Traveling through the transcriptome and volatilome to understand Malassezia host-bacteria interactions
Malassezia is a lipid-dependent yeast inhabiting human and animal skin, representing about 80% of mycobiota. Although Malassezia is considered commensal, it has been associated with skin diseases that affect the general population. The mechanisms by which these yeasts get this pathogenic role are un...
- Autores:
-
Ríos Navarro, Andrea
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/74378
- Acceso en línea:
- https://hdl.handle.net/1992/74378
- Palabra clave:
- Malassezia
Volatile organic compounds
Transcriptomic
Lipid metabolism
Biological interactions
Biología
- Rights
- embargoedAccess
- License
- https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id |
UNIANDES2_7f3d2bf6a6bca61ba27e93bee9a5727a |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/74378 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.none.fl_str_mv |
Traveling through the transcriptome and volatilome to understand Malassezia host-bacteria interactions |
title |
Traveling through the transcriptome and volatilome to understand Malassezia host-bacteria interactions |
spellingShingle |
Traveling through the transcriptome and volatilome to understand Malassezia host-bacteria interactions Malassezia Volatile organic compounds Transcriptomic Lipid metabolism Biological interactions Biología |
title_short |
Traveling through the transcriptome and volatilome to understand Malassezia host-bacteria interactions |
title_full |
Traveling through the transcriptome and volatilome to understand Malassezia host-bacteria interactions |
title_fullStr |
Traveling through the transcriptome and volatilome to understand Malassezia host-bacteria interactions |
title_full_unstemmed |
Traveling through the transcriptome and volatilome to understand Malassezia host-bacteria interactions |
title_sort |
Traveling through the transcriptome and volatilome to understand Malassezia host-bacteria interactions |
dc.creator.fl_str_mv |
Ríos Navarro, Andrea |
dc.contributor.advisor.none.fl_str_mv |
Celis Ramírez, Adriana Marcela Muñoz Camargo, Carolina |
dc.contributor.author.none.fl_str_mv |
Ríos Navarro, Andrea |
dc.contributor.jury.none.fl_str_mv |
Villegas Torres, Maria Francisca Murillo, Walter |
dc.contributor.researchgroup.none.fl_str_mv |
Facultad de Ciencias |
dc.subject.keyword.eng.fl_str_mv |
Malassezia Volatile organic compounds Transcriptomic Lipid metabolism Biological interactions |
topic |
Malassezia Volatile organic compounds Transcriptomic Lipid metabolism Biological interactions Biología |
dc.subject.themes.spa.fl_str_mv |
Biología |
description |
Malassezia is a lipid-dependent yeast inhabiting human and animal skin, representing about 80% of mycobiota. Although Malassezia is considered commensal, it has been associated with skin diseases that affect the general population. The mechanisms by which these yeasts get this pathogenic role are unknown. Malassezia species exhibit a wide lipid metabolic diversity, enhancing their adaptation processes to the host. However, the involvement of these dynamic processes in the host, and the beginning of the transition from beneficial to pathogenic remain unclear. Likewise, the function of secondary metabolites like volatile compounds in interactional processes with the host and resident or transitory microbiota is undefined. Previous studies about other microorganisms suggest these compounds could also be involved in biological interactions. On the other hand, the yeast and host approach to global gene expression when interacting has yet to be reported. Moreover, Malassezia lipid composition could be involved in the pathogenic processes. This research aims to answer the following question through a metabolomic and transcriptomic approach: What is the effect of the Malassezia metabolism (differential gene expression and volatile compounds production) in its interaction with the host and other bacteria? This question would be solved by implementing a keratinocyte in vitro model supplemented with lipids and infected with M. globosa, followed by a transcriptome analysis throughout RNAseq. Additionally, the determination of the volatile profile for Malassezia spp. was performed by Headspace-solid phase microextraction (HS-SPME) and gas chromatography coupled mass spectrometry (GC-MS) to separate and characterize the volatile compounds. After this, we assessed the interaction processes between volatile compounds and Staphylococcus aureus as a microorganism model from microbiota. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-06-24T21:38:20Z |
dc.date.issued.none.fl_str_mv |
2024-06-05 |
dc.date.accepted.none.fl_str_mv |
2024-06-24 |
dc.date.available.none.fl_str_mv |
2025-11-29 |
dc.type.none.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/74378 |
dc.identifier.doi.none.fl_str_mv |
10.57784/1992/74378 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/74378 |
identifier_str_mv |
10.57784/1992/74378 instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
[1]. Grice E A & Dawson T L. Host microbe interactions: Malassezia and human skin. Curr. Opin. Microbiol. 2017; 40: 81-87 [2]. Saheb K S, Proctor D M, Deming C, Saary P, Hölzer M, Taylor M E. et al. Integrating cultivation and metagenomics for a multi-kingdom view of skin microbiome diversity and functions. Nat. Microbiol. 2022; 7: 169-17910 [3]. Pedrosa A F, Lisboa C & Rodrigues A. Malassezia infections: A medical conundrum. J. Am. Acad. Dermatol. 2014; 71(1): 170-176 [4]. Theelen B, Cafarchia C, Gaitanis G, Bassukas I D, Boekhout T & Dawson T L. Malassezia ecology, pathophysiology, and treatment. Med. Mycol. J. 2018; 56(1):10-25 [5]. Nowicka D & Nawrot U. Contribution of Malassezia spp. to the development of atopic dermatitis. Mycoses. 2019; 62(7): 588-596 [6]. Abdillah A & Ranque S. Chronic diseases associated with Malassezia yeast. J.Fungi. 2021; 7(10): 855 [7]. Wu G, Zhao H, Li C, Rajapakse M P, Wong W C, Xu J. et al. Genus-wide comparative genomics of Malassezia delineates its phylogeny, physiology, and niche adaptation on human skin. PloS Genet. 2015; 11(11): 1-26 [8]. Limon J, Tang J, Li D, Wolf A J, Michelse K. S, Funari V, Iliev I D. et al. Malassezia is associated with Crohns disease and exacerbates colitis in mouse models. Cell Host Microbe. 2019; 25(3): 377-388 [9]. Aykut B, Pushalkar S, Chen R, Li Q, Abengozar R, Kim J I, Guo Y. et al. The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature. 2019; 574(7777): 264-267 [10]. Alonso R, Pisa D, Aguado B & Carrasco L. Identification of fungal species in brain tissue from Alzheimer’s disease by next-generation sequencing. J. Alzheimers Dis. 2017; 58(1): 55-67 [11]. Laurence M, Benito León J & Calo F. Malassezia and Parkinsons disease. Front. Neurol. 2019; 10: 75811 [12]. Gelber J T, Cope, E K, Goldberg A N & Pletcher S D. Evaluation of Malassezia and common fungal pathogens in subtypes of chronic rhinosinusitis. Int. Am. J. Rhinol. 2016; 6(9): 950-955 [13]. Celis A M. Unraveling lipid metabolism in lipid dependent pathogenic Malassezia yeasts. 2017. (Doctoral dissertation, Utrecht University) [14]. Gordon A, Abraham K H, Cox D S, Moore A E & Pople J E. Metabolic analysis of the cutaneous fungi Malassezia globosa and M. restricta for insights on scalp condition and dandruff. Int. J. Cosmet. Sci. 2013; 35(2): 169-175 [15]. Celis A M, Wösten H A B, Triana S, Restrepo S & de Cock H. Malassezia spp. beyond the mycobiota. SM Dermatol J. 2017; 3: 1019 [16]. Briard B, Heddergott C & Latgé J P. Volatile compounds emitted by Pseudomonas aeruginosa stimulate growth of the fungal pathogen Aspergillus fumigatus. Mbio. 2016; 7(2): 5 [17]. Martínez-Cámara R, Montejano-Ramírez V, Moreno-Hagelsieb G, Santoyo G & Valencia-Cantero E. The volatile organic compound dimethylhexadecylamine affects bacterial growth and swarming motility of bacteria. Folia Microbiológica. 2019; 65: 523–532 [18]. Verhulst N O, Andriessen R, Groenhagen U, Kiss G B, Schulz S, Takken W, Smallegange R C. et al. Differential attraction of malaria mosquitoes to volatile blends produced by human skin bacteria. PloS One. 2010; 5(12): e15829 |
dc.rights.uri.none.fl_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.none.fl_str_mv |
184 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Doctorado en Ciencias - Biología |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ciencias Biológicas |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/669988cf-747a-436a-b38c-0129184981b4/download https://repositorio.uniandes.edu.co/bitstreams/e2affdf3-0983-438d-a8e8-1b8c59da67d1/download https://repositorio.uniandes.edu.co/bitstreams/15b5d630-673f-4d30-8933-cf9ea080dc08/download https://repositorio.uniandes.edu.co/bitstreams/5664a622-6b24-449c-bc64-4495c8ad8963/download https://repositorio.uniandes.edu.co/bitstreams/825687dc-aa35-44ce-ba9c-a48c65d40690/download https://repositorio.uniandes.edu.co/bitstreams/eaaa31e6-572f-4757-b766-638a3f7d7213/download https://repositorio.uniandes.edu.co/bitstreams/19173fd9-4141-4cda-ba70-dfc5bca4376b/download |
bitstream.checksum.fl_str_mv |
28c0df5742a1f9c0fea0db6f833cc1a9 328505d3337a08f0abf8f1e5303bd6ef ae9e573a68e7f92501b6913cc846c39f 68a5cee562c1048f30d05e852a92e4d9 4dfddf21dac85f190bf265a700151a26 fa4f6f3fbf1b97bee74417f473efb061 288b8f4b6297811fb0db9761149541f9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1818111799901290496 |
spelling |
Celis Ramírez, Adriana Marcelavirtual::18317-1Muñoz Camargo, Carolinavirtual::18318-1Ríos Navarro, AndreaVillegas Torres, Maria Franciscavirtual::18319-1Murillo, WalterFacultad de Ciencias2024-06-24T21:38:20Z2025-11-292024-06-052024-06-24https://hdl.handle.net/1992/7437810.57784/1992/74378instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Malassezia is a lipid-dependent yeast inhabiting human and animal skin, representing about 80% of mycobiota. Although Malassezia is considered commensal, it has been associated with skin diseases that affect the general population. The mechanisms by which these yeasts get this pathogenic role are unknown. Malassezia species exhibit a wide lipid metabolic diversity, enhancing their adaptation processes to the host. However, the involvement of these dynamic processes in the host, and the beginning of the transition from beneficial to pathogenic remain unclear. Likewise, the function of secondary metabolites like volatile compounds in interactional processes with the host and resident or transitory microbiota is undefined. Previous studies about other microorganisms suggest these compounds could also be involved in biological interactions. On the other hand, the yeast and host approach to global gene expression when interacting has yet to be reported. Moreover, Malassezia lipid composition could be involved in the pathogenic processes. This research aims to answer the following question through a metabolomic and transcriptomic approach: What is the effect of the Malassezia metabolism (differential gene expression and volatile compounds production) in its interaction with the host and other bacteria? This question would be solved by implementing a keratinocyte in vitro model supplemented with lipids and infected with M. globosa, followed by a transcriptome analysis throughout RNAseq. Additionally, the determination of the volatile profile for Malassezia spp. was performed by Headspace-solid phase microextraction (HS-SPME) and gas chromatography coupled mass spectrometry (GC-MS) to separate and characterize the volatile compounds. After this, we assessed the interaction processes between volatile compounds and Staphylococcus aureus as a microorganism model from microbiota.Facultad de Ciencias UniAndes Banco de la Republica Vicerrectoría de Investigaciones Facultad de CienciasDoctoradoMicologia184 páginasapplication/pdfengUniversidad de los AndesDoctorado en Ciencias - BiologíaFacultad de CienciasDepartamento de Ciencias Biológicashttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfTraveling through the transcriptome and volatilome to understand Malassezia host-bacteria interactionsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDMalasseziaVolatile organic compoundsTranscriptomicLipid metabolismBiological interactionsBiología[1]. Grice E A & Dawson T L. Host microbe interactions: Malassezia and human skin. Curr. Opin. Microbiol. 2017; 40: 81-87[2]. Saheb K S, Proctor D M, Deming C, Saary P, Hölzer M, Taylor M E. et al. Integrating cultivation and metagenomics for a multi-kingdom view of skin microbiome diversity and functions. Nat. Microbiol. 2022; 7: 169-17910[3]. Pedrosa A F, Lisboa C & Rodrigues A. Malassezia infections: A medical conundrum. J. Am. Acad. Dermatol. 2014; 71(1): 170-176[4]. Theelen B, Cafarchia C, Gaitanis G, Bassukas I D, Boekhout T & Dawson T L. Malassezia ecology, pathophysiology, and treatment. Med. Mycol. J. 2018; 56(1):10-25[5]. Nowicka D & Nawrot U. Contribution of Malassezia spp. to the development of atopic dermatitis. Mycoses. 2019; 62(7): 588-596[6]. Abdillah A & Ranque S. Chronic diseases associated with Malassezia yeast. J.Fungi. 2021; 7(10): 855[7]. Wu G, Zhao H, Li C, Rajapakse M P, Wong W C, Xu J. et al. Genus-wide comparative genomics of Malassezia delineates its phylogeny, physiology, and niche adaptation on human skin. PloS Genet. 2015; 11(11): 1-26[8]. Limon J, Tang J, Li D, Wolf A J, Michelse K. S, Funari V, Iliev I D. et al. Malassezia is associated with Crohns disease and exacerbates colitis in mouse models. Cell Host Microbe. 2019; 25(3): 377-388[9]. Aykut B, Pushalkar S, Chen R, Li Q, Abengozar R, Kim J I, Guo Y. et al. The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature. 2019; 574(7777): 264-267[10]. Alonso R, Pisa D, Aguado B & Carrasco L. Identification of fungal species in brain tissue from Alzheimer’s disease by next-generation sequencing. J. Alzheimers Dis. 2017; 58(1): 55-67[11]. Laurence M, Benito León J & Calo F. Malassezia and Parkinsons disease. Front. Neurol. 2019; 10: 75811[12]. Gelber J T, Cope, E K, Goldberg A N & Pletcher S D. Evaluation of Malassezia and common fungal pathogens in subtypes of chronic rhinosinusitis. Int. Am. J. Rhinol. 2016; 6(9): 950-955[13]. Celis A M. Unraveling lipid metabolism in lipid dependent pathogenic Malassezia yeasts. 2017. (Doctoral dissertation, Utrecht University)[14]. Gordon A, Abraham K H, Cox D S, Moore A E & Pople J E. Metabolic analysis of the cutaneous fungi Malassezia globosa and M. restricta for insights on scalp condition and dandruff. Int. J. Cosmet. Sci. 2013; 35(2): 169-175[15]. Celis A M, Wösten H A B, Triana S, Restrepo S & de Cock H. Malassezia spp. beyond the mycobiota. SM Dermatol J. 2017; 3: 1019[16]. Briard B, Heddergott C & Latgé J P. Volatile compounds emitted by Pseudomonas aeruginosa stimulate growth of the fungal pathogen Aspergillus fumigatus. Mbio. 2016; 7(2): 5[17]. Martínez-Cámara R, Montejano-Ramírez V, Moreno-Hagelsieb G, Santoyo G & Valencia-Cantero E. The volatile organic compound dimethylhexadecylamine affects bacterial growth and swarming motility of bacteria. Folia Microbiológica. 2019; 65: 523–532[18]. Verhulst N O, Andriessen R, Groenhagen U, Kiss G B, Schulz S, Takken W, Smallegange R C. et al. Differential attraction of malaria mosquitoes to volatile blends produced by human skin bacteria. PloS One. 2010; 5(12): e15829201910227Publicationhttps://scholar.google.es/citations?user=OY35UmAAAAAJvirtual::18319-10000-0003-3057-1966virtual::18317-10000-0001-7067-4113virtual::18319-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000178225virtual::18317-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000892203virtual::18319-17ec7a7b4-b510-4816-b236-023aaa0754f0virtual::18317-108e6fb24-9779-48fb-a099-eac8212a566dvirtual::18318-17ec7a7b4-b510-4816-b236-023aaa0754f0virtual::18317-108e6fb24-9779-48fb-a099-eac8212a566dvirtual::18318-15cfe6ba7-9a70-4327-b4fb-45d641e1396bvirtual::18319-15cfe6ba7-9a70-4327-b4fb-45d641e1396bvirtual::18319-1ORIGINALTraveling through the transcriptome and volatilome to understand Malassezia- host-bacteria interactions.pdfTraveling through the transcriptome and volatilome to understand Malassezia- host-bacteria interactions.pdfSe restringe el acceso porque hay datos en proceso de publicación.application/pdf5443548https://repositorio.uniandes.edu.co/bitstreams/669988cf-747a-436a-b38c-0129184981b4/download28c0df5742a1f9c0fea0db6f833cc1a9MD51201910227__ForAutEntTesis_TraGraSisBib_202410.pdf201910227__ForAutEntTesis_TraGraSisBib_202410.pdfHIDEapplication/pdf413832https://repositorio.uniandes.edu.co/bitstreams/e2affdf3-0983-438d-a8e8-1b8c59da67d1/download328505d3337a08f0abf8f1e5303bd6efMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/15b5d630-673f-4d30-8933-cf9ea080dc08/downloadae9e573a68e7f92501b6913cc846c39fMD53TEXTTraveling through the transcriptome and volatilome to understand Malassezia- host-bacteria interactions.pdf.txtTraveling through the transcriptome and volatilome to understand Malassezia- host-bacteria interactions.pdf.txtExtracted texttext/plain100164https://repositorio.uniandes.edu.co/bitstreams/5664a622-6b24-449c-bc64-4495c8ad8963/download68a5cee562c1048f30d05e852a92e4d9MD55201910227__ForAutEntTesis_TraGraSisBib_202410.pdf.txt201910227__ForAutEntTesis_TraGraSisBib_202410.pdf.txtExtracted texttext/plain2116https://repositorio.uniandes.edu.co/bitstreams/825687dc-aa35-44ce-ba9c-a48c65d40690/download4dfddf21dac85f190bf265a700151a26MD57THUMBNAILTraveling through the transcriptome and volatilome to understand Malassezia- host-bacteria interactions.pdf.jpgTraveling through the transcriptome and volatilome to understand Malassezia- host-bacteria interactions.pdf.jpgGenerated Thumbnailimage/jpeg5671https://repositorio.uniandes.edu.co/bitstreams/eaaa31e6-572f-4757-b766-638a3f7d7213/downloadfa4f6f3fbf1b97bee74417f473efb061MD56201910227__ForAutEntTesis_TraGraSisBib_202410.pdf.jpg201910227__ForAutEntTesis_TraGraSisBib_202410.pdf.jpgGenerated Thumbnailimage/jpeg11509https://repositorio.uniandes.edu.co/bitstreams/19173fd9-4141-4cda-ba70-dfc5bca4376b/download288b8f4b6297811fb0db9761149541f9MD581992/74378oai:repositorio.uniandes.edu.co:1992/743782024-11-14 10:33:08.002https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfembargohttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |