1-D Schrödinger operators with δ and δ′ interactions on non-discrete sets and complex problems

This dissertation explores the spectral properties of one-dimensional Schrödinger operators with δ and δ′ interactions on non-discrete sets. We extend classical Sturm-Liouville theory to these singular perturbations and analyze the self-adjoint realizations of differential expressions involving Dira...

Full description

Autores:
Leguizamon Quinche, Edison Jair
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/75804
Acceso en línea:
https://hdl.handle.net/1992/75804
Palabra clave:
Spectral theory
Self-adjoint operator
Delta interactions
Self-adjoint extension
Limit point - limit circle
Matemáticas
Rights
openAccess
License
Attribution 4.0 International
Description
Summary:This dissertation explores the spectral properties of one-dimensional Schrödinger operators with δ and δ′ interactions on non-discrete sets. We extend classical Sturm-Liouville theory to these singular perturbations and analyze the self-adjoint realizations of differential expressions involving Dirac delta distributions and their derivatives. Using Weyl's classification, we establish criteria for the limit-point and limit-circle cases in complex Sturm-Liouville problems, answering fundamental questions about spectral properties in non-Hermitian quantum mechanics. We prove the absence of embedded eigenvalues in certain cases and extend Levinson’s theorem for Borel measures. The findings have implications for quantum mechanics and mathematical physics, particularly in understanding spectral phenomena in PT-symmetric systems.