Traveling through the transcriptome and volatilome to understand Malassezia host-bacteria interactions

Malassezia is a lipid-dependent yeast inhabiting human and animal skin, representing about 80% of mycobiota. Although Malassezia is considered commensal, it has been associated with skin diseases that affect the general population. The mechanisms by which these yeasts get this pathogenic role are un...

Full description

Autores:
Ríos Navarro, Andrea
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/74378
Acceso en línea:
https://hdl.handle.net/1992/74378
Palabra clave:
Malassezia
Volatile organic compounds
Transcriptomic
Lipid metabolism
Biological interactions
Biología
Rights
embargoedAccess
License
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id UNIANDES2_7f3d2bf6a6bca61ba27e93bee9a5727a
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/74378
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Traveling through the transcriptome and volatilome to understand Malassezia host-bacteria interactions
title Traveling through the transcriptome and volatilome to understand Malassezia host-bacteria interactions
spellingShingle Traveling through the transcriptome and volatilome to understand Malassezia host-bacteria interactions
Malassezia
Volatile organic compounds
Transcriptomic
Lipid metabolism
Biological interactions
Biología
title_short Traveling through the transcriptome and volatilome to understand Malassezia host-bacteria interactions
title_full Traveling through the transcriptome and volatilome to understand Malassezia host-bacteria interactions
title_fullStr Traveling through the transcriptome and volatilome to understand Malassezia host-bacteria interactions
title_full_unstemmed Traveling through the transcriptome and volatilome to understand Malassezia host-bacteria interactions
title_sort Traveling through the transcriptome and volatilome to understand Malassezia host-bacteria interactions
dc.creator.fl_str_mv Ríos Navarro, Andrea
dc.contributor.advisor.none.fl_str_mv Celis Ramírez, Adriana Marcela
Muñoz Camargo, Carolina
dc.contributor.author.none.fl_str_mv Ríos Navarro, Andrea
dc.contributor.jury.none.fl_str_mv Villegas Torres, Maria Francisca
Murillo, Walter
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ciencias
dc.subject.keyword.eng.fl_str_mv Malassezia
Volatile organic compounds
Transcriptomic
Lipid metabolism
Biological interactions
topic Malassezia
Volatile organic compounds
Transcriptomic
Lipid metabolism
Biological interactions
Biología
dc.subject.themes.spa.fl_str_mv Biología
description Malassezia is a lipid-dependent yeast inhabiting human and animal skin, representing about 80% of mycobiota. Although Malassezia is considered commensal, it has been associated with skin diseases that affect the general population. The mechanisms by which these yeasts get this pathogenic role are unknown. Malassezia species exhibit a wide lipid metabolic diversity, enhancing their adaptation processes to the host. However, the involvement of these dynamic processes in the host, and the beginning of the transition from beneficial to pathogenic remain unclear. Likewise, the function of secondary metabolites like volatile compounds in interactional processes with the host and resident or transitory microbiota is undefined. Previous studies about other microorganisms suggest these compounds could also be involved in biological interactions. On the other hand, the yeast and host approach to global gene expression when interacting has yet to be reported. Moreover, Malassezia lipid composition could be involved in the pathogenic processes. This research aims to answer the following question through a metabolomic and transcriptomic approach: What is the effect of the Malassezia metabolism (differential gene expression and volatile compounds production) in its interaction with the host and other bacteria? This question would be solved by implementing a keratinocyte in vitro model supplemented with lipids and infected with M. globosa, followed by a transcriptome analysis throughout RNAseq. Additionally, the determination of the volatile profile for Malassezia spp. was performed by Headspace-solid phase microextraction (HS-SPME) and gas chromatography coupled mass spectrometry (GC-MS) to separate and characterize the volatile compounds. After this, we assessed the interaction processes between volatile compounds and Staphylococcus aureus as a microorganism model from microbiota.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-06-24T21:38:20Z
dc.date.issued.none.fl_str_mv 2024-06-05
dc.date.accepted.none.fl_str_mv 2024-06-24
dc.date.available.none.fl_str_mv 2025-11-29
dc.type.none.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv https://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/74378
dc.identifier.doi.none.fl_str_mv 10.57784/1992/74378
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/74378
identifier_str_mv 10.57784/1992/74378
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv [1]. Grice E A & Dawson T L. Host microbe interactions: Malassezia and human skin. Curr. Opin. Microbiol. 2017; 40: 81-87
[2]. Saheb K S, Proctor D M, Deming C, Saary P, Hölzer M, Taylor M E. et al. Integrating cultivation and metagenomics for a multi-kingdom view of skin microbiome diversity and functions. Nat. Microbiol. 2022; 7: 169-17910
[3]. Pedrosa A F, Lisboa C & Rodrigues A. Malassezia infections: A medical conundrum. J. Am. Acad. Dermatol. 2014; 71(1): 170-176
[4]. Theelen B, Cafarchia C, Gaitanis G, Bassukas I D, Boekhout T & Dawson T L. Malassezia ecology, pathophysiology, and treatment. Med. Mycol. J. 2018; 56(1):10-25
[5]. Nowicka D & Nawrot U. Contribution of Malassezia spp. to the development of atopic dermatitis. Mycoses. 2019; 62(7): 588-596
[6]. Abdillah A & Ranque S. Chronic diseases associated with Malassezia yeast. J.Fungi. 2021; 7(10): 855
[7]. Wu G, Zhao H, Li C, Rajapakse M P, Wong W C, Xu J. et al. Genus-wide comparative genomics of Malassezia delineates its phylogeny, physiology, and niche adaptation on human skin. PloS Genet. 2015; 11(11): 1-26
[8]. Limon J, Tang J, Li D, Wolf A J, Michelse K. S, Funari V, Iliev I D. et al. Malassezia is associated with Crohns disease and exacerbates colitis in mouse models. Cell Host Microbe. 2019; 25(3): 377-388
[9]. Aykut B, Pushalkar S, Chen R, Li Q, Abengozar R, Kim J I, Guo Y. et al. The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature. 2019; 574(7777): 264-267
[10]. Alonso R, Pisa D, Aguado B & Carrasco L. Identification of fungal species in brain tissue from Alzheimer’s disease by next-generation sequencing. J. Alzheimers Dis. 2017; 58(1): 55-67
[11]. Laurence M, Benito León J & Calo F. Malassezia and Parkinsons disease. Front. Neurol. 2019; 10: 75811
[12]. Gelber J T, Cope, E K, Goldberg A N & Pletcher S D. Evaluation of Malassezia and common fungal pathogens in subtypes of chronic rhinosinusitis. Int. Am. J. Rhinol. 2016; 6(9): 950-955
[13]. Celis A M. Unraveling lipid metabolism in lipid dependent pathogenic Malassezia yeasts. 2017. (Doctoral dissertation, Utrecht University)
[14]. Gordon A, Abraham K H, Cox D S, Moore A E & Pople J E. Metabolic analysis of the cutaneous fungi Malassezia globosa and M. restricta for insights on scalp condition and dandruff. Int. J. Cosmet. Sci. 2013; 35(2): 169-175
