Extensión del modelo escotogénico original para explorar neutrinos pesados y materia oscura

En este proyecto se busca explicar las masas de neutrinos y la materia oscura mediante procesos de un bucle con nuevos campos que surgen a partir de la extensión del modelo escotogénico original. Aunque presenta retos debido a las restricciones experimentales y teóricas, la inclusión de un nuevo sin...

Full description

Autores:
García Bautista, Johan Esteban
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2025
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/75532
Acceso en línea:
https://hdl.handle.net/1992/75532
Palabra clave:
Fenomenología
Materia Oscura
Partículas
Neutrinos
Física
Particles
Physics
Dark matter
Quantum Fields
Phenomenology
Scotogenic
Física
Rights
openAccess
License
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id UNIANDES2_71eef45a8d6d40bdfbb117c359532e16
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/75532
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.spa.fl_str_mv Extensión del modelo escotogénico original para explorar neutrinos pesados y materia oscura
dc.title.alternative.eng.fl_str_mv Original stotogenic model extended to explore heavy neutrinos and dark matter
title Extensión del modelo escotogénico original para explorar neutrinos pesados y materia oscura
spellingShingle Extensión del modelo escotogénico original para explorar neutrinos pesados y materia oscura
Fenomenología
Materia Oscura
Partículas
Neutrinos
Física
Particles
Physics
Dark matter
Quantum Fields
Phenomenology
Scotogenic
Física
title_short Extensión del modelo escotogénico original para explorar neutrinos pesados y materia oscura
title_full Extensión del modelo escotogénico original para explorar neutrinos pesados y materia oscura
title_fullStr Extensión del modelo escotogénico original para explorar neutrinos pesados y materia oscura
title_full_unstemmed Extensión del modelo escotogénico original para explorar neutrinos pesados y materia oscura
title_sort Extensión del modelo escotogénico original para explorar neutrinos pesados y materia oscura
dc.creator.fl_str_mv García Bautista, Johan Esteban
dc.contributor.advisor.none.fl_str_mv Flórez Bustos, Carlos Andrés
Sarazin, Maud
dc.contributor.author.none.fl_str_mv García Bautista, Johan Esteban
dc.contributor.jury.none.fl_str_mv Kelkar, Neelima Govind
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ciencias::Grupo de Fisica de Altas energias de la Universidad de los Andes
dc.subject.keyword.spa.fl_str_mv Fenomenología
Materia Oscura
Partículas
Neutrinos
Física
topic Fenomenología
Materia Oscura
Partículas
Neutrinos
Física
Particles
Physics
Dark matter
Quantum Fields
Phenomenology
Scotogenic
Física
dc.subject.keyword.eng.fl_str_mv Particles
Physics
Dark matter
Quantum Fields
Phenomenology
Scotogenic
dc.subject.themes.spa.fl_str_mv Física
description En este proyecto se busca explicar las masas de neutrinos y la materia oscura mediante procesos de un bucle con nuevos campos que surgen a partir de la extensión del modelo escotogénico original. Aunque presenta retos debido a las restricciones experimentales y teóricas, la inclusión de un nuevo singlete escalar podría ampliar las posibilidades. El objetivo de este proyecto es analizar cómo el nuevo singlete afecta a la fenomenología de las masas de neutrinos y de los candidatos a materia oscura. Para ello, se realizaron cálculos que se implementaron en software especializado como SARAH, SPheno, FeynRules, MicrOmegas y MadGraph para evaluar la estabilidad, el espectro de masas, la densidad de reliquia de la materia oscura y las secciones eficaces de producción. Los resultados muestran que la inclusión del nuevo singlete escalar modifica ligeramente la fenomenología de masas de neutrinos y materia oscura, expandiendo el espacio de parámetros del modelo original. El análisis realizado se llevó a cabo mediante un algoritmo MCMC, y muestra que el espacio de parámetros ampliado converge con las restricciones experimentales actuales, proporcionando nuevas perspectivas y oportunidades para la investigación en este campo de la física de partículas.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-01-21T15:55:24Z
dc.date.available.none.fl_str_mv 2025-01-21T15:55:24Z
dc.date.issued.none.fl_str_mv 2025-01-15
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/75532
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/75532
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Gordon Kane. Modern Elementary Particle Physics: Explaining and Extending the Standard Model. Cambridge University Press, 2 edition, 2017.
Cush. Standard model of elementary particles anti.svg. Wikimedia Commons, 2018. Consultado el 9 de mayo de 2024.
Gordon Kane. Modern elementary particle physics : quarks, leptons, and their interactions. Addison-Wesley, Redwood City, Calf, 1987.
Dave Goldberg. The Standard Model in a Nutshell. Princeton University Press, 2017.
David Griffiths. Introduction to Elementary Particles. Wiley-VCH, 2nd edition, 2008.
Sheldon L. Glashow. Partial symmetries of weak interactions. Nuclear Physics, 22, September 1961.
Fran¸cois Englert and Robert Brout. Broken symmetry and the mass of gauge vector mesons. Physical Review Letters, 13(9), August 1964.
Michael E. Peskin and Daniel V. Schroeder. An Introduction to Quantum Field Theory. Addison-Wesley, 1995.
Steven Weinberg. The Quantum Theory of Fields, volume 2. Cambridge University Press, 1996.
Pierre Ramond. Field Theory: A Modern Primer. Westview Press, 2nd edition, 2001.
Peter W. Higgs. Broken symmetries and the masses of gauge bosons. Physical Review Letters, 13(16), October 1964.
Kien Nguyen. Higgs mechanism. Universidad de M´unich, 2009. Accedido: 2024-09-11.
Hideki Yukawa. On the interaction of elementary particles. Progress of Theoretical Physics Supplement, 17, January 1935.
Particle Data Group. Higgs boson. https://pdg.lbl.gov/2023/reviews/rpp2023-rev-