Degradación de fenol por medio de la microalga Scenedesmus sp. (filo Chlorophyta) y el rol de la ficoesfera en este proceso
Una especie de microalga que ha mostrado gran potencial para la biodegradación de fenol es Scenedesmus sp. un alga verde dulceacuícola. Las microalgas presentan interacciones de gran importancia con bacterias, estas se desarrollan en la ficoesfera del alga, una interfaz que se puede entender como el...
- Autores:
-
Fonseca López, Valeria
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/64506
- Acceso en línea:
- http://hdl.handle.net/1992/64506
- Palabra clave:
- Fenol
Biodegradación
Ficoesfera
Scenedesmus sp.
Ficorremediación
Microalgas
Microbiología
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
UNIANDES2_774d7d69daa240a04bb8aadf686c9e88 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/64506 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.none.fl_str_mv |
Degradación de fenol por medio de la microalga Scenedesmus sp. (filo Chlorophyta) y el rol de la ficoesfera en este proceso |
title |
Degradación de fenol por medio de la microalga Scenedesmus sp. (filo Chlorophyta) y el rol de la ficoesfera en este proceso |
spellingShingle |
Degradación de fenol por medio de la microalga Scenedesmus sp. (filo Chlorophyta) y el rol de la ficoesfera en este proceso Fenol Biodegradación Ficoesfera Scenedesmus sp. Ficorremediación Microalgas Microbiología |
title_short |
Degradación de fenol por medio de la microalga Scenedesmus sp. (filo Chlorophyta) y el rol de la ficoesfera en este proceso |
title_full |
Degradación de fenol por medio de la microalga Scenedesmus sp. (filo Chlorophyta) y el rol de la ficoesfera en este proceso |
title_fullStr |
Degradación de fenol por medio de la microalga Scenedesmus sp. (filo Chlorophyta) y el rol de la ficoesfera en este proceso |
title_full_unstemmed |
Degradación de fenol por medio de la microalga Scenedesmus sp. (filo Chlorophyta) y el rol de la ficoesfera en este proceso |
title_sort |
Degradación de fenol por medio de la microalga Scenedesmus sp. (filo Chlorophyta) y el rol de la ficoesfera en este proceso |
dc.creator.fl_str_mv |
Fonseca López, Valeria |
dc.contributor.advisor.none.fl_str_mv |
Vives Flórez, Martha Josefina |
dc.contributor.author.none.fl_str_mv |
Fonseca López, Valeria |
dc.contributor.researchgroup.es_CO.fl_str_mv |
Centro de Investigaciones Microbiológicas (CIMIC) |
dc.subject.keyword.none.fl_str_mv |
Fenol Biodegradación Ficoesfera Scenedesmus sp. Ficorremediación Microalgas |
topic |
Fenol Biodegradación Ficoesfera Scenedesmus sp. Ficorremediación Microalgas Microbiología |
dc.subject.themes.es_CO.fl_str_mv |
Microbiología |
description |
Una especie de microalga que ha mostrado gran potencial para la biodegradación de fenol es Scenedesmus sp. un alga verde dulceacuícola. Las microalgas presentan interacciones de gran importancia con bacterias, estas se desarrollan en la ficoesfera del alga, una interfaz que se puede entender como el análogo de la rizosfera en las plantas, de la cual es casi nula la información que se posee acerca de su composición. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-02-02T12:56:51Z |
dc.date.available.none.fl_str_mv |
2023-02-02T12:56:51Z |
dc.date.issued.none.fl_str_mv |
2023-01-31 |
dc.type.es_CO.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.es_CO.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/64506 |
dc.identifier.instname.es_CO.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.es_CO.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.es_CO.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/64506 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
spa |
language |
spa |
dc.relation.references.es_CO.fl_str_mv |
Andrade R, C. E., Vera B, A. L., Cárdenas L, C. H., & Morales A, E. D. (2009). Producción de biomasa de la microalga Scenedesmus sp. utilizando aguas residuales de pescadería. Revista Técnica de La Facultad de Ingeniería Universidad Del Zulia, 32(2), 126-134. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0254-07702009000200005&lng=es&nrm=iso&tlng=es Anku, W. W., Mamo, M. A., Govender, P. P., Anku, W. W., Mamo, M. A., & Govender, P. P. (2017). Phenolic Compounds in Water: Sources, Reactivity, Toxicity and Treatment Methods. Phenolic Compounds - Natural Sources, Importance and Applications. https://doi.org/10.5772/66927 Aoyagi, H. (2011). Application of plant protoplasts for the production of useful metabolites. Biochemical Engineering Journal, 56(1-2), 1-8. https://doi.org/10.1016/J.BEJ.2010.05.004 Banerjee, A., & Ghoshal, A. K. (2010). Isolation and characterization of hyper phenol tolerant Bacillus sp. from oil refinery and exploration sites. Journal of Hazardous Materials, 176(1-3), 85-91. https://doi.org/10.1016/J.JHAZMAT.2009.11.002 Bansal, A., Shinde, O., & Sarkar, S. (2018). Industrial Wastewater Treatment Using Phycoremediation Technologies and Co-Production of Value-Added Products. Journal of Bioremediation & Biodegradation, 9(1), 1-10. https://doi.org/10.4172/2155-6199.1000428 Basaran Kankiliç, G., Metin, A. Ü., & Aluç, Y. (2020). Investigation on phenol degradation capability of Scenedesmus regularis: influence of process parameters. Environmental Technology (United Kingdom), 41(8), 1065-1073. https://doi.org/10.1080/09593330.2018.1521471 Batrisyia, S., Radziff, M., Ahmad, S. A., Shaharuddin, N. A., Merican, F., Kok, Y., Zulkharnain, A., Gomez-fuentes, C., & Wong, C. (2021). Potential Application of Algae in Biodegradation of Phenol : A Review and Bibliometric Study. Plants, 10, 1-36. https://doi.org/https://doi.org/10.3390/ plants10122677 Chaidir, Z., Rahmayuni, R., & Djamaan, A. (2019). Isolation and selection of growth medium for microalgae of Lake Biru Sawahlunto West Sumatra and antibacterial activity test. Journal of Pure and Applied Microbiology, 13(3), 1689-1696. https://doi.org/10.22207/JPAM.13.3.43 Cheng, T., Zhang, W., Zhang, W., Yuan, G., Wang, H., & Liu, T. (2017). An oleaginous filamentous microalgae Tribonema minus exhibits high removing potential of industrial phenol contaminants. Bioresource Technology, 238, 749-754. https://doi.org/10.1016/J.BIORTECH.2017.05.040 Cho, K., Lee, C. H., Ko, K., Lee, Y. J., Kim, K. N., Kim, M. K., Chung, Y. H., Kim, D., Yeo, I. K., & Oda, T. (2016). Use of phenol-induced oxidative stress acclimation to stimulate cell growth and biodiesel production by the oceanic microalga Dunaliella salina. Algal Research, 17, 61-66. https://doi.org/10.1016/J.ALGAL.2016.04.023 Das, B., Mandal, T. K., & Patra, S. (2015). A comprehensive study on Chlorella pyrenoidosa for phenol degradation and its potential applicability as biodiesel feedstock and animal feed. Applied Biochemistry and Biotechnology, 176(5), 1382-1401. https://doi.org/10.1007/S12010-015-1652-9/METRICS Dayana, P. S., & Bakthavatsalam, A. K. (2016). Optimization of phenol degradation by the microalga Chlorella pyrenoidosa using Plackett-Burman Design and Response Surface Methodology. Bioresource Technology, 207, 150-156. https://doi.org/10.1016/J.BIORTECH.2016.01.138 Domínguez, G. M., Garrido Pérez, M., Ruiz González, J., & Perales Vargas Machuca, J. (2020). Ficorremediación de Aguas Residuales Urbanas de Pequeños Municipios con Microalgas. REVISTA CIENTÍFICA ECOCIENCIA, 7(3), 1-27. https://doi.org/10.21855/ECOCIENCIA.73.347 Durham, B. P., Sharma, S., Luo, H., Smith, C. B., Amin, S. A., Bender, S. J., Dearth, S. P., Van Mooy, B. A. S., Campagna, S. R., Kujawinski, E. B., Armbrust, E. V., & Moran, M. A. (2015). Cryptic carbon and sulfur cycling between surface ocean plankton. Proceedings of the National Academy of Sciences of the United States of America, 112(2), 453-457. https://doi.org/10.1073/PNAS.1413137112 Echeverri, D., Romo, J., Giraldo, N., Atehortúa, L., Echeverri, D., Romo, J., Giraldo, N., & Atehortúa, L. (2019). Microalgae protoplasts isolation and fusion for biotechnology research. Revista Colombiana de Biotecnología, 21(1), 101-112. https://doi.org/10.15446/REV.COLOMB.BIOTE.V21N1.80248 El-Ashtoukhy, E. S. Z., El-Taweel, Y. A., Abdelwahab, O., & Nassef, E. M. (2013). Treatment of petrochemical wastewater containing phenolic compounds by electrocoagulation using a fixed bed electrochemical reactor. International Journal of Electrochemical Science, 8(1), 1534-1550. El-Gendy, N. S., & Nassar, H. N. (2021). Phycoremediation of phenol-polluted petro-industrial effluents and its techno-economic values as a win-win process for a green environment, sustainable energy and bioproducts. Journal of Applied Microbiology, 131(4), 1621-1638. https://doi.org/10.1111/JAM.14989 Emerson, E. (1943). The condensation of aminoantipyrine. II. A new color test for phenolic compounds. Journal of Organic Chemistry, 8(5), 417-428. https://doi.org/10.1021/JO01193A004/ASSET/JO01193A004.FP.PNG_V03 Ettinger, M. B., Ruchhoft, C. C., & Lishka, H. J. (1951). Sensitive 4-Aminoantipyrine Method for Phenolic Compounds. Analytical Chemistry, 23(12), 1783-1788. https://doi.org/10.1021/AC60060A019/ASSET/AC60060A019.FP.PNG_V03 Fernando, C. D., & Soysa, P. (2015). Optimized enzymatic colorimetric assay for determination of hydrogen peroxide (H2O2) scavenging activity of plant extracts. MethodsX, 2, 283-291. https://doi.org/10.1016/J.MEX.2015.05.001 Green, D. H., Echavarri-Bravo, V., Brennan, D., & Hart, M. C. (2015). Bacterial diversity associated with the coccolithophorid algae emiliania huxleyi and coccolithus pelagicus f. braarudii. BioMed Research International, 2015.https://doi.org/10.1155/2015/194540 Michalowicz, J., & W. Duda. (2007). Phenols - Sources and Toxicity. Polish Journal of Environmental Studies, 16(3), 347-362. http://www.pjoes.com/Phenols-Sources-and-Toxicity,87995,0,2.html Klekner, V., & Kosaric, N. (1992). Degradation of phenols by algae. Environmental Technology (United Kingdom), 13(5), 493-501. https://doi.org/10.1080/09593339209385176 Kong, W., Yang, S., Guo, B., Wang, H., Huo, H., Zhang, A., & Niu, S. (2019). Growth behavior, glucose consumption and phenol removal efficiency of Chlorella vulgaris under the synergistic effects of glucose and phenol. Ecotoxicology and Environmental Safety, 186, 109762. https://doi.org/10.1016/J.ECOENV.2019.109762 Lee, T. C. H., Chan, P. L., Tam, N. F. Y., Xu, S. J. L., & Lee, F. W. F. (2021). Establish axenic cultures of armored and unarmored marine dinoflagellate species using density separation, antibacterial treatments and stepwise dilution selection. Scientific Reports , 11(1), 1-13. https://doi.org/10.1038/s41598-020-80638-x Legendre, L., & Rassoulzadegan, F. (2012). Plankton and nutrient dynamics in marine waters. Ophelia, 41(1), 153-172. https://doi.org/10.1080/00785236.1995.10422042 Lika, K., & Papadakis, I. A. (2009). Modeling the biodegradation of phenolic compounds by microalgae. Journal of Sea Research, 62(2-3), 135-146. https://doi.org/10.1016/j.seares.2009.02.005 Lima, S. A. C., Raposo, M. F. J., Castro, P. M. L., & Morais, R. M. (2004). Biodegradation of p-chlorophenol by a microalgae consortium. Water Research, 38(1), 97-102. https://doi.org/10.1016/J.WATRES.2003.09.005 Liu, C. L., Place, A. R., & Jagus, R. (2017). Use of Antibiotics for Maintenance of Axenic Cultures of Amphidinium carterae for the Analysis of Translation. Marine Drugs , 15(8), 242. https://doi.org/10.3390/MD15080242 Martínez-Huitle, C. A., & Ferro, S. (2006). Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chemical Society Reviews, 35(12), 1324-1340. https://doi.org/10.1039/B517632H Mata, T. M., Melo, A. C., Simões, M., & Caetano, N. S. (2012). Parametric study of a brewery effluent treatment by microalgae Scenedesmus obliquus. Bioresource Technology, 107, 151-158. https://doi.org/10.1016/J.BIORTECH.2011.12.109 Megharaj, M., Pearson, H. W., & Venkateswarlu, K. (1992). Effects of phenolic compounds on growth and metabolic activities of Chlorella vulgaris and Scenedesmus bijugatus isolated from soil. Plant and Soil: An International Journal on Plant-Soil Relationships, 140(1), 25-34. https://doi.org/10.1007/BF00012803/METRICS Michalak, I., & Chojnacka, K. (2015). Algae as production systems of bioactive compounds. Engineering in Life Sciences, 15(2), 160-176. https://doi.org/10.1002/ELSC.201400191 Mohammadi, S., Kargari, A., Sanaeepur, H., Abbassian, K., Najafi, A., & Mofarrah, E. (2015). Phenol removal from industrial wastewaters: a short review. Desalination and Water Treatment, 53(8), 2215-2234. https://doi.org/10.1080/19443994.2014.883327 Mukherjee, R., & De, S. (2014). Adsorptive removal of phenolic compounds using cellulose acetate phthalate-alumina nanoparticle mixed matrix membrane. Journal of Hazardous Materials, 265, 8-19. https://doi.org/10.1016/J.JHAZMAT.2013.11.012 Navarro, A. E., Hernandez-Vega, A., Masud, M. E., Roberson, L. M., & Diaz-Vázquez, L. M. (2016). Bioremoval of Phenol from Aqueous Solutions Using Native Caribbean Seaweed. Environments 2017, Vol. 4, Page 1, 4(1), 1. https://doi.org/10.3390/ENVIRONMENTS4010001 Nazos, T. T., Mavroudakis, L., Pergantis, S. A., & Ghanotakis, D. F. (2020). Biodegradation of phenol by Chlamydomonas reinhardtii. Photosynthesis Research, 144(3), 383-395. https://doi.org/10.1007/S11120-020-00756-5/METRICS Papazi, A., & Kotzabasis, K. (2007). Bioenergetic strategy of microalgae for the biodegradation of phenolic compounds-Exogenously supplied energy and carbon sources adjust the level of biodegradation. Journal of Biotechnology, 129(4), 706-716. https://doi.org/10.1016/J.JBIOTEC.2007.02.021 Pinto, G., Pollio, A., Previtera, L., & Temussi, F. (2002). Biodegradation of phenols by microalgae. Biotechnology Letters 2002 24:24, 24(24), 2047-2051. https://doi.org/10.1023/A:1021367304315 Pokorny, L., Hausmann, B., Pjevac, P., & Schagerl, M. (2022). How to Verify Non-Presence-The Challenge of Axenic Algae Cultivation. Cells , 11(16), 2594. https://doi.org/10.3390/CELLS11162594 Premnath, D., Mosae Selvakumar, P., Ravichandiran, P., Tamil Selvan, G., Indiraleka, M., & Jannet Vennila, J. (2016). Synthesis and spectroscopic characterization of fluorescent 4-aminoantipyrine analogues: Molecular docking and in vitro cytotoxicity studies. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 153, 118-123. https://doi.org/10.1016/J.SAA.2015.08.008 Raimundo, S. C., Sørensen, I., Tinaz, B., Ritter, E., Rose, J. K. C., & Domozych, D. S. (2018). Isolation and manipulation of protoplasts from the unicellular green alga Penium margaritaceum. Plant Methods, 14(1), 1-18. https://doi.org/10.1186/S13007-018-0284-9/FIGURES/8 Razak, S. B. A., & Sharip, Z. (2020). The potential of phycoremediation in controlling eutrophication in tropical lake and reservoir: A review. Desalination and Water Treatment, 180, 164-173. https://doi.org/10.5004/DWT.2020.25078 Seymour, J. R., Amin, S. A., Raina, J. B., & Stocker, R. (2017). Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships. Nature Microbiology, 2(7), 1-12. https://doi.org/10.1038/nmicrobiol.2017.65 Shourian, M., Noghabi, K. A., Zahiri, H. S., Bagheri, T., Karballaei, G., Mollaei, M., Rad, I., Ahadi, S., Raheb, J., & Abbasi, H. (2009). Efficient phenol degradation by a newly characterized Pseudomonas sp. SA01 isolated from pharmaceutical wastewaters. Desalination, 246(1-3), 577-594. Https://doi.org/10.1016/J.DESAL.2008.07.015 Singh, N. K., & Patel, D. B. (2012). Microalgae for Bioremediation of Distillery Effluent. Farming for Food and Water Security, 10, 83-109. https://doi.org/10.1007/978-94-007-4500-1_4 Stocker, R., Seymour, J. R., Samadani, A., Hunt, D. E., & Polz, M. F. (2008). Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proceedings of the National Academy of Sciences of the United States of America, 105(11), 4209-4214. https://doi.org/10.1073/PNAS.0709765105 Stoilova, I., Krastanov, A., Stanchev, V., Daniel, D., Gerginova, M., & Alexieva, Z. (2006). Biodegradation of high amounts of phenol, catechol, 2,4-dichlorophenol and 2,6-dimethoxyphenol by Aspergillus awamori cells. Enzyme and Microbial Technology, 39(5), 1036-1041. https://doi.org/10.1016/J.ENZMICTEC.2006.02.006 Tjahjono, A. E., Kakizono, T., Hayama, Y., & Nagai, S. (1993). Formation and regeneration of protoplast from a unicellular green alga Haematococcus pluvialis. Journal of Fermentation and Bioengineering, 75(3), 196-200. https://doi.org/10.1016/0922-338X(93)90115-O Tripathi, R., Singh, J., & Thakur, I. S. (2015). Characterization of microalga Scenedesmus sp. ISTGA1 for potential CO2 sequestration and biodiesel production. Renewable Energy, 74, 774-781. https://doi.org/10.1016/J.RENENE.2014.09.005 Varadaraju, C., Tamilselvan, G., Enoch, I., Selvakumar, P. M., & Journal, I. (2018). Phenol Sensing Studies by 4-Aminoantipyrine Method-A Review Organic and Medicinal Chemistry. Organic & Medicinal Chem IJ, 5(2), 1-7. https://doi.org/10.19080/OMCIJ.2018.05.555657 Variem, S. S., & Kizhakkedath, V. K. (2021). Phycosphere associated bacteria; a prospective source of bioactive compounds. Biologia, 76(3), 1095-1098. https://doi.org/10.2478/S11756-020-00640-6/FIGURES/1 Villegas, L. G. C., Mashhadi, N., Chen, M., Mukherjee, D., Taylor, K. E., & Biswas, N. (2016). A Short Review of Techniques for Phenol Removal from Wastewater. Current Pollution Reports 2016 2:3, 2(3), 157-167. https://doi.org/10.1007/S40726-016-0035-3 Wang, L., Xue, C., Wang, L., Zhao, Q., Wei, W., & Sun, Y. (2016). Strain improvement of Chlorella sp. for phenol biodegradation by adaptive laboratory evolution. Bioresource Technology, 205, 264-268. https://doi.org/10.1016/J.BIORTECH.2016.01.022 Wang, Y., Meng, F., Li, H., Zhao, S., Liu, Q., Lin, Y., Wang, G., & Wu, J. (2019). Biodegradation of phenol by Isochrysis galbana screened from eight species of marine microalgae: growth kinetic models, enzyme analysis and biodegradation pathway. Journal of Applied Phycology, 31(1), 445-455. https://doi.org/10.1007/S10811-018-1517-Z/METRICS Wurster, M., Mundt, S., Hammer, E., Schauer, F., & Lindequist, U. (2003). Extracellular degradation of phenol by the cyanobacterium Synechococcus PCC 7002. Journal of Applied Phycology, 15(2-3), 171-176. https://doi.org/10.1023/A:1023840503605/METRICS Xiong, J. Q., Kurade, M. B., & Jeon, B. H. (2018). Can Microalgae Remove Pharmaceutical Contaminants from Water? Trends in Biotechnology, 36(1), 30-44. https://doi.org/10.1016/j.tibtech.2017.09.003 Zhang, Y., Kong, X., Wang, Z., Sun, Y., Zhu, S., Li, L., & Lv, P. (2018). Optimization of enzymatic hydrolysis for effective lipid extraction from microalgae Scenedesmus sp. Renewable Energy, 125, 1049-1057. https://doi.org/10.1016/J.RENENE.2018.01.078 |
dc.rights.license.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
31 páginas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Microbiología |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Ciencias Biológicas |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/bccd1e75-a996-43b0-a84d-f5ecbb377dac/download https://repositorio.uniandes.edu.co/bitstreams/4880a023-4843-42be-b03e-7f9db775290e/download https://repositorio.uniandes.edu.co/bitstreams/8e066868-bcd7-4942-b09e-4109cdd0ec37/download https://repositorio.uniandes.edu.co/bitstreams/3a75a9bd-c89d-450c-8577-4d6c08cbbce6/download https://repositorio.uniandes.edu.co/bitstreams/b9421a90-b69f-4cb2-9930-c6802f873f33/download https://repositorio.uniandes.edu.co/bitstreams/19530ad3-71da-49a4-992b-952f5b28d476/download https://repositorio.uniandes.edu.co/bitstreams/3ed19caa-9f44-4ee5-828a-656189d3ee9d/download https://repositorio.uniandes.edu.co/bitstreams/f690be6b-8389-49ff-a145-c470f2807f53/download |
bitstream.checksum.fl_str_mv |
aea199196da6a7b6d63c6274262e7bf8 e71cf304539cfe411acba4492c891206 4460e5956bc1d1639be9ae6146a50347 8767ab0871fcb72043496593f1887358 d784fa8b6d98d27699781bd9a7cf19f0 c2a9d76bce79b0b7a2d813318e64b707 e1ac42c1aa953e59ff19aa7fd4f98367 5aa5c691a1ffe97abd12c2966efcb8d6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812134078732828672 |
spelling |
Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vives Flórez, Martha Josefinavirtual::17529-1Fonseca López, Valeriacc134f41-dbfe-4664-a80d-a2baea099478600Centro de Investigaciones Microbiológicas (CIMIC)2023-02-02T12:56:51Z2023-02-02T12:56:51Z2023-01-31http://hdl.handle.net/1992/64506instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Una especie de microalga que ha mostrado gran potencial para la biodegradación de fenol es Scenedesmus sp. un alga verde dulceacuícola. Las microalgas presentan interacciones de gran importancia con bacterias, estas se desarrollan en la ficoesfera del alga, una interfaz que se puede entender como el análogo de la rizosfera en las plantas, de la cual es casi nula la información que se posee acerca de su composición.En los últimos años el fenol, que ha sido absorbido por los cuerpos de agua, ha llamado mucho la atención por su alta toxicidad y el peligro que representa para las especies. Las principales fuentes de estos compuestos contaminantes son las industrias como la farmacéutica, plantas de procesamiento de petróleo, refinerías, agroquímica, entre otras. Actualmente la biodegradación es la opción más eficaz y versátil para el tratamiento de este contaminante ya que es una de las mejores opciones desde el punto de vista ambiental, económico y técnico. Una de las especies que logra degradar el fenol usándolo como fuente de carbono son las microalgas, las cuales logran remineralizar dicho compuesto. Una especie de microalga que ha mostrado gran potencial para la biodegradación de fenol es Scenedesmus sp. un alga verde dulceacuícola. Las microalgas presentan interacciones de gran importancia con bacterias, estas se desarrollan en la ficoesfera del alga, una interfaz que se puede entender como el análogo de la rizosfera en las plantas, de la cual es casi nula la información que se posee acerca de su composición. Debido a esta falta de información, el estudio de la ficoesfera puede ser la clave para optimizar este proceso y elucidar por completo la ruta metabólica para degradación de fenol utilizada por Scenedesmus sp.MicrobiólogoPregradoBiorremediaciónFicorremediación31 páginasapplication/pdfspaUniversidad de los AndesMicrobiologíaFacultad de CienciasDepartamento de Ciencias BiológicasDegradación de fenol por medio de la microalga Scenedesmus sp. (filo Chlorophyta) y el rol de la ficoesfera en este procesoTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPFenolBiodegradaciónFicoesferaScenedesmus sp.FicorremediaciónMicroalgasMicrobiologíaAndrade R, C. E., Vera B, A. L., Cárdenas L, C. H., & Morales A, E. D. (2009). Producción de biomasa de la microalga Scenedesmus sp. utilizando aguas residuales de pescadería. Revista Técnica de La Facultad de Ingeniería Universidad Del Zulia, 32(2), 126-134. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0254-07702009000200005&lng=es&nrm=iso&tlng=esAnku, W. W., Mamo, M. A., Govender, P. P., Anku, W. W., Mamo, M. A., & Govender, P. P. (2017). Phenolic Compounds in Water: Sources, Reactivity, Toxicity and Treatment Methods. Phenolic Compounds - Natural Sources, Importance and Applications. https://doi.org/10.5772/66927Aoyagi, H. (2011). Application of plant protoplasts for the production of useful metabolites. Biochemical Engineering Journal, 56(1-2), 1-8. https://doi.org/10.1016/J.BEJ.2010.05.004Banerjee, A., & Ghoshal, A. K. (2010). Isolation and characterization of hyper phenol tolerant Bacillus sp. from oil refinery and exploration sites. Journal of Hazardous Materials, 176(1-3), 85-91. https://doi.org/10.1016/J.JHAZMAT.2009.11.002Bansal, A., Shinde, O., & Sarkar, S. (2018). Industrial Wastewater Treatment Using Phycoremediation Technologies and Co-Production of Value-Added Products. Journal of Bioremediation & Biodegradation, 9(1), 1-10. https://doi.org/10.4172/2155-6199.1000428Basaran Kankiliç, G., Metin, A. Ü., & Aluç, Y. (2020). Investigation on phenol degradation capability of Scenedesmus regularis: influence of process parameters. Environmental Technology (United Kingdom), 41(8), 1065-1073. https://doi.org/10.1080/09593330.2018.1521471Batrisyia, S., Radziff, M., Ahmad, S. A., Shaharuddin, N. A., Merican, F., Kok, Y., Zulkharnain, A., Gomez-fuentes, C., & Wong, C. (2021). Potential Application of Algae in Biodegradation of Phenol : A Review and Bibliometric Study. Plants, 10, 1-36. https://doi.org/https://doi.org/10.3390/ plants10122677Chaidir, Z., Rahmayuni, R., & Djamaan, A. (2019). Isolation and selection of growth medium for microalgae of Lake Biru Sawahlunto West Sumatra and antibacterial activity test. Journal of Pure and Applied Microbiology, 13(3), 1689-1696. https://doi.org/10.22207/JPAM.13.3.43Cheng, T., Zhang, W., Zhang, W., Yuan, G., Wang, H., & Liu, T. (2017). An oleaginous filamentous microalgae Tribonema minus exhibits high removing potential of industrial phenol contaminants. Bioresource Technology, 238, 749-754. https://doi.org/10.1016/J.BIORTECH.2017.05.040Cho, K., Lee, C. H., Ko, K., Lee, Y. J., Kim, K. N., Kim, M. K., Chung, Y. H., Kim, D., Yeo, I. K., & Oda, T. (2016). Use of phenol-induced oxidative stress acclimation to stimulate cell growth and biodiesel production by the oceanic microalga Dunaliella salina. Algal Research, 17, 61-66. https://doi.org/10.1016/J.ALGAL.2016.04.023Das, B., Mandal, T. K., & Patra, S. (2015). A comprehensive study on Chlorella pyrenoidosa for phenol degradation and its potential applicability as biodiesel feedstock and animal feed. Applied Biochemistry and Biotechnology, 176(5), 1382-1401. https://doi.org/10.1007/S12010-015-1652-9/METRICSDayana, P. S., & Bakthavatsalam, A. K. (2016). Optimization of phenol degradation by the microalga Chlorella pyrenoidosa using Plackett-Burman Design and Response Surface Methodology. Bioresource Technology, 207, 150-156. https://doi.org/10.1016/J.BIORTECH.2016.01.138Domínguez, G. M., Garrido Pérez, M., Ruiz González, J., & Perales Vargas Machuca, J. (2020). Ficorremediación de Aguas Residuales Urbanas de Pequeños Municipios con Microalgas. REVISTA CIENTÍFICA ECOCIENCIA, 7(3), 1-27. https://doi.org/10.21855/ECOCIENCIA.73.347Durham, B. P., Sharma, S., Luo, H., Smith, C. B., Amin, S. A., Bender, S. J., Dearth, S. P., Van Mooy, B. A. S., Campagna, S. R., Kujawinski, E. B., Armbrust, E. V., & Moran, M. A. (2015). Cryptic carbon and sulfur cycling between surface ocean plankton. Proceedings of the National Academy of Sciences of the United States of America, 112(2), 453-457. https://doi.org/10.1073/PNAS.1413137112Echeverri, D., Romo, J., Giraldo, N., Atehortúa, L., Echeverri, D., Romo, J., Giraldo, N., & Atehortúa, L. (2019). Microalgae protoplasts isolation and fusion for biotechnology research. Revista Colombiana de Biotecnología, 21(1), 101-112. https://doi.org/10.15446/REV.COLOMB.BIOTE.V21N1.80248El-Ashtoukhy, E. S. Z., El-Taweel, Y. A., Abdelwahab, O., & Nassef, E. M. (2013). Treatment of petrochemical wastewater containing phenolic compounds by electrocoagulation using a fixed bed electrochemical reactor. International Journal of Electrochemical Science, 8(1), 1534-1550.El-Gendy, N. S., & Nassar, H. N. (2021). Phycoremediation of phenol-polluted petro-industrial effluents and its techno-economic values as a win-win process for a green environment, sustainable energy and bioproducts. Journal of Applied Microbiology, 131(4), 1621-1638. https://doi.org/10.1111/JAM.14989Emerson, E. (1943). The condensation of aminoantipyrine. II. A new color test for phenolic compounds. Journal of Organic Chemistry, 8(5), 417-428. https://doi.org/10.1021/JO01193A004/ASSET/JO01193A004.FP.PNG_V03Ettinger, M. B., Ruchhoft, C. C., & Lishka, H. J. (1951). Sensitive 4-Aminoantipyrine Method for Phenolic Compounds. Analytical Chemistry, 23(12), 1783-1788. https://doi.org/10.1021/AC60060A019/ASSET/AC60060A019.FP.PNG_V03Fernando, C. D., & Soysa, P. (2015). Optimized enzymatic colorimetric assay for determination of hydrogen peroxide (H2O2) scavenging activity of plant extracts. MethodsX, 2, 283-291. https://doi.org/10.1016/J.MEX.2015.05.001Green, D. H., Echavarri-Bravo, V., Brennan, D., & Hart, M. C. (2015). Bacterial diversity associated with the coccolithophorid algae emiliania huxleyi and coccolithus pelagicus f. braarudii. BioMed Research International, 2015.https://doi.org/10.1155/2015/194540Michalowicz, J., & W. Duda. (2007). Phenols - Sources and Toxicity. Polish Journal of Environmental Studies, 16(3), 347-362. http://www.pjoes.com/Phenols-Sources-and-Toxicity,87995,0,2.htmlKlekner, V., & Kosaric, N. (1992). Degradation of phenols by algae. Environmental Technology (United Kingdom), 13(5), 493-501. https://doi.org/10.1080/09593339209385176Kong, W., Yang, S., Guo, B., Wang, H., Huo, H., Zhang, A., & Niu, S. (2019). Growth behavior, glucose consumption and phenol removal efficiency of Chlorella vulgaris under the synergistic effects of glucose and phenol. Ecotoxicology and Environmental Safety, 186, 109762. https://doi.org/10.1016/J.ECOENV.2019.109762Lee, T. C. H., Chan, P. L., Tam, N. F. Y., Xu, S. J. L., & Lee, F. W. F. (2021). Establish axenic cultures of armored and unarmored marine dinoflagellate species using density separation, antibacterial treatments and stepwise dilution selection. Scientific Reports , 11(1), 1-13. https://doi.org/10.1038/s41598-020-80638-xLegendre, L., & Rassoulzadegan, F. (2012). Plankton and nutrient dynamics in marine waters. Ophelia, 41(1), 153-172. https://doi.org/10.1080/00785236.1995.10422042Lika, K., & Papadakis, I. A. (2009). Modeling the biodegradation of phenolic compounds by microalgae. Journal of Sea Research, 62(2-3), 135-146. https://doi.org/10.1016/j.seares.2009.02.005Lima, S. A. C., Raposo, M. F. J., Castro, P. M. L., & Morais, R. M. (2004). Biodegradation of p-chlorophenol by a microalgae consortium. Water Research, 38(1), 97-102. https://doi.org/10.1016/J.WATRES.2003.09.005Liu, C. L., Place, A. R., & Jagus, R. (2017). Use of Antibiotics for Maintenance of Axenic Cultures of Amphidinium carterae for the Analysis of Translation. Marine Drugs , 15(8), 242. https://doi.org/10.3390/MD15080242Martínez-Huitle, C. A., & Ferro, S. (2006). Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chemical Society Reviews, 35(12), 1324-1340. https://doi.org/10.1039/B517632HMata, T. M., Melo, A. C., Simões, M., & Caetano, N. S. (2012). Parametric study of a brewery effluent treatment by microalgae Scenedesmus obliquus. Bioresource Technology, 107, 151-158. https://doi.org/10.1016/J.BIORTECH.2011.12.109Megharaj, M., Pearson, H. W., & Venkateswarlu, K. (1992). Effects of phenolic compounds on growth and metabolic activities of Chlorella vulgaris and Scenedesmus bijugatus isolated from soil. Plant and Soil: An International Journal on Plant-Soil Relationships, 140(1), 25-34. https://doi.org/10.1007/BF00012803/METRICSMichalak, I., & Chojnacka, K. (2015). Algae as production systems of bioactive compounds. Engineering in Life Sciences, 15(2), 160-176. https://doi.org/10.1002/ELSC.201400191Mohammadi, S., Kargari, A., Sanaeepur, H., Abbassian, K., Najafi, A., & Mofarrah, E. (2015). Phenol removal from industrial wastewaters: a short review. Desalination and Water Treatment, 53(8), 2215-2234. https://doi.org/10.1080/19443994.2014.883327Mukherjee, R., & De, S. (2014). Adsorptive removal of phenolic compounds using cellulose acetate phthalate-alumina nanoparticle mixed matrix membrane. Journal of Hazardous Materials, 265, 8-19. https://doi.org/10.1016/J.JHAZMAT.2013.11.012Navarro, A. E., Hernandez-Vega, A., Masud, M. E., Roberson, L. M., & Diaz-Vázquez, L. M. (2016). Bioremoval of Phenol from Aqueous Solutions Using Native Caribbean Seaweed. Environments 2017, Vol. 4, Page 1, 4(1), 1. https://doi.org/10.3390/ENVIRONMENTS4010001Nazos, T. T., Mavroudakis, L., Pergantis, S. A., & Ghanotakis, D. F. (2020). Biodegradation of phenol by Chlamydomonas reinhardtii. Photosynthesis Research, 144(3), 383-395. https://doi.org/10.1007/S11120-020-00756-5/METRICSPapazi, A., & Kotzabasis, K. (2007). Bioenergetic strategy of microalgae for the biodegradation of phenolic compounds-Exogenously supplied energy and carbon sources adjust the level of biodegradation. Journal of Biotechnology, 129(4), 706-716. https://doi.org/10.1016/J.JBIOTEC.2007.02.021Pinto, G., Pollio, A., Previtera, L., & Temussi, F. (2002). Biodegradation of phenols by microalgae. Biotechnology Letters 2002 24:24, 24(24), 2047-2051. https://doi.org/10.1023/A:1021367304315Pokorny, L., Hausmann, B., Pjevac, P., & Schagerl, M. (2022). How to Verify Non-Presence-The Challenge of Axenic Algae Cultivation. Cells , 11(16), 2594. https://doi.org/10.3390/CELLS11162594Premnath, D., Mosae Selvakumar, P., Ravichandiran, P., Tamil Selvan, G., Indiraleka, M., & Jannet Vennila, J. (2016). Synthesis and spectroscopic characterization of fluorescent 4-aminoantipyrine analogues: Molecular docking and in vitro cytotoxicity studies. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 153, 118-123. https://doi.org/10.1016/J.SAA.2015.08.008Raimundo, S. C., Sørensen, I., Tinaz, B., Ritter, E., Rose, J. K. C., & Domozych, D. S. (2018). Isolation and manipulation of protoplasts from the unicellular green alga Penium margaritaceum. Plant Methods, 14(1), 1-18. https://doi.org/10.1186/S13007-018-0284-9/FIGURES/8Razak, S. B. A., & Sharip, Z. (2020). The potential of phycoremediation in controlling eutrophication in tropical lake and reservoir: A review. Desalination and Water Treatment, 180, 164-173. https://doi.org/10.5004/DWT.2020.25078Seymour, J. R., Amin, S. A., Raina, J. B., & Stocker, R. (2017). Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships. Nature Microbiology, 2(7), 1-12. https://doi.org/10.1038/nmicrobiol.2017.65Shourian, M., Noghabi, K. A., Zahiri, H. S., Bagheri, T., Karballaei, G., Mollaei, M., Rad, I., Ahadi, S., Raheb, J., & Abbasi, H. (2009). Efficient phenol degradation by a newly characterized Pseudomonas sp. SA01 isolated from pharmaceutical wastewaters. Desalination, 246(1-3), 577-594. Https://doi.org/10.1016/J.DESAL.2008.07.015Singh, N. K., & Patel, D. B. (2012). Microalgae for Bioremediation of Distillery Effluent. Farming for Food and Water Security, 10, 83-109. https://doi.org/10.1007/978-94-007-4500-1_4Stocker, R., Seymour, J. R., Samadani, A., Hunt, D. E., & Polz, M. F. (2008). Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proceedings of the National Academy of Sciences of the United States of America, 105(11), 4209-4214. https://doi.org/10.1073/PNAS.0709765105Stoilova, I., Krastanov, A., Stanchev, V., Daniel, D., Gerginova, M., & Alexieva, Z. (2006). Biodegradation of high amounts of phenol, catechol, 2,4-dichlorophenol and 2,6-dimethoxyphenol by Aspergillus awamori cells. Enzyme and Microbial Technology, 39(5), 1036-1041. https://doi.org/10.1016/J.ENZMICTEC.2006.02.006Tjahjono, A. E., Kakizono, T., Hayama, Y., & Nagai, S. (1993). Formation and regeneration of protoplast from a unicellular green alga Haematococcus pluvialis. Journal of Fermentation and Bioengineering, 75(3), 196-200. https://doi.org/10.1016/0922-338X(93)90115-OTripathi, R., Singh, J., & Thakur, I. S. (2015). Characterization of microalga Scenedesmus sp. ISTGA1 for potential CO2 sequestration and biodiesel production. Renewable Energy, 74, 774-781. https://doi.org/10.1016/J.RENENE.2014.09.005Varadaraju, C., Tamilselvan, G., Enoch, I., Selvakumar, P. M., & Journal, I. (2018). Phenol Sensing Studies by 4-Aminoantipyrine Method-A Review Organic and Medicinal Chemistry. Organic & Medicinal Chem IJ, 5(2), 1-7. https://doi.org/10.19080/OMCIJ.2018.05.555657Variem, S. S., & Kizhakkedath, V. K. (2021). Phycosphere associated bacteria; a prospective source of bioactive compounds. Biologia, 76(3), 1095-1098. https://doi.org/10.2478/S11756-020-00640-6/FIGURES/1Villegas, L. G. C., Mashhadi, N., Chen, M., Mukherjee, D., Taylor, K. E., & Biswas, N. (2016). A Short Review of Techniques for Phenol Removal from Wastewater. Current Pollution Reports 2016 2:3, 2(3), 157-167. https://doi.org/10.1007/S40726-016-0035-3Wang, L., Xue, C., Wang, L., Zhao, Q., Wei, W., & Sun, Y. (2016). Strain improvement of Chlorella sp. for phenol biodegradation by adaptive laboratory evolution. Bioresource Technology, 205, 264-268. https://doi.org/10.1016/J.BIORTECH.2016.01.022Wang, Y., Meng, F., Li, H., Zhao, S., Liu, Q., Lin, Y., Wang, G., & Wu, J. (2019). Biodegradation of phenol by Isochrysis galbana screened from eight species of marine microalgae: growth kinetic models, enzyme analysis and biodegradation pathway. Journal of Applied Phycology, 31(1), 445-455. https://doi.org/10.1007/S10811-018-1517-Z/METRICSWurster, M., Mundt, S., Hammer, E., Schauer, F., & Lindequist, U. (2003). Extracellular degradation of phenol by the cyanobacterium Synechococcus PCC 7002. Journal of Applied Phycology, 15(2-3), 171-176. https://doi.org/10.1023/A:1023840503605/METRICSXiong, J. Q., Kurade, M. B., & Jeon, B. H. (2018). Can Microalgae Remove Pharmaceutical Contaminants from Water? Trends in Biotechnology, 36(1), 30-44. https://doi.org/10.1016/j.tibtech.2017.09.003Zhang, Y., Kong, X., Wang, Z., Sun, Y., Zhu, S., Li, L., & Lv, P. (2018). Optimization of enzymatic hydrolysis for effective lipid extraction from microalgae Scenedesmus sp. Renewable Energy, 125, 1049-1057. https://doi.org/10.1016/J.RENENE.2018.01.078201813465Publicationhttps://scholar.google.es/citations?user=FmskIBcAAAAJvirtual::17529-10000-0001-7795-1494virtual::17529-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000190195virtual::17529-1324db0c6-0b71-49b7-846b-c997885dbe42virtual::17529-1324db0c6-0b71-49b7-846b-c997885dbe42virtual::17529-1ORIGINALTRABAJO DE GRADO MICROBIOLOGÍA.pdfTRABAJO DE GRADO MICROBIOLOGÍA.pdfTrabajo de gradoapplication/pdf857716https://repositorio.uniandes.edu.co/bitstreams/bccd1e75-a996-43b0-a84d-f5ecbb377dac/downloadaea199196da6a7b6d63c6274262e7bf8MD53AUTORIZACION.pdfAUTORIZACION.pdfHIDEapplication/pdf223919https://repositorio.uniandes.edu.co/bitstreams/4880a023-4843-42be-b03e-7f9db775290e/downloade71cf304539cfe411acba4492c891206MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/8e066868-bcd7-4942-b09e-4109cdd0ec37/download4460e5956bc1d1639be9ae6146a50347MD52TEXTTRABAJO DE GRADO MICROBIOLOGÍA.pdf.txtTRABAJO DE GRADO MICROBIOLOGÍA.pdf.txtExtracted texttext/plain64898https://repositorio.uniandes.edu.co/bitstreams/3a75a9bd-c89d-450c-8577-4d6c08cbbce6/download8767ab0871fcb72043496593f1887358MD55AUTORIZACION.pdf.txtAUTORIZACION.pdf.txtExtracted texttext/plain2https://repositorio.uniandes.edu.co/bitstreams/b9421a90-b69f-4cb2-9930-c6802f873f33/downloadd784fa8b6d98d27699781bd9a7cf19f0MD57THUMBNAILTRABAJO DE GRADO MICROBIOLOGÍA.pdf.jpgTRABAJO DE GRADO MICROBIOLOGÍA.pdf.jpgIM Thumbnailimage/jpeg5404https://repositorio.uniandes.edu.co/bitstreams/19530ad3-71da-49a4-992b-952f5b28d476/downloadc2a9d76bce79b0b7a2d813318e64b707MD56AUTORIZACION.pdf.jpgAUTORIZACION.pdf.jpgIM Thumbnailimage/jpeg14814https://repositorio.uniandes.edu.co/bitstreams/3ed19caa-9f44-4ee5-828a-656189d3ee9d/downloade1ac42c1aa953e59ff19aa7fd4f98367MD58LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/f690be6b-8389-49ff-a145-c470f2807f53/download5aa5c691a1ffe97abd12c2966efcb8d6MD511992/64506oai:repositorio.uniandes.edu.co:1992/645062024-03-13 16:02:48.741http://creativecommons.org/licenses/by-nc-nd/4.0/restrictedhttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg== |