Steps towards a predictive semantic resource recommendation system for university students
Using information from the University of Los Andes, we created student performance prediction models for each compulsory course of three different programs: Industrial Engineering, Economy, and Systems and Computing Engineering. We created 3 feature sets using a wide range of academic metrics. Using...
- Autores:
-
Cueto Ramírez, Felipe
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/50979
- Acceso en línea:
- http://hdl.handle.net/1992/50979
- Palabra clave:
- Rendimiento académico
Predicciones educativas
Aprendizaje automático (Inteligencia artificial)
Universidad de Los Andes (Colombia)
Ingeniería
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UNIANDES2_7b055f9e69049ae221b72ce476c8e693 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/50979 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Steps towards a predictive semantic resource recommendation system for university students |
title |
Steps towards a predictive semantic resource recommendation system for university students |
spellingShingle |
Steps towards a predictive semantic resource recommendation system for university students Rendimiento académico Predicciones educativas Aprendizaje automático (Inteligencia artificial) Universidad de Los Andes (Colombia) Ingeniería |
title_short |
Steps towards a predictive semantic resource recommendation system for university students |
title_full |
Steps towards a predictive semantic resource recommendation system for university students |
title_fullStr |
Steps towards a predictive semantic resource recommendation system for university students |
title_full_unstemmed |
Steps towards a predictive semantic resource recommendation system for university students |
title_sort |
Steps towards a predictive semantic resource recommendation system for university students |
dc.creator.fl_str_mv |
Cueto Ramírez, Felipe |
dc.contributor.advisor.none.fl_str_mv |
Mariño Drews, Olga Manrique Piramanrique, Rubén Francisco |
dc.contributor.author.none.fl_str_mv |
Cueto Ramírez, Felipe |
dc.contributor.jury.none.fl_str_mv |
Núñez Castro, Haydemar María Nunes, Bernardo Pereira |
dc.subject.armarc.es_CO.fl_str_mv |
Rendimiento académico Predicciones educativas Aprendizaje automático (Inteligencia artificial) Universidad de Los Andes (Colombia) |
topic |
Rendimiento académico Predicciones educativas Aprendizaje automático (Inteligencia artificial) Universidad de Los Andes (Colombia) Ingeniería |
dc.subject.themes.none.fl_str_mv |
Ingeniería |
description |
Using information from the University of Los Andes, we created student performance prediction models for each compulsory course of three different programs: Industrial Engineering, Economy, and Systems and Computing Engineering. We created 3 feature sets using a wide range of academic metrics. Using 6 classification models we predicted whether a student would get a grade above the course average or below the course average, achieving a balanced accuracy of up to 77.8%. Using 7 regression algorithms we predicted a student's final grade (numerical value between 0 and 5) on a given course, achieving a minimum MAE of 0.234 and a R squared score of up to 46.4%. Results from the machine learning models indicated that the Random Forest algorithm was the best when predicting a course's grade using previous course grades. Using the Random Forest models, we analyzed the feature importance of certain courses when predicting other courses... |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-08-10T18:05:22Z |
dc.date.available.none.fl_str_mv |
2021-08-10T18:05:22Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/50979 |
dc.identifier.pdf.none.fl_str_mv |
22618.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/50979 |
identifier_str_mv |
22618.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
105 hojas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Maestría en Ingeniería de Sistemas y Computación |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.none.fl_str_mv |
Departamento de Ingeniería de Sistemas y Computación |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/3cdc2a25-bf9f-4a4e-a3fd-278f2a0fff32/download https://repositorio.uniandes.edu.co/bitstreams/466e7f54-9d4a-47c7-b742-8557cce476fb/download https://repositorio.uniandes.edu.co/bitstreams/bbada516-535d-48e1-acb4-50f5b37fa03d/download |
bitstream.checksum.fl_str_mv |
68a90f5f2991f9c4912693748e9d8558 ee902501836d659996d811a27b96d564 2feed5143b5d187b65b13d215cc9d303 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1818111863734403072 |
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mariño Drews, Olgavirtual::9525-1Manrique Piramanrique, Rubén Franciscovirtual::9526-1Cueto Ramírez, Felipe0c8d68e5-848a-42b2-be56-1bf4908c6156400Núñez Castro, Haydemar MaríaNunes, Bernardo Pereira2021-08-10T18:05:22Z2021-08-10T18:05:22Z2020http://hdl.handle.net/1992/5097922618.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Using information from the University of Los Andes, we created student performance prediction models for each compulsory course of three different programs: Industrial Engineering, Economy, and Systems and Computing Engineering. We created 3 feature sets using a wide range of academic metrics. Using 6 classification models we predicted whether a student would get a grade above the course average or below the course average, achieving a balanced accuracy of up to 77.8%. Using 7 regression algorithms we predicted a student's final grade (numerical value between 0 and 5) on a given course, achieving a minimum MAE of 0.234 and a R squared score of up to 46.4%. Results from the machine learning models indicated that the Random Forest algorithm was the best when predicting a course's grade using previous course grades. Using the Random Forest models, we analyzed the feature importance of certain courses when predicting other courses...Con información de la Universidad de Los Andes, creamos modelos de predicción del desempeño de los estudiantes para cada curso obligatorio de tres programas diferentes: Ingeniería Industrial, Economía e Ingeniería de Sistemas y Computación. Creamos 3 conjuntos de datos utilizando una amplia gama de métricas académicas. Utilizando 6 modelos de clasificación, predijimos si un estudiante obtendría una calificación por encima del promedio del curso o por debajo del promedio del curso, logrando una precisión equilibrada de hasta 77,8%. Utilizando 7 algoritmos de regresión, predijimos la calificación final de un estudiante (valor numérico entre 0 y 5) en un curso determinado, logrando un error absoluto medio mínimo de 0,234 y una puntuación R cuadrado de hasta un 46,4%. Los resultados de los modelos de aprendizaje automático indicaron que el algoritmo de Random Forest fue el mejor para predecir la calificación de un curso utilizando calificaciones de cursos anteriores. Utilizando los modelos de Random Forest...Magíster en Ingeniería de Sistemas y ComputaciónMaestría105 hojasapplication/pdfengUniversidad de los AndesMaestría en Ingeniería de Sistemas y ComputaciónFacultad de IngenieríaDepartamento de Ingeniería de Sistemas y ComputaciónSteps towards a predictive semantic resource recommendation system for university studentsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMRendimiento académicoPredicciones educativasAprendizaje automático (Inteligencia artificial)Universidad de Los Andes (Colombia)Ingeniería201326265Publicatione7ce8418-ddbe-41a3-abbf-c91ab61fb265virtual::9525-19f6e12e0-098e-4548-ab81-75552e8385e7virtual::9526-1e7ce8418-ddbe-41a3-abbf-c91ab61fb265virtual::9525-19f6e12e0-098e-4548-ab81-75552e8385e7virtual::9526-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000051608virtual::9525-1ORIGINAL22618.pdfapplication/pdf1133608https://repositorio.uniandes.edu.co/bitstreams/3cdc2a25-bf9f-4a4e-a3fd-278f2a0fff32/download68a90f5f2991f9c4912693748e9d8558MD51TEXT22618.pdf.txt22618.pdf.txtExtracted texttext/plain138924https://repositorio.uniandes.edu.co/bitstreams/466e7f54-9d4a-47c7-b742-8557cce476fb/downloadee902501836d659996d811a27b96d564MD54THUMBNAIL22618.pdf.jpg22618.pdf.jpgIM Thumbnailimage/jpeg6584https://repositorio.uniandes.edu.co/bitstreams/bbada516-535d-48e1-acb4-50f5b37fa03d/download2feed5143b5d187b65b13d215cc9d303MD551992/50979oai:repositorio.uniandes.edu.co:1992/509792024-03-13 13:57:27.812http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |