1-D Schrödinger operators with δ and δ′ interactions on non-discrete sets and complex problems
This dissertation explores the spectral properties of one-dimensional Schrödinger operators with δ and δ′ interactions on non-discrete sets. We extend classical Sturm-Liouville theory to these singular perturbations and analyze the self-adjoint realizations of differential expressions involving Dira...
- Autores:
-
Leguizamon Quinche, Edison Jair
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/75804
- Acceso en línea:
- https://hdl.handle.net/1992/75804
- Palabra clave:
- Spectral theory
Self-adjoint operator
Delta interactions
Self-adjoint extension
Limit point - limit circle
Matemáticas
- Rights
- openAccess
- License
- Attribution 4.0 International
id |
UNIANDES2_72ce3e0b080091cd44c72dcc780bd477 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/75804 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
1-D Schrödinger operators with δ and δ′ interactions on non-discrete sets and complex problems |
title |
1-D Schrödinger operators with δ and δ′ interactions on non-discrete sets and complex problems |
spellingShingle |
1-D Schrödinger operators with δ and δ′ interactions on non-discrete sets and complex problems Spectral theory Self-adjoint operator Delta interactions Self-adjoint extension Limit point - limit circle Matemáticas |
title_short |
1-D Schrödinger operators with δ and δ′ interactions on non-discrete sets and complex problems |
title_full |
1-D Schrödinger operators with δ and δ′ interactions on non-discrete sets and complex problems |
title_fullStr |
1-D Schrödinger operators with δ and δ′ interactions on non-discrete sets and complex problems |
title_full_unstemmed |
1-D Schrödinger operators with δ and δ′ interactions on non-discrete sets and complex problems |
title_sort |
1-D Schrödinger operators with δ and δ′ interactions on non-discrete sets and complex problems |
dc.creator.fl_str_mv |
Leguizamon Quinche, Edison Jair |
dc.contributor.advisor.none.fl_str_mv |
Winklmeier, Monika Anna |
dc.contributor.author.none.fl_str_mv |
Leguizamon Quinche, Edison Jair |
dc.contributor.jury.none.fl_str_mv |
Derkach, Volodymir Bourget, Olivier Getmanenko, Alexander |
dc.subject.keyword.eng.fl_str_mv |
Spectral theory Self-adjoint operator Delta interactions Self-adjoint extension Limit point - limit circle |
topic |
Spectral theory Self-adjoint operator Delta interactions Self-adjoint extension Limit point - limit circle Matemáticas |
dc.subject.themes.spa.fl_str_mv |
Matemáticas |
description |
This dissertation explores the spectral properties of one-dimensional Schrödinger operators with δ and δ′ interactions on non-discrete sets. We extend classical Sturm-Liouville theory to these singular perturbations and analyze the self-adjoint realizations of differential expressions involving Dirac delta distributions and their derivatives. Using Weyl's classification, we establish criteria for the limit-point and limit-circle cases in complex Sturm-Liouville problems, answering fundamental questions about spectral properties in non-Hermitian quantum mechanics. We prove the absence of embedded eigenvalues in certain cases and extend Levinson’s theorem for Borel measures. The findings have implications for quantum mechanics and mathematical physics, particularly in understanding spectral phenomena in PT-symmetric systems. |
publishDate |
2024 |
dc.date.issued.none.fl_str_mv |
2024-12-05 |
dc.date.accessioned.none.fl_str_mv |
2025-01-29T21:37:17Z |
dc.date.available.none.fl_str_mv |
2025-01-29T21:37:17Z |
dc.type.none.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/75804 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/75804 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.en.fl_str_mv |
Attribution 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
86 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Doctorado en Matemáticas |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Matemáticas |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/d32af699-2c98-4472-924b-2f727591fdad/download https://repositorio.uniandes.edu.co/bitstreams/4d845056-dd1d-4153-9e18-19f324c87d9b/download https://repositorio.uniandes.edu.co/bitstreams/0f0f86fd-5a4f-4023-aedc-becc0fc2e526/download https://repositorio.uniandes.edu.co/bitstreams/de0dba1f-046d-4b70-93cc-446a0cbae7c7/download https://repositorio.uniandes.edu.co/bitstreams/b1e27e2e-2f35-44e2-afad-9f49b7acb53c/download https://repositorio.uniandes.edu.co/bitstreams/cf7a502b-27d1-442b-916b-8d8c703ce6a0/download https://repositorio.uniandes.edu.co/bitstreams/7042393f-a268-4aa4-a269-4f16ab069b92/download https://repositorio.uniandes.edu.co/bitstreams/a78bb49d-60b2-43ef-8140-71507ddab1da/download |
bitstream.checksum.fl_str_mv |
ae9e573a68e7f92501b6913cc846c39f 0175ea4a2d4caec4bbcc37e300941108 484447d8a9be700cb7251ef52238231c 32a7c6bf189b60ff6049240bc9728dbb a2119021de79ba38b51d27628b180176 ff0ded1a9907f4702505268dabd71cb0 e0dab9f2601e9dd20c5aba93907a5f4f 4545d4caf37d57bbbf537b429461cb05 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1828159225330663424 |
spelling |
Winklmeier, Monika Annavirtual::22783-1Leguizamon Quinche, Edison JairDerkach, VolodymirBourget, OlivierGetmanenko, Alexander2025-01-29T21:37:17Z2025-01-29T21:37:17Z2024-12-05https://hdl.handle.net/1992/75804instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/This dissertation explores the spectral properties of one-dimensional Schrödinger operators with δ and δ′ interactions on non-discrete sets. We extend classical Sturm-Liouville theory to these singular perturbations and analyze the self-adjoint realizations of differential expressions involving Dirac delta distributions and their derivatives. Using Weyl's classification, we establish criteria for the limit-point and limit-circle cases in complex Sturm-Liouville problems, answering fundamental questions about spectral properties in non-Hermitian quantum mechanics. We prove the absence of embedded eigenvalues in certain cases and extend Levinson’s theorem for Borel measures. The findings have implications for quantum mechanics and mathematical physics, particularly in understanding spectral phenomena in PT-symmetric systems.Doctorado86 páginasapplication/pdfengUniversidad de los AndesDoctorado en MatemáticasFacultad de CienciasDepartamento de MatemáticasAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf21-D Schrödinger operators with δ and δ′ interactions on non-discrete sets and complex problemsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDSpectral theorySelf-adjoint operatorDelta interactionsSelf-adjoint extensionLimit point - limit circleMatemáticas201711547Publicationhttps://scholar.google.es/citations?user=rHoZFKQAAAAJvirtual::22783-10000-0001-8590-5738virtual::22783-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001309145virtual::22783-100b2a223-3338-4d2b-a5ba-6aedc0e3ede6virtual::22783-100b2a223-3338-4d2b-a5ba-6aedc0e3ede6virtual::22783-1LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/d32af699-2c98-4472-924b-2f727591fdad/downloadae9e573a68e7f92501b6913cc846c39fMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/4d845056-dd1d-4153-9e18-19f324c87d9b/download0175ea4a2d4caec4bbcc37e300941108MD52ORIGINAL1-D Schrödinger operators with δ and δ′ interactions on non-discrete sets and complex problems.pdf1-D Schrödinger operators with δ and δ′ interactions on non-discrete sets and complex problems.pdfapplication/pdf671769https://repositorio.uniandes.edu.co/bitstreams/0f0f86fd-5a4f-4023-aedc-becc0fc2e526/download484447d8a9be700cb7251ef52238231cMD53Formato autorización tesis - Edison-29-01-2025-firmado.pdfFormato autorización tesis - Edison-29-01-2025-firmado.pdfHIDEapplication/pdf149466https://repositorio.uniandes.edu.co/bitstreams/de0dba1f-046d-4b70-93cc-446a0cbae7c7/download32a7c6bf189b60ff6049240bc9728dbbMD54TEXT1-D Schrödinger operators with δ and δ′ interactions on non-discrete sets and complex problems.pdf.txt1-D Schrödinger operators with δ and δ′ interactions on non-discrete sets and complex problems.pdf.txtExtracted texttext/plain107558https://repositorio.uniandes.edu.co/bitstreams/b1e27e2e-2f35-44e2-afad-9f49b7acb53c/downloada2119021de79ba38b51d27628b180176MD55Formato autorización tesis - Edison-29-01-2025-firmado.pdf.txtFormato autorización tesis - Edison-29-01-2025-firmado.pdf.txtExtracted texttext/plain1419https://repositorio.uniandes.edu.co/bitstreams/cf7a502b-27d1-442b-916b-8d8c703ce6a0/downloadff0ded1a9907f4702505268dabd71cb0MD57THUMBNAIL1-D Schrödinger operators with δ and δ′ interactions on non-discrete sets and complex problems.pdf.jpg1-D Schrödinger operators with δ and δ′ interactions on non-discrete sets and complex problems.pdf.jpgGenerated Thumbnailimage/jpeg8242https://repositorio.uniandes.edu.co/bitstreams/7042393f-a268-4aa4-a269-4f16ab069b92/downloade0dab9f2601e9dd20c5aba93907a5f4fMD56Formato autorización tesis - Edison-29-01-2025-firmado.pdf.jpgFormato autorización tesis - Edison-29-01-2025-firmado.pdf.jpgGenerated Thumbnailimage/jpeg10938https://repositorio.uniandes.edu.co/bitstreams/a78bb49d-60b2-43ef-8140-71507ddab1da/download4545d4caf37d57bbbf537b429461cb05MD581992/75804oai:repositorio.uniandes.edu.co:1992/758042025-03-05 09:40:19.283http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |