1-D Schrödinger operators with δ and δ′ interactions on non-discrete sets and complex problems

This dissertation explores the spectral properties of one-dimensional Schrödinger operators with δ and δ′ interactions on non-discrete sets. We extend classical Sturm-Liouville theory to these singular perturbations and analyze the self-adjoint realizations of differential expressions involving Dira...

Full description

Autores:
Leguizamon Quinche, Edison Jair
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/75804
Acceso en línea:
https://hdl.handle.net/1992/75804
Palabra clave:
Spectral theory
Self-adjoint operator
Delta interactions
Self-adjoint extension
Limit point - limit circle
Matemáticas
Rights
openAccess
License
Attribution 4.0 International
id UNIANDES2_72ce3e0b080091cd44c72dcc780bd477
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/75804
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv 1-D Schrödinger operators with δ and δ′ interactions on non-discrete sets and complex problems
title 1-D Schrödinger operators with δ and δ′ interactions on non-discrete sets and complex problems
spellingShingle 1-D Schrödinger operators with δ and δ′ interactions on non-discrete sets and complex problems
Spectral theory
Self-adjoint operator
Delta interactions
Self-adjoint extension
Limit point - limit circle
Matemáticas
title_short 1-D Schrödinger operators with δ and δ′ interactions on non-discrete sets and complex problems
title_full 1-D Schrödinger operators with δ and δ′ interactions on non-discrete sets and complex problems
title_fullStr 1-D Schrödinger operators with δ and δ′ interactions on non-discrete sets and complex problems
title_full_unstemmed 1-D Schrödinger operators with δ and δ′ interactions on non-discrete sets and complex problems
title_sort 1-D Schrödinger operators with δ and δ′ interactions on non-discrete sets and complex problems
dc.creator.fl_str_mv Leguizamon Quinche, Edison Jair
dc.contributor.advisor.none.fl_str_mv Winklmeier, Monika Anna
dc.contributor.author.none.fl_str_mv Leguizamon Quinche, Edison Jair
dc.contributor.jury.none.fl_str_mv Derkach, Volodymir
Bourget, Olivier
Getmanenko, Alexander
dc.subject.keyword.eng.fl_str_mv Spectral theory
Self-adjoint operator
Delta interactions
Self-adjoint extension
Limit point - limit circle
topic Spectral theory
Self-adjoint operator
Delta interactions
Self-adjoint extension
Limit point - limit circle
Matemáticas
dc.subject.themes.spa.fl_str_mv Matemáticas
description This dissertation explores the spectral properties of one-dimensional Schrödinger operators with δ and δ′ interactions on non-discrete sets. We extend classical Sturm-Liouville theory to these singular perturbations and analyze the self-adjoint realizations of differential expressions involving Dirac delta distributions and their derivatives. Using Weyl's classification, we establish criteria for the limit-point and limit-circle cases in complex Sturm-Liouville problems, answering fundamental questions about spectral properties in non-Hermitian quantum mechanics. We prove the absence of embedded eigenvalues in certain cases and extend Levinson’s theorem for Borel measures. The findings have implications for quantum mechanics and mathematical physics, particularly in understanding spectral phenomena in PT-symmetric systems.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024-12-05
dc.date.accessioned.none.fl_str_mv 2025-01-29T21:37:17Z
dc.date.available.none.fl_str_mv 2025-01-29T21:37:17Z
dc.type.none.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv https://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/75804
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/75804
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.en.fl_str_mv Attribution 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 86 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Doctorado en Matemáticas
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Matemáticas
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/d32af699-2c98-4472-924b-2f727591fdad/download
https://repositorio.uniandes.edu.co/bitstreams/4d845056-dd1d-4153-9e18-19f324c87d9b/download
https://repositorio.uniandes.edu.co/bitstreams/0f0f86fd-5a4f-4023-aedc-becc0fc2e526/download
https://repositorio.uniandes.edu.co/bitstreams/de0dba1f-046d-4b70-93cc-446a0cbae7c7/download
https://repositorio.uniandes.edu.co/bitstreams/b1e27e2e-2f35-44e2-afad-9f49b7acb53c/download
https://repositorio.uniandes.edu.co/bitstreams/cf7a502b-27d1-442b-916b-8d8c703ce6a0/download
https://repositorio.uniandes.edu.co/bitstreams/7042393f-a268-4aa4-a269-4f16ab069b92/download
https://repositorio.uniandes.edu.co/bitstreams/a78bb49d-60b2-43ef-8140-71507ddab1da/download
bitstream.checksum.fl_str_mv ae9e573a68e7f92501b6913cc846c39f
0175ea4a2d4caec4bbcc37e300941108
484447d8a9be700cb7251ef52238231c
32a7c6bf189b60ff6049240bc9728dbb
a2119021de79ba38b51d27628b180176
ff0ded1a9907f4702505268dabd71cb0
e0dab9f2601e9dd20c5aba93907a5f4f
4545d4caf37d57bbbf537b429461cb05
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1828159225330663424
spelling Winklmeier, Monika Annavirtual::22783-1Leguizamon Quinche, Edison JairDerkach, VolodymirBourget, OlivierGetmanenko, Alexander2025-01-29T21:37:17Z2025-01-29T21:37:17Z2024-12-05https://hdl.handle.net/1992/75804instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/This dissertation explores the spectral properties of one-dimensional Schrödinger operators with δ and δ′ interactions on non-discrete sets. We extend classical Sturm-Liouville theory to these singular perturbations and analyze the self-adjoint realizations of differential expressions involving Dirac delta distributions and their derivatives. Using Weyl's classification, we establish criteria for the limit-point and limit-circle cases in complex Sturm-Liouville problems, answering fundamental questions about spectral properties in non-Hermitian quantum mechanics. We prove the absence of embedded eigenvalues in certain cases and extend Levinson’s theorem for Borel measures. The findings have implications for quantum mechanics and mathematical physics, particularly in understanding spectral phenomena in PT-symmetric systems.Doctorado86 páginasapplication/pdfengUniversidad de los AndesDoctorado en MatemáticasFacultad de CienciasDepartamento de MatemáticasAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf21-D Schrödinger operators with δ and δ′ interactions on non-discrete sets and complex problemsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDSpectral theorySelf-adjoint operatorDelta interactionsSelf-adjoint extensionLimit point - limit circleMatemáticas201711547Publicationhttps://scholar.google.es/citations?user=rHoZFKQAAAAJvirtual::22783-10000-0001-8590-5738virtual::22783-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001309145virtual::22783-100b2a223-3338-4d2b-a5ba-6aedc0e3ede6virtual::22783-100b2a223-3338-4d2b-a5ba-6aedc0e3ede6virtual::22783-1LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/d32af699-2c98-4472-924b-2f727591fdad/downloadae9e573a68e7f92501b6913cc846c39fMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/4d845056-dd1d-4153-9e18-19f324c87d9b/download0175ea4a2d4caec4bbcc37e300941108MD52ORIGINAL1-D Schrödinger operators with δ and δ′ interactions on non-discrete sets and complex problems.pdf1-D Schrödinger operators with δ and δ′ interactions on non-discrete sets and complex problems.pdfapplication/pdf671769https://repositorio.uniandes.edu.co/bitstreams/0f0f86fd-5a4f-4023-aedc-becc0fc2e526/download484447d8a9be700cb7251ef52238231cMD53Formato autorización tesis - Edison-29-01-2025-firmado.pdfFormato autorización tesis - Edison-29-01-2025-firmado.pdfHIDEapplication/pdf149466https://repositorio.uniandes.edu.co/bitstreams/de0dba1f-046d-4b70-93cc-446a0cbae7c7/download32a7c6bf189b60ff6049240bc9728dbbMD54TEXT1-D Schrödinger operators with δ and δ′ interactions on non-discrete sets and complex problems.pdf.txt1-D Schrödinger operators with δ and δ′ interactions on non-discrete sets and complex problems.pdf.txtExtracted texttext/plain107558https://repositorio.uniandes.edu.co/bitstreams/b1e27e2e-2f35-44e2-afad-9f49b7acb53c/downloada2119021de79ba38b51d27628b180176MD55Formato autorización tesis - Edison-29-01-2025-firmado.pdf.txtFormato autorización tesis - Edison-29-01-2025-firmado.pdf.txtExtracted texttext/plain1419https://repositorio.uniandes.edu.co/bitstreams/cf7a502b-27d1-442b-916b-8d8c703ce6a0/downloadff0ded1a9907f4702505268dabd71cb0MD57THUMBNAIL1-D Schrödinger operators with δ and δ′ interactions on non-discrete sets and complex problems.pdf.jpg1-D Schrödinger operators with δ and δ′ interactions on non-discrete sets and complex problems.pdf.jpgGenerated Thumbnailimage/jpeg8242https://repositorio.uniandes.edu.co/bitstreams/7042393f-a268-4aa4-a269-4f16ab069b92/downloade0dab9f2601e9dd20c5aba93907a5f4fMD56Formato autorización tesis - Edison-29-01-2025-firmado.pdf.jpgFormato autorización tesis - Edison-29-01-2025-firmado.pdf.jpgGenerated Thumbnailimage/jpeg10938https://repositorio.uniandes.edu.co/bitstreams/a78bb49d-60b2-43ef-8140-71507ddab1da/download4545d4caf37d57bbbf537b429461cb05MD581992/75804oai:repositorio.uniandes.edu.co:1992/758042025-03-05 09:40:19.283http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K