.2017.09.030Tesfaye, K., Zaidi, P. H., Gbegbelegbe, S., Boeber, C., Rahut, D. B., Getaneh, F., Seetharam, K., Erenstein, O., & Stirling, C. M. (2017). Climate change impacts and potential benefits of heat-tolerant maize in South Asia. Theoretical and Applied Climatology, 130(3-4), 959-970. https://doi.org/10.1007/s00704-016-1931-6Wheeler, T., & Von Braun, J. (2013). Climate Change Impacts on Global Food Security. Science, 341(6145), 508-513. https://doi.org/10.1126/science.1239402Wu, J., Zhang, J., Ge, Z., Liwei, X., Shuqing, H., Shen, C., & Kong, F. (2021). Impact of climate change on maize yield in China from 1979 to 2016. Journal of Integrative Agriculture, 20(1), 289-299. https://doi.org/10.1016/s2095-3119(20)63244-0Yadav, O. P., Hossain, F., Karjagi, C. G., Kumar, B. V. K. V., Zaidi, P. H., Jat, S. L., Chawla, J. S., Kaul, J., Hooda, K. S., Kumar, P. S., Yadava, P. C., & Dhillon, B. S. (2015). Genetic Improvement of Maize in India: Retrospect and Prospects. Agricultural research. https://doi.org/10.1007/s40003-015-0180-8201821758PublicationTHUMBNAILTesis Biología Final.pdf.jpgTesis Biología Final.pdf.jpgIM Thumbnailimage/jpeg5432https://repositorio.uniandes.edu.co/bitstreams/eb82ac9c-9af5-4f73-8fc6-9ce69511062d/downloade5c7ce88ca1f40617f35822a013e7784MD56201821758_ForAutEntTesisTraGraSisBib_202320.pdf.jpg201821758_ForAutEntTesisTraGraSisBib_202320.pdf.jpgIM Thumbnailimage/jpeg15881https://repositorio.uniandes.edu.co/bitstreams/878a94cb-18c8-4ff0-b472-b226b5219924/download83ae6abe15efed426a1bca41b6bda29aMD58CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/1c81e4b6-816a-4aeb-a6fe-5f6c40ce569c/download0175ea4a2d4caec4bbcc37e300941108MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/1cf1078c-dfc3-429a-ab74-9c8cd9eb9e8f/download5aa5c691a1ffe97abd12c2966efcb8d6MD51ORIGINALTesis Biología Final.pdfTesis Biología Final.pdfTrabajo de gradoapplication/pdf348439https://repositorio.uniandes.edu.co/bitstreams/194ed99a-3f48-4ff4-87b9-68d5b3041b93/download9cbc71048d766e3b890a2fe5e8ad11aeMD53201821758_ForAutEntTesisTraGraSisBib_202320.pdf201821758_ForAutEntTesisTraGraSisBib_202320.pdfHIDEapplication/pdf265222https://repositorio.uniandes.edu.co/bitstreams/69fa1dbb-d43b-4e51-a597-795950cf494c/downloada614dcc53c7dbefbef4b8a3e3fbda878MD54TEXTTesis Biología Final.pdf.txtTesis Biología Final.pdf.txtExtracted texttext/plain51321https://repositorio.uniandes.edu.co/bitstreams/ecac6671-d282-441a-91e9-89e71ed5ddcb/download7edd0a911f6a11254148fb5cfe68a9faMD55201821758_ForAutEntTesisTraGraSisBib_202320.pdf.txt201821758_ForAutEntTesisTraGraSisBib_202320.pdf.txtExtracted texttext/plain1161https://repositorio.uniandes.edu.co/bitstreams/b7f362b2-8be2-49a7-8fa9-52d278b42fc8/download08b106dfeb12472e88207a069e15ba30MD571992/69224oai:repositorio.uniandes.edu.co:1992/692242023-10-10 18:00:42.293http://creativecommons.org/licenses/by/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==