[15]. Celis A M, Wösten H A B, Triana S, Restrepo S & de Cock H. Malassezia spp. beyond the mycobiota. SM Dermatol J. 2017; 3: 1019
[16]. Briard B, Heddergott C & Latgé J P. Volatile compounds emitted by Pseudomonas aeruginosa stimulate growth of the fungal pathogen Aspergillus fumigatus. Mbio. 2016; 7(2): 5
[17]. Martínez-Cámara R, Montejano-Ramírez V, Moreno-Hagelsieb G, Santoyo G & Valencia-Cantero E. The volatile organic compound dimethylhexadecylamine affects bacterial growth and swarming motility of bacteria. Folia Microbiológica. 2019; 65: 523–532
[18]. Verhulst N O, Andriessen R, Groenhagen U, Kiss G B, Schulz S, Takken W, Smallegange R C. et al. Differential attraction of malaria mosquitoes to volatile blends produced by human skin bacteria. PloS One. 2010; 5(12): e15829
dc.rights.uri.none.fl_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.none.fl_str_mv 184 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Doctorado en Ciencias - Biología
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.spa.fl_str_mv Departamento de Ciencias Biológicas
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/669988cf-747a-436a-b38c-0129184981b4/download
https://repositorio.uniandes.edu.co/bitstreams/e2affdf3-0983-438d-a8e8-1b8c59da67d1/download
https://repositorio.uniandes.edu.co/bitstreams/15b5d630-673f-4d30-8933-cf9ea080dc08/download
https://repositorio.uniandes.edu.co/bitstreams/5664a622-6b24-449c-bc64-4495c8ad8963/download
https://repositorio.uniandes.edu.co/bitstreams/825687dc-aa35-44ce-ba9c-a48c65d40690/download
https://repositorio.uniandes.edu.co/bitstreams/eaaa31e6-572f-4757-b766-638a3f7d7213/download
https://repositorio.uniandes.edu.co/bitstreams/19173fd9-4141-4cda-ba70-dfc5bca4376b/download
bitstream.checksum.fl_str_mv 28c0df5742a1f9c0fea0db6f833cc1a9
328505d3337a08f0abf8f1e5303bd6ef
ae9e573a68e7f92501b6913cc846c39f
68a5cee562c1048f30d05e852a92e4d9
4dfddf21dac85f190bf265a700151a26
fa4f6f3fbf1b97bee74417f473efb061
288b8f4b6297811fb0db9761149541f9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1818111799901290496
spelling Celis Ramírez, Adriana Marcelavirtual::18317-1Muñoz Camargo, Carolinavirtual::18318-1Ríos Navarro, AndreaVillegas Torres, Maria Franciscavirtual::18319-1Murillo, WalterFacultad de Ciencias2024-06-24T21:38:20Z2025-11-292024-06-052024-06-24https://hdl.handle.net/1992/7437810.57784/1992/74378instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Malassezia is a lipid-dependent yeast inhabiting human and animal skin, representing about 80% of mycobiota. Although Malassezia is considered commensal, it has been associated with skin diseases that affect the general population. The mechanisms by which these yeasts get this pathogenic role are unknown. Malassezia species exhibit a wide lipid metabolic diversity, enhancing their adaptation processes to the host. However, the involvement of these dynamic processes in the host, and the beginning of the transition from beneficial to pathogenic remain unclear. Likewise, the function of secondary metabolites like volatile compounds in interactional processes with the host and resident or transitory microbiota is undefined. Previous studies about other microorganisms suggest these compounds could also be involved in biological interactions. On the other hand, the yeast and host approach to global gene expression when interacting has yet to be reported. Moreover, Malassezia lipid composition could be involved in the pathogenic processes. This research aims to answer the following question through a metabolomic and transcriptomic approach: What is the effect of the Malassezia metabolism (differential gene expression and volatile compounds production) in its interaction with the host and other bacteria? This question would be solved by implementing a keratinocyte in vitro model supplemented with lipids and infected with M. globosa, followed by a transcriptome analysis throughout RNAseq. Additionally, the determination of the volatile profile for Malassezia spp. was performed by Headspace-solid phase microextraction (HS-SPME) and gas chromatography coupled mass spectrometry (GC-MS) to separate and characterize the volatile compounds. After this, we assessed the interaction processes between volatile compounds and Staphylococcus aureus as a microorganism model from microbiota.Facultad de Ciencias UniAndes Banco de la Republica Vicerrectoría de Investigaciones Facultad de CienciasDoctoradoMicologia184 páginasapplication/pdfengUniversidad de los AndesDoctorado en Ciencias - BiologíaFacultad de CienciasDepartamento de Ciencias Biológicashttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfTraveling through the transcriptome and volatilome to understand Malassezia host-bacteria interactionsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDMalasseziaVolatile organic compoundsTranscriptomicLipid metabolismBiological interactionsBiología[1]. Grice E A & Dawson T L. Host microbe interactions: Malassezia and human skin. Curr. Opin. Microbiol. 2017; 40: 81-87[2]. Saheb K S, Proctor D M, Deming C, Saary P, Hölzer M, Taylor M E. et al. Integrating cultivation and metagenomics for a multi-kingdom view of skin microbiome diversity and functions. Nat. Microbiol. 2022; 7: 169-17910[3]. Pedrosa A F, Lisboa C & Rodrigues A. Malassezia infections: A medical conundrum. J. Am. Acad. Dermatol. 2014; 71(1): 170-176[4]. Theelen B, Cafarchia C, Gaitanis G, Bassukas I D, Boekhout T & Dawson T L. Malassezia ecology, pathophysiology, and treatment. Med. Mycol. J. 2018; 56(1):10-25[5]. Nowicka D & Nawrot U. Contribution of Malassezia spp. to the development of atopic dermatitis. Mycoses. 2019; 62(7): 588-596[6]. Abdillah A & Ranque S. Chronic diseases associated with Malassezia yeast. J.Fungi. 2021; 7(10): 855[7]. Wu G, Zhao H, Li C, Rajapakse M P, Wong W C, Xu J. et al. Genus-wide comparative genomics of Malassezia delineates its phylogeny, physiology, and niche adaptation on human skin. PloS Genet. 2015; 11(11): 1-26[8]. Limon J, Tang J, Li D, Wolf A J, Michelse K. S, Funari V, Iliev I D. et al. Malassezia is associated with Crohns disease and exacerbates colitis in mouse models. Cell Host Microbe. 2019; 25(3): 377-388[9]. Aykut B, Pushalkar S, Chen R, Li Q, Abengozar R, Kim J I, Guo Y. et al. The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature. 2019; 574(7777): 264-267[10]. Alonso R, Pisa D, Aguado B & Carrasco L. Identification of fungal species in brain tissue from Alzheimer’s disease by next-generation sequencing. J. Alzheimers Dis. 2017; 58(1): 55-67[11]. Laurence M, Benito León J & Calo F. Malassezia and Parkinsons disease. Front. Neurol. 2019; 10: 75811[12]. Gelber J T, Cope, E K, Goldberg A N & Pletcher S D. Evaluation of Malassezia and common fungal pathogens in subtypes of chronic rhinosinusitis. Int. Am. J. Rhinol. 2016; 6(9): 950-955[13]. Celis A M. Unraveling lipid metabolism in lipid dependent pathogenic Malassezia yeasts. 