Image Ggeneration with langevin dynamics
In the field of machine learning, Diffusion Probabilistic Models have emerged as a prominent category of generative models. Their main objective is to learn a diffusion process that describes the probability distribution of a given dataset. The essence of diffusion-based generative models finds its...
- Autores:
-
Almanza Márquez, David Leonardo
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/74510
- Acceso en línea:
- https://hdl.handle.net/1992/74510
- Palabra clave:
- Diffusion probabilistic models
Machine learning
Statistical physics
Langevin equation
Synthetic data generation
Física
Ingeniería
- Rights
- openAccess
- License
- Attribution-NonCommercial 4.0 International
id |
UNIANDES2_74a5edf514c1e10b10174bd2334769ae |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/74510 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.none.fl_str_mv |
Image Ggeneration with langevin dynamics |
title |
Image Ggeneration with langevin dynamics |
spellingShingle |
Image Ggeneration with langevin dynamics Diffusion probabilistic models Machine learning Statistical physics Langevin equation Synthetic data generation Física Ingeniería |
title_short |
Image Ggeneration with langevin dynamics |
title_full |
Image Ggeneration with langevin dynamics |
title_fullStr |
Image Ggeneration with langevin dynamics |
title_full_unstemmed |
Image Ggeneration with langevin dynamics |
title_sort |
Image Ggeneration with langevin dynamics |
dc.creator.fl_str_mv |
Almanza Márquez, David Leonardo |
dc.contributor.advisor.none.fl_str_mv |
Téllez Acosta, Gabriel |
dc.contributor.author.none.fl_str_mv |
Almanza Márquez, David Leonardo |
dc.contributor.jury.none.fl_str_mv |
Jimenez Rincon, Jose Julian |
dc.subject.keyword.eng.fl_str_mv |
Diffusion probabilistic models Machine learning Statistical physics Langevin equation Synthetic data generation |
topic |
Diffusion probabilistic models Machine learning Statistical physics Langevin equation Synthetic data generation Física Ingeniería |
dc.subject.themes.none.fl_str_mv |
Física Ingeniería |
description |
In the field of machine learning, Diffusion Probabilistic Models have emerged as a prominent category of generative models. Their main objective is to learn a diffusion process that describes the probability distribution of a given dataset. The essence of diffusion-based generative models finds its roots in statistical physics, where diffusion is modeled by describing the Brownian motion of particles through a physical system. Inspired by these concepts, diffusion generative models adopt diffusion as a central process. By understanding how data diffuse in an abstract space, these models capture inherent patterns and generate synthetic data that reflects the underlying structure of real datasets. This study undertakes a comparative analysis between Denoising Diffusion Probabilistic Models and statistical physics. It was discovered that the “diffusion” process of data, as elucidated in the seminal paper by Jo et al. (2020), can be effectively explained using a specialized version of the Langevin Equation. Building upon this understanding and leveraging the work of Song et al. on score-based generative modeling through stochastic differential equations, we expanded the framework of DPMs by examining continuous time diffusion processes, as opposed to the discrete time framework presented by Jo et al. This continuous time perspective provided deeper insights into the physical principles underlying DPMs. Furthermore, it facilitated new observations and advancements in the development of DPMs, enhancing our comprehension and application of these models. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-07-11T19:48:32Z |
dc.date.available.none.fl_str_mv |
2024-07-11T19:48:32Z |
dc.date.issued.none.fl_str_mv |
2024-05-24 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/74510 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/74510 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., & Ganguli, S. (2015). Deep Unsupervised Learning using Nonequilibrium Thermodynamics. International Conference on Machine Learning, 2256–2265. http://ganguli-gang.stanford.edu/pdf/DeepUnsupDiffusion.pdf Ho, J., Jain, A., & Abbeel, P. (2020). Denoising Diffusion Probabilistic Models. Neural Information Processing Systems, 33, 6840–6851. https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf Nichol, A. Q., & Dhariwal, P. (2021). Improved Denoising Diffusion Probabilistic Models. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2102.09672 Song, J., Meng, C., & Ermon, S. (2020). Denoising Diffusion Implicit Models. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2010.02502 Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2020). Score-Based Generative Modeling through Stochastic Differential Equations. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2011.13456 Anderson, B. D. (1982). Reverse-time diffusion equation models. Stochastic Processes and Their Applications, 12(3), 313–326. https://doi.org/10.1016/0304-4149(82)90051-5 Song, Y., & Ermon, S. (2019). Generative Modeling by Estimating Gradients of the Data Distribution. arXiv (Cornell University), 32, 11895–11907. https://arxiv.org/pdf/1907.05600.pdf Yan, J. N., Gu, J., & Rush, A. M. (2023). Diffusion Models Without Attention. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2311.18257 Yang, T., Wang, Y., Lv, Y., & Zheng, N. (2023). DisDiff: Unsupervised Disentanglement of Diffusion Probabilistic Models. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2301.13721 Rogel-Salazar, J. (2011). Statistical Mechanics, 3rd edn., by R.K. Pathria and P.D. Beale. Contemporary Physics, 52(6), 619–620. https://doi.org/10.1080/00107514.2011.603434 |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial 4.0 International http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
43 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Física |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Física |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/82edcee1-6f7b-4b8a-a9b8-c888c35cb7f8/download https://repositorio.uniandes.edu.co/bitstreams/6efa0164-2bb7-4027-bb50-720e7a1246ab/download https://repositorio.uniandes.edu.co/bitstreams/821ba232-b72d-4ae5-9a5c-70ab4aa69112/download https://repositorio.uniandes.edu.co/bitstreams/3c90c6d1-c54e-4d61-b2d2-8b5127555b3a/download https://repositorio.uniandes.edu.co/bitstreams/067db512-a793-4d3a-b743-c64d3b10474f/download https://repositorio.uniandes.edu.co/bitstreams/32e59dc8-381e-431f-8adb-9e1c9f69d919/download https://repositorio.uniandes.edu.co/bitstreams/b2ade2c6-08e1-43b8-b6d3-cca6fa758cdd/download https://repositorio.uniandes.edu.co/bitstreams/7e04856a-34d7-4e9d-80d9-b97d1e213e4d/download |
bitstream.checksum.fl_str_mv |
2a2e9f82bca9ae47eb3e09432af71f27 27ec69e1a6cf6a4e88c5805992efc524 24013099e9e6abb1575dc6ce0855efd5 ae9e573a68e7f92501b6913cc846c39f e26de7105875ec20f5107179b27df5ae 536f341a3d4d9ca25faf7716bf6a865f ff1fe56dcc7d2b28b12a9f04ae19d71f 9fbcfe44d392083c3c02fbc21b4ac13f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133836973146112 |
spelling |
Téllez Acosta, Gabrielvirtual::18757-1Almanza Márquez, David LeonardoJimenez Rincon, Jose Julianvirtual::18758-12024-07-11T19:48:32Z2024-07-11T19:48:32Z2024-05-24https://hdl.handle.net/1992/74510instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/In the field of machine learning, Diffusion Probabilistic Models have emerged as a prominent category of generative models. Their main objective is to learn a diffusion process that describes the probability distribution of a given dataset. The essence of diffusion-based generative models finds its roots in statistical physics, where diffusion is modeled by describing the Brownian motion of particles through a physical system. Inspired by these concepts, diffusion generative models adopt diffusion as a central process. By understanding how data diffuse in an abstract space, these models capture inherent patterns and generate synthetic data that reflects the underlying structure of real datasets. This study undertakes a comparative analysis between Denoising Diffusion Probabilistic Models and statistical physics. It was discovered that the “diffusion” process of data, as elucidated in the seminal paper by Jo et al. (2020), can be effectively explained using a specialized version of the Langevin Equation. Building upon this understanding and leveraging the work of Song et al. on score-based generative modeling through stochastic differential equations, we expanded the framework of DPMs by examining continuous time diffusion processes, as opposed to the discrete time framework presented by Jo et al. This continuous time perspective provided deeper insights into the physical principles underlying DPMs. Furthermore, it facilitated new observations and advancements in the development of DPMs, enhancing our comprehension and application of these models.Desarrollado en conjunto con el grupo de investigación de Física Estadística de la Universidad de los