Predicting criminal behavior with Lévy flights using real data from Bogotá
I use residential burglary data from Bogota, Colombia, to fit an agent-based model following truncated L´evy flights (Pan et al., 2018) elucidating criminal rational behavior and validating repeat/near-repeat victimization and broken windows effects. The estimated parameters suggest that if an avera...
- Autores:
-
Rubio, Mateo
- Tipo de recurso:
- Work document
- Fecha de publicación:
- 2019
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/41075
- Acceso en línea:
- http://hdl.handle.net/1992/41075
- Palabra clave:
- Criminal behavior
Crime prediction model
Machine learning
Agent-based model
K42, H39, C53, C63
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UNIANDES2_725683c8132d8d2d5dbc83b3c712c70a |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/41075 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rubio, Mateo5c489722-d190-48bc-b30d-dc069cd58c265002020-07-28T17:16:05Z2020-07-28T17:16:05Z20191657-5334http://hdl.handle.net/1992/410751657-719110.57784/1992/41075instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/I use residential burglary data from Bogota, Colombia, to fit an agent-based model following truncated L´evy flights (Pan et al., 2018) elucidating criminal rational behavior and validating repeat/near-repeat victimization and broken windows effects. The estimated parameters suggest that if an average house or its neighbors have never been attacked, and it is suddenly burglarized, the probability of a new attack the next day increases, due to the crime event, in 79 percentage points. Moreover, the following day its neighbors will also face an increment in the probability of crime of 79 percentage points. This effect persists for a long time span. The model presents an area under the Cumulative Accuracy Profile (CAP) curve, of 0.8 performing similarly or better than state-of-the-art crime prediction models. Public policies seeking to reduce criminal activity and its negative consequences must take into account these mechanisms and the self-exciting nature of crime to effectively make criminal hotspots safer.29 páginasspaUniversidad de los Andes, Facultad de Economía, CEDEDocumentos CEDE No. 11 Febrero de 2019https://ideas.repec.org/p/col/000089/017198.htmlPredicting criminal behavior with Lévy flights using real data from BogotáDocumento de trabajoinfo:eu-repo/semantics/workingPaperhttp://purl.org/coar/resource_type/c_8042http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttps://purl.org/redcol/resource_type/WPCriminal behaviorCrime prediction modelMachine learningAgent-based modelK42, H39, C53, C63Facultad de EconomíaPublicationTEXTdcede2019-11.pdf.txtdcede2019-11.pdf.txtExtracted texttext/plain52083https://repositorio.uniandes.edu.co/bitstreams/5eb12113-718c-4422-92a4-54ba50d40f5c/download8d7b259c6ed0eb1ab67ec3bf08435938MD54ORIGINALdcede2019-11.pdfdcede2019-11.pdfapplication/pdf2514172https://repositorio.uniandes.edu.co/bitstreams/bf97b808-604e-4578-b819-3505d0beef66/download32efef5c44c0cb87260625a88c280d9dMD51THUMBNAILdcede2019-11.pdf.jpgdcede2019-11.pdf.jpgIM Thumbnailimage/jpeg11608https://repositorio.uniandes.edu.co/bitstreams/be450488-69e6-48fb-a159-5227a81df191/download09a37945259db9b3a14dd944778ee1b5MD551992/41075oai:repositorio.uniandes.edu.co:1992/410752024-06-04 15:44:19.317http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |
dc.title.none.fl_str_mv |
Predicting criminal behavior with Lévy flights using real data from Bogotá |
title |
Predicting criminal behavior with Lévy flights using real data from Bogotá |
spellingShingle |
Predicting criminal behavior with Lévy flights using real data from Bogotá Criminal behavior Crime prediction model Machine learning Agent-based model K42, H39, C53, C63 |
title_short |
Predicting criminal behavior with Lévy flights using real data from Bogotá |
title_full |
Predicting criminal behavior with Lévy flights using real data from Bogotá |
title_fullStr |
Predicting criminal behavior with Lévy flights using real data from Bogotá |
title_full_unstemmed |
Predicting criminal behavior with Lévy flights using real data from Bogotá |
title_sort |
Predicting criminal behavior with Lévy flights using real data from Bogotá |
dc.creator.fl_str_mv |
Rubio, Mateo |
dc.contributor.author.none.fl_str_mv |
Rubio, Mateo |
dc.subject.keyword.none.fl_str_mv |
Criminal behavior Crime prediction model Machine learning Agent-based model |
topic |
Criminal behavior Crime prediction model Machine learning Agent-based model K42, H39, C53, C63 |
dc.subject.jel.none.fl_str_mv |
K42, H39, C53, C63 |
description |
I use residential burglary data from Bogota, Colombia, to fit an agent-based model following truncated L´evy flights (Pan et al., 2018) elucidating criminal rational behavior and validating repeat/near-repeat victimization and broken windows effects. The estimated parameters suggest that if an average house or its neighbors have never been attacked, and it is suddenly burglarized, the probability of a new attack the next day increases, due to the crime event, in 79 percentage points. Moreover, the following day its neighbors will also face an increment in the probability of crime of 79 percentage points. This effect persists for a long time span. The model presents an area under the Cumulative Accuracy Profile (CAP) curve, of 0.8 performing similarly or better than state-of-the-art crime prediction models. Public policies seeking to reduce criminal activity and its negative consequences must take into account these mechanisms and the self-exciting nature of crime to effectively make criminal hotspots safer. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-07-28T17:16:05Z |
dc.date.available.none.fl_str_mv |
2020-07-28T17:16:05Z |
dc.type.spa.fl_str_mv |
Documento de trabajo |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/workingPaper |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_8042 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/WP |
format |
http://purl.org/coar/resource_type/c_8042 |
dc.identifier.issn.none.fl_str_mv |
1657-5334 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/41075 |
dc.identifier.eissn.none.fl_str_mv |
1657-7191 |
dc.identifier.doi.none.fl_str_mv |
10.57784/1992/41075 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
identifier_str_mv |
1657-5334 1657-7191 10.57784/1992/41075 instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/41075 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofseries.none.fl_str_mv |
Documentos CEDE No. 11 Febrero de 2019 |
dc.relation.repec.spa.fl_str_mv |
https://ideas.repec.org/p/col/000089/017198.html |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
29 páginas |
dc.publisher.none.fl_str_mv |
Universidad de los Andes, Facultad de Economía, CEDE |
publisher.none.fl_str_mv |
Universidad de los Andes, Facultad de Economía, CEDE |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/5eb12113-718c-4422-92a4-54ba50d40f5c/download https://repositorio.uniandes.edu.co/bitstreams/bf97b808-604e-4578-b819-3505d0beef66/download https://repositorio.uniandes.edu.co/bitstreams/be450488-69e6-48fb-a159-5227a81df191/download |
bitstream.checksum.fl_str_mv |
8d7b259c6ed0eb1ab67ec3bf08435938 32efef5c44c0cb87260625a88c280d9d 09a37945259db9b3a14dd944778ee1b5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1818111985126998016 |