2017. (Doctoral dissertation, Utrecht University)[14]. Gordon A, Abraham K H, Cox D S, Moore A E & Pople J E. Metabolic analysis of the cutaneous fungi Malassezia globosa and M. restricta for insights on scalp condition and dandruff. Int. J. Cosmet. Sci. 2013; 35(2): 169-175[15]. Celis A M, Wösten H A B, Triana S, Restrepo S & de Cock H. Malassezia spp. beyond the mycobiota. SM Dermatol J. 2017; 3: 1019[16]. Briard B, Heddergott C & Latgé J P. Volatile compounds emitted by Pseudomonas aeruginosa stimulate growth of the fungal pathogen Aspergillus fumigatus. Mbio. 2016; 7(2): 5[17]. Martínez-Cámara R, Montejano-Ramírez V, Moreno-Hagelsieb G, Santoyo G & Valencia-Cantero E. The volatile organic compound dimethylhexadecylamine affects bacterial growth and swarming motility of bacteria. Folia Microbiológica. 2019; 65: 523–532[18]. Verhulst N O, Andriessen R, Groenhagen U, Kiss G B, Schulz S, Takken W, Smallegange R C. et al. Differential attraction of malaria mosquitoes to volatile blends produced by human skin bacteria. PloS One. 2010; 5(12): e15829201910227Publicationhttps://scholar.google.es/citations?user=OY35UmAAAAAJvirtual::18319-10000-0003-3057-1966virtual::18317-10000-0001-7067-4113virtual::18319-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000178225virtual::18317-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000892203virtual::18319-17ec7a7b4-b510-4816-b236-023aaa0754f0virtual::18317-108e6fb24-9779-48fb-a099-eac8212a566dvirtual::18318-17ec7a7b4-b510-4816-b236-023aaa0754f0virtual::18317-108e6fb24-9779-48fb-a099-eac8212a566dvirtual::18318-15cfe6ba7-9a70-4327-b4fb-45d641e1396bvirtual::18319-15cfe6ba7-9a70-4327-b4fb-45d641e1396bvirtual::18319-1ORIGINALTraveling through the transcriptome and volatilome to understand Malassezia- host-bacteria interactions.pdfTraveling through the transcriptome and volatilome to understand Malassezia- host-bacteria interactions.pdfSe restringe el acceso porque hay datos en proceso de publicación.application/pdf5443548https://repositorio.uniandes.edu.co/bitstreams/669988cf-747a-436a-b38c-0129184981b4/download28c0df5742a1f9c0fea0db6f833cc1a9MD51201910227__ForAutEntTesis_TraGraSisBib_202410.pdf201910227__ForAutEntTesis_TraGraSisBib_202410.pdfHIDEapplication/pdf413832https://repositorio.uniandes.edu.co/bitstreams/e2affdf3-0983-438d-a8e8-1b8c59da67d1/download328505d3337a08f0abf8f1e5303bd6efMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/15b5d630-673f-4d30-8933-cf9ea080dc08/downloadae9e573a68e7f92501b6913cc846c39fMD53TEXTTraveling through the transcriptome and volatilome to understand Malassezia- host-bacteria interactions.pdf.txtTraveling through the transcriptome and volatilome to understand Malassezia- host-bacteria interactions.pdf.txtExtracted texttext/plain100164https://repositorio.uniandes.edu.co/bitstreams/5664a622-6b24-449c-bc64-4495c8ad8963/download68a5cee562c1048f30d05e852a92e4d9MD55201910227__ForAutEntTesis_TraGraSisBib_202410.pdf.txt201910227__ForAutEntTesis_TraGraSisBib_202410.pdf.txtExtracted texttext/plain2116https://repositorio.uniandes.edu.co/bitstreams/825687dc-aa35-44ce-ba9c-a48c65d40690/download4dfddf21dac85f190bf265a700151a26MD57THUMBNAILTraveling through the transcriptome and volatilome to understand Malassezia- host-bacteria interactions.pdf.jpgTraveling through the transcriptome and volatilome to understand Malassezia- host-bacteria interactions.pdf.jpgGenerated Thumbnailimage/jpeg5671https://repositorio.uniandes.edu.co/bitstreams/eaaa31e6-572f-4757-b766-638a3f7d7213/downloadfa4f6f3fbf1b97bee74417f473efb061MD56201910227__ForAutEntTesis_TraGraSisBib_202410.pdf.jpg201910227__ForAutEntTesis_TraGraSisBib_202410.pdf.jpgGenerated Thumbnailimage/jpeg11509https://repositorio.uniandes.edu.co/bitstreams/19173fd9-4141-4cda-ba70-dfc5bca4376b/download288b8f4b6297811fb0db9761149541f9MD581992/74378oai:repositorio.uniandes.edu.co:1992/743782024-11-14 10:33:08.002https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfembargohttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K