Andes. https://fisstat.uniandes.edu.co/PregradoFísica EstadísticaGenerative AI43 páginasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaAttribution-NonCommercial 4.0 Internationalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Image Ggeneration with langevin dynamicsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPDiffusion probabilistic modelsMachine learningStatistical physicsLangevin equationSynthetic data generationFísicaIngenieríaSohl-Dickstein, J., Weiss, E., Maheswaranathan, N., & Ganguli, S. (2015). Deep Unsupervised Learning using Nonequilibrium Thermodynamics. International Conference on Machine Learning, 2256–2265. http://ganguli-gang.stanford.edu/pdf/DeepUnsupDiffusion.pdfHo, J., Jain, A., & Abbeel, P. (2020). Denoising Diffusion Probabilistic Models. Neural Information Processing Systems, 33, 6840–6851. https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdfNichol, A. Q., & Dhariwal, P. (2021). Improved Denoising Diffusion Probabilistic Models. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2102.09672Song, J., Meng, C., & Ermon, S. (2020). Denoising Diffusion Implicit Models. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2010.02502Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2020). Score-Based Generative Modeling through Stochastic Differential Equations. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2011.13456Anderson, B. D. (1982). Reverse-time diffusion equation models. Stochastic Processes and Their Applications, 12(3), 313–326. https://doi.org/10.1016/0304-4149(82)90051-5Song, Y., & Ermon, S. (2019). Generative Modeling by Estimating Gradients of the Data Distribution. arXiv (Cornell University), 32, 11895–11907. https://arxiv.org/pdf/1907.05600.pdfYan, J. N., Gu, J., & Rush, A. M. (2023). Diffusion Models Without Attention. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2311.18257Yang, T., Wang, Y., Lv, Y., & Zheng, N. (2023). DisDiff: Unsupervised Disentanglement of Diffusion Probabilistic Models. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2301.13721Rogel-Salazar, J. (2011). Statistical Mechanics, 3rd edn., by R.K. Pathria and P.D. Beale. Contemporary Physics, 52(6), 619–620. https://doi.org/10.1080/00107514.2011.603434202011293Publicationhttps://scholar.google.es/citations?user=1JHuoIAAAAAJvirtual::18757-10000-0002-6357-260Xvirtual::18757-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000077224virtual::18757-198ad9270-ae12-4bd0-9e5e-6ff873936418virtual::18757-198ad9270-ae12-4bd0-9e5e-6ff873936418virtual::18757-16e03fd51-c873-4c5a-9ea4-86eefe617d34virtual::18758-16e03fd51-c873-4c5a-9ea4-86eefe617d34virtual::18758-1ORIGINALImage_Generation_With_Langevin_Dynamics_Thesis-2024-05-24.pdfImage_Generation_With_Langevin_Dynamics_Thesis-2024-05-24.pdfapplication/pdf5819804https://repositorio.uniandes.edu.co/bitstreams/82edcee1-6f7b-4b8a-a9b8-c888c35cb7f8/download2a2e9f82bca9ae47eb3e09432af71f27MD52autorizacion tesisF.pdfautorizacion tesisF.pdfHIDEapplication/pdf365979https://repositorio.uniandes.edu.co/bitstreams/6efa0164-2bb7-4027-bb50-720e7a1246ab/download27ec69e1a6cf6a4e88c5805992efc524MD56CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniandes.edu.co/bitstreams/821ba232-b72d-4ae5-9a5c-70ab4aa69112/download24013099e9e6abb1575dc6ce0855efd5MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/3c90c6d1-c54e-4d61-b2d2-8b5127555b3a/downloadae9e573a68e7f92501b6913cc846c39fMD55TEXTImage_Generation_With_Langevin_Dynamics_Thesis-2024-05-24.pdf.txtImage_Generation_With_Langevin_Dynamics_Thesis-2024-05-24.pdf.txtExtracted texttext/plain66069https://repositorio.uniandes.edu.co/bitstreams/067db512-a793-4d3a-b743-c64d3b10474f/downloade26de7105875ec20f5107179b27df5aeMD57autorizacion tesisF.pdf.txtautorizacion tesisF.pdf.txtExtracted texttext/plain2053https://repositorio.uniandes.edu.co/bitstreams/32e59dc8-381e-431f-8adb-9e1c9f69d919/download536f341a3d4d9ca25faf7716bf6a865fMD59THUMBNAILImage_Generation_With_Langevin_Dynamics_Thesis-2024-05-24.pdf.jpgImage_Generation_With_Langevin_Dynamics_Thesis-2024-05-24.pdf.jpgGenerated Thumbnailimage/jpeg7184https://repositorio.uniandes.edu.co/bitstreams/b2ade2c6-08e1-43b8-b6d3-cca6fa758cdd/downloadff1fe56dcc7d2b28b12a9f04ae19d71fMD58autorizacion tesisF.pdf.jpgautorizacion tesisF.pdf.jpgGenerated Thumbnailimage/jpeg11124https://repositorio.uniandes.edu.co/bitstreams/7e04856a-34d7-4e9d-80d9-b97d1e213e4d/download9fbcfe44d392083c3c02fbc21b4ac13fMD5101992/74510oai:repositorio.uniandes.edu.co:1992/745102024-07-12 03:02:09.73http://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |