Predicting criminal behavior with Lévy flights using real data from Bogotá

I use residential burglary data from Bogota, Colombia, to fit an agent-based model following truncated L´evy flights (Pan et al., 2018) elucidating criminal rational behavior and validating repeat/near-repeat victimization and broken windows effects. The estimated parameters suggest that if an avera...

Full description

Autores:
Rubio, Mateo
Tipo de recurso:
Work document
Fecha de publicación:
2019
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/41075
Acceso en línea:
http://hdl.handle.net/1992/41075
Palabra clave:
Criminal behavior
Crime prediction model
Machine learning
Agent-based model
K42, H39, C53, C63
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UNIANDES2_725683c8132d8d2d5dbc83b3c712c70a
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/41075
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rubio, Mateo5c489722-d190-48bc-b30d-dc069cd58c265002020-07-28T17:16:05Z2020-07-28T17:16:05Z20191657-5334http://hdl.handle.net/1992/410751657-719110.57784/1992/41075instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/I use residential burglary data from Bogota, Colombia, to fit an agent-based model following truncated L´evy flights (Pan et al., 2018) elucidating criminal rational behavior and validating repeat/near-repeat victimization and broken windows effects. The estimated parameters suggest that if an average house or its neighbors have never been attacked, and it is suddenly burglarized, the probability of a new attack the next day increases, due to the crime event, in 79 percentage points. Moreover, the following day its neighbors will also face an increment in the probability of crime of 79 percentage points. This effect persists for a long time span. The model presents an area under the Cumulative Accuracy Profile (CAP) curve, of 0.8 performing similarly or better than state-of-the-art crime prediction models. Public policies seeking to reduce criminal activity and its negative consequences must take into account these mechanisms and the self-exciting nature of crime to effectively make criminal hotspots safer.29 páginasspaUniversidad de los Andes, Facultad de Economía, CEDEDocumentos CEDE No. 11 Febrero de 2019https://ideas.repec.org/p/col/000089/017198.htmlPredicting criminal behavior with Lévy flights using real data from BogotáDocumento de trabajoinfo:eu-repo/semantics/workingPaperhttp://purl.org/coar/resource_type/c_8042http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttps://purl.org/redcol/resource_type/WPCriminal behaviorCrime prediction modelMachine learningAgent-based modelK42, H39, C53, C63Facultad de EconomíaPublicationTEXTdcede2019-11.pdf.txtdcede2019-11.pdf.txtExtracted texttext/plain52083https://repositorio.uniandes.edu.co/bitstreams/5eb12113-718c-4422-92a4-54ba50d40f5c/download8d7b259c6ed0eb1ab67ec3bf08435938MD54ORIGINALdcede2019-11.pdfdcede2019-11.pdfapplication/pdf2514172https://repositorio.uniandes.edu.co/bitstreams/bf97b808-604e-4578-b819-3505d0beef66/download32efef5c44c0cb87260625a88c280d9dMD51THUMBNAILdcede2019-11.pdf.jpgdcede2019-11.pdf.jpgIM Thumbnailimage/jpeg11608https://repositorio.uniandes.edu.co/bitstreams/be450488-69e6-48fb-a159-5227a81df191/download09a37945259db9b3a14dd944778ee1b5MD551992/41075oai:repositorio.uniandes.edu.co:1992/410752024-06-04 15:44:19.317http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co
dc.title.none.fl_str_mv Predicting criminal behavior with Lévy flights using real data from Bogotá
title Predicting criminal behavior with Lévy flights using real data from Bogotá
spellingShingle Predicting criminal behavior with Lévy flights using real data from Bogotá
Criminal behavior
Crime prediction model
Machine learning
Agent-based model
K42, H39, C53, C63
title_short Predicting criminal behavior with Lévy flights using real data from Bogotá
title_full Predicting criminal behavior with Lévy flights using real data from Bogotá
title_fullStr Predicting criminal behavior with Lévy flights using real data from Bogotá
title_full_unstemmed Predicting criminal behavior with Lévy flights using real data from Bogotá
title_sort Predicting criminal behavior with Lévy flights using real data from Bogotá
dc.creator.fl_str_mv Rubio, Mateo
dc.contributor.author.none.fl_str_mv Rubio, Mateo
dc.subject.keyword.none.fl_str_mv Criminal behavior
Crime prediction model
Machine learning
Agent-based model
topic Criminal behavior
Crime prediction model
Machine learning
Agent-based model
K42, H39, C53, C63
dc.subject.jel.none.fl_str_mv K42, H39, C53, C63
description I use residential burglary data from Bogota, Colombia, to fit an agent-based model following truncated L´evy flights (Pan et al., 2018) elucidating criminal rational behavior and validating repeat/near-repeat victimization and broken windows effects. The estimated parameters suggest that if an average house or its neighbors have never been attacked, and it is suddenly burglarized, the probability of a new attack the next day increases, due to the crime event, in 79 percentage points. Moreover, the following day its neighbors will also face an increment in the probability of crime of 79 percentage points. This effect persists for a long time span. The model presents an area under the Cumulative Accuracy Profile (CAP) curve, of 0.8 performing similarly or better than state-of-the-art crime prediction models. Public policies seeking to reduce criminal activity and its negative consequences must take into account these mechanisms and the self-exciting nature of crime to effectively make criminal hotspots safer.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-07-28T17:16:05Z
dc.date.available.none.fl_str_mv 2020-07-28T17:16:05Z
dc.type.spa.fl_str_mv Documento de trabajo
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_8042
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/WP
format http://purl.org/coar/resource_type/c_8042
dc.identifier.issn.none.fl_str_mv 1657-5334
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/41075
dc.identifier.eissn.none.fl_str_mv 1657-7191
dc.identifier.doi.none.fl_str_mv 10.57784/1992/41075
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
identifier_str_mv 1657-5334
1657-7191
10.57784/1992/41075
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/41075
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.ispartofseries.none.fl_str_mv Documentos CEDE No. 11 Febrero de 2019
dc.relation.repec.spa.fl_str_mv https://ideas.repec.org/p/col/000089/017198.html
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 29 páginas
dc.publisher.none.fl_str_mv Universidad de los Andes, Facultad de Economía, CEDE
publisher.none.fl_str_mv Universidad de los Andes, Facultad de Economía, CEDE
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/5eb12113-718c-4422-92a4-54ba50d40f5c/download
https://repositorio.uniandes.edu.co/bitstreams/bf97b808-604e-4578-b819-3505d0beef66/download
https://repositorio.uniandes.edu.co/bitstreams/be450488-69e6-48fb-a159-5227a81df191/download
bitstream.checksum.fl_str_mv 8d7b259c6ed0eb1ab67ec3bf08435938
32efef5c44c0cb87260625a88c280d9d
09a37945259db9b3a14dd944778ee1b5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1818111985126998016