Image Ggeneration with langevin dynamics

In the field of machine learning, Diffusion Probabilistic Models have emerged as a prominent category of generative models. Their main objective is to learn a diffusion process that describes the probability distribution of a given dataset. The essence of diffusion-based generative models finds its...

Full description

Autores:
Almanza Márquez, David Leonardo
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/74510
Acceso en línea:
https://hdl.handle.net/1992/74510
Palabra clave:
Diffusion probabilistic models
Machine learning
Statistical physics
Langevin equation
Synthetic data generation
Física
Ingeniería
Rights
openAccess
License
Attribution-NonCommercial 4.0 International
id UNIANDES2_74a5edf514c1e10b10174bd2334769ae
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/74510
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Image Ggeneration with langevin dynamics
title Image Ggeneration with langevin dynamics
spellingShingle Image Ggeneration with langevin dynamics
Diffusion probabilistic models
Machine learning
Statistical physics
Langevin equation
Synthetic data generation
Física
Ingeniería
title_short Image Ggeneration with langevin dynamics
title_full Image Ggeneration with langevin dynamics
title_fullStr Image Ggeneration with langevin dynamics
title_full_unstemmed Image Ggeneration with langevin dynamics
title_sort Image Ggeneration with langevin dynamics
dc.creator.fl_str_mv Almanza Márquez, David Leonardo
dc.contributor.advisor.none.fl_str_mv Téllez Acosta, Gabriel
dc.contributor.author.none.fl_str_mv Almanza Márquez, David Leonardo
dc.contributor.jury.none.fl_str_mv Jimenez Rincon, Jose Julian
dc.subject.keyword.eng.fl_str_mv Diffusion probabilistic models
Machine learning
Statistical physics
Langevin equation
Synthetic data generation
topic Diffusion probabilistic models
Machine learning
Statistical physics
Langevin equation
Synthetic data generation
Física
Ingeniería
dc.subject.themes.none.fl_str_mv Física
Ingeniería
description In the field of machine learning, Diffusion Probabilistic Models have emerged as a prominent category of generative models. Their main objective is to learn a diffusion process that describes the probability distribution of a given dataset. The essence of diffusion-based generative models finds its roots in statistical physics, where diffusion is modeled by describing the Brownian motion of particles through a physical system. Inspired by these concepts, diffusion generative models adopt diffusion as a central process. By understanding how data diffuse in an abstract space, these models capture inherent patterns and generate synthetic data that reflects the underlying structure of real datasets. This study undertakes a comparative analysis between Denoising Diffusion Probabilistic Models and statistical physics. It was discovered that the “diffusion” process of data, as elucidated in the seminal paper by Jo et al. (2020), can be effectively explained using a specialized version of the Langevin Equation. Building upon this understanding and leveraging the work of Song et al. on score-based generative modeling through stochastic differential equations, we expanded the framework of DPMs by examining continuous time diffusion processes, as opposed to the discrete time framework presented by Jo et al. This continuous time perspective provided deeper insights into the physical principles underlying DPMs. Furthermore, it facilitated new observations and advancements in the development of DPMs, enhancing our comprehension and application of these models.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-11T19:48:32Z
dc.date.available.none.fl_str_mv 2024-07-11T19:48:32Z
dc.date.issued.none.fl_str_mv 2024-05-24
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/74510
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/74510
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., & Ganguli, S. (2015). Deep Unsupervised Learning using Nonequilibrium Thermodynamics. International Conference on Machine Learning, 2256–2265. http://ganguli-gang.stanford.edu/pdf/DeepUnsupDiffusion.pdf
Ho, J., Jain, A., & Abbeel, P. (2020). Denoising Diffusion Probabilistic Models. Neural Information Processing Systems, 33, 6840–6851. https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
Nichol, A. Q., & Dhariwal, P. (2021). Improved Denoising Diffusion Probabilistic Models. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2102.09672
Song, J., Meng, C., & Ermon, S. (2020). Denoising Diffusion Implicit Models. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2010.02502
Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2020). Score-Based Generative Modeling through Stochastic Differential Equations. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2011.13456
Anderson, B. D. (1982). Reverse-time diffusion equation models. Stochastic Processes and Their Applications, 12(3), 313–326. https://doi.org/10.1016/0304-4149(82)90051-5
Song, Y., & Ermon, S. (2019). Generative Modeling by Estimating Gradients of the Data Distribution. arXiv (Cornell University), 32, 11895–11907. https://arxiv.org/pdf/1907.05600.pdf
Yan, J. N., Gu, J., & Rush, A. M. (2023). Diffusion Models Without Attention. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2311.18257
Yang, T., Wang, Y., Lv, Y., & Zheng, N. (2023). DisDiff: Unsupervised Disentanglement of Diffusion Probabilistic Models. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2301.13721
Rogel-Salazar, J. (2011). Statistical Mechanics, 3rd edn., by R.K. Pathria and P.D. Beale. Contemporary Physics, 52(6), 619–620. https://doi.org/10.1080/00107514.2011.603434
dc.rights.en.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial 4.0 International
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 43 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Física
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Física
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/82edcee1-6f7b-4b8a-a9b8-c888c35cb7f8/download
https://repositorio.uniandes.edu.co/bitstreams/6efa0164-2bb7-4027-bb50-720e7a1246ab/download
https://repositorio.uniandes.edu.co/bitstreams/821ba232-b72d-4ae5-9a5c-70ab4aa69112/download
https://repositorio.uniandes.edu.co/bitstreams/3c90c6d1-c54e-4d61-b2d2-8b5127555b3a/download
https://repositorio.uniandes.edu.co/bitstreams/067db512-a793-4d3a-b743-c64d3b10474f/download
https://repositorio.uniandes.edu.co/bitstreams/32e59dc8-381e-431f-8adb-9e1c9f69d919/download
https://repositorio.uniandes.edu.co/bitstreams/b2ade2c6-08e1-43b8-b6d3-cca6fa758cdd/download
https://repositorio.uniandes.edu.co/bitstreams/7e04856a-34d7-4e9d-80d9-b97d1e213e4d/download
bitstream.checksum.fl_str_mv 2a2e9f82bca9ae47eb3e09432af71f27
27ec69e1a6cf6a4e88c5805992efc524
24013099e9e6abb1575dc6ce0855efd5
ae9e573a68e7f92501b6913cc846c39f
e26de7105875ec20f5107179b27df5ae
536f341a3d4d9ca25faf7716bf6a865f
ff1fe56dcc7d2b28b12a9f04ae19d71f
9fbcfe44d392083c3c02fbc21b4ac13f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133836973146112
spelling Téllez Acosta, Gabrielvirtual::18757-1Almanza Márquez, David LeonardoJimenez Rincon, Jose Julianvirtual::18758-12024-07-11T19:48:32Z2024-07-11T19:48:32Z2024-05-24https://hdl.handle.net/1992/74510instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/In the field of machine learning, Diffusion Probabilistic Models have emerged as a prominent category of generative models. Their main objective is to learn a diffusion process that describes the probability distribution of a given dataset. The essence of diffusion-based generative models finds its roots in statistical physics, where diffusion is modeled by describing the Brownian motion of particles through a physical system. Inspired by these concepts, diffusion generative models adopt diffusion as a central process. By understanding how data diffuse in an abstract space, these models capture inherent patterns and generate synthetic data that reflects the underlying structure of real datasets. This study undertakes a comparative analysis between Denoising Diffusion Probabilistic Models and statistical physics. It was discovered that the “diffusion” process of data, as elucidated in the seminal paper by Jo et al. (2020), can be effectively explained using a specialized version of the Langevin Equation. Building upon this understanding and leveraging the work of Song et al. on score-based generative modeling through stochastic differential equations, we expanded the framework of DPMs by examining continuous time diffusion processes, as opposed to the discrete time framework presented by Jo et al. This continuous time perspective provided deeper insights into the physical principles underlying DPMs. Furthermore, it facilitated new observations and advancements in the development of DPMs, enhancing our comprehension and application of these models.Desarrollado en conjunto con el grupo de investigación de Física Estadística de la Universidad de los Andes. https://fisstat.uniandes.edu.co/PregradoFísica EstadísticaGenerative AI43 páginasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaAttribution-NonCommercial 4.0 Internationalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Image Ggeneration with langevin dynamicsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPDiffusion probabilistic modelsMachine learningStatistical physicsLangevin equationSynthetic data generationFísicaIngenieríaSohl-Dickstein, J., Weiss, E., Maheswaranathan, N., & Ganguli, S. (2015). Deep Unsupervised Learning using Nonequilibrium Thermodynamics. International Conference on Machine Learning, 2256–2265. http://ganguli-gang.stanford.edu/pdf/DeepUnsupDiffusion.pdfHo, J., Jain, A., & Abbeel, P. (2020). Denoising Diffusion Probabilistic Models. Neural Information Processing Systems, 33, 6840–6851. https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdfNichol, A. Q., & Dhariwal, P. (2021). Improved Denoising Diffusion Probabilistic Models. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2102.09672Song, J., Meng, C., & Ermon, S. (2020). Denoising Diffusion Implicit Models. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2010.02502Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2020). Score-Based Generative Modeling through Stochastic Differential Equations. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2011.13456Anderson, B. D. (1982). Reverse-time diffusion equation models. Stochastic Processes and Their Applications, 12(3), 313–326. https://doi.org/10.1016/0304-4149(82)90051-5Song, Y., & Ermon, S. (2019). Generative Modeling by Estimating Gradients of the Data Distribution. arXiv (Cornell University), 32, 11895–11907. https://arxiv.org/pdf/1907.05600.pdfYan, J. N., Gu, J., & Rush, A. M. (2023). Diffusion Models Without Attention. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2311.18257Yang, T., Wang, Y., Lv, Y., & Zheng, N. (2023). DisDiff: Unsupervised Disentanglement of Diffusion Probabilistic Models. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2301.13721Rogel-Salazar, J. (2011). Statistical Mechanics, 3rd edn., by R.K. Pathria and P.D. Beale. Contemporary Physics, 52(6), 619–620. https://doi.org/10.1080/00107514.2011.603434202011293Publicationhttps://scholar.google.es/citations?user=1JHuoIAAAAAJvirtual::18757-10000-0002-6357-260Xvirtual::18757-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000077224virtual::18757-198ad9270-ae12-4bd0-9e5e-6ff873936418virtual::18757-198ad9270-ae12-4bd0-9e5e-6ff873936418virtual::18757-16e03fd51-c873-4c5a-9ea4-86eefe617d34virtual::18758-16e03fd51-c873-4c5a-9ea4-86eefe617d34virtual::18758-1ORIGINALImage_Generation_With_Langevin_Dynamics_Thesis-2024-05-24.pdfImage_Generation_With_Langevin_Dynamics_Thesis-2024-05-24.pdfapplication/pdf5819804https://repositorio.uniandes.edu.co/bitstreams/82edcee1-6f7b-4b8a-a9b8-c888c35cb7f8/download2a2e9f82bca9ae47eb3e09432af71f27MD52autorizacion tesisF.pdfautorizacion tesisF.pdfHIDEapplication/pdf365979https://repositorio.uniandes.edu.co/bitstreams/6efa0164-2bb7-4027-bb50-720e7a1246ab/download27ec69e1a6cf6a4e88c5805992efc524MD56CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniandes.edu.co/bitstreams/821ba232-b72d-4ae5-9a5c-70ab4aa69112/download24013099e9e6abb1575dc6ce0855efd5MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/3c90c6d1-c54e-4d61-b2d2-8b5127555b3a/downloadae9e573a68e7f92501b6913cc846c39fMD55TEXTImage_Generation_With_Langevin_Dynamics_Thesis-2024-05-24.pdf.txtImage_Generation_With_Langevin_Dynamics_Thesis-2024-05-24.pdf.txtExtracted texttext/plain66069https://repositorio.uniandes.edu.co/bitstreams/067db512-a793-4d3a-b743-c64d3b10474f/downloade26de7105875ec20f5107179b27df5aeMD57autorizacion tesisF.pdf.txtautorizacion tesisF.pdf.txtExtracted texttext/plain2053https://repositorio.uniandes.edu.co/bitstreams/32e59dc8-381e-431f-8adb-9e1c9f69d919/download536f341a3d4d9ca25faf7716bf6a865fMD59THUMBNAILImage_Generation_With_Langevin_Dynamics_Thesis-2024-05-24.pdf.jpgImage_Generation_With_Langevin_Dynamics_Thesis-2024-05-24.pdf.jpgGenerated Thumbnailimage/jpeg7184https://repositorio.uniandes.edu.co/bitstreams/b2ade2c6-08e1-43b8-b6d3-cca6fa758cdd/downloadff1fe56dcc7d2b28b12a9f04ae19d71fMD58autorizacion tesisF.pdf.jpgautorizacion tesisF.pdf.jpgGenerated Thumbnailimage/jpeg11124https://repositorio.uniandes.edu.co/bitstreams/7e04856a-34d7-4e9d-80d9-b97d1e213e4d/download9fbcfe44d392083c3c02fbc21b4ac13fMD5101992/74510oai:repositorio.uniandes.edu.co:1992/745102024-07-12 03:02:09.73http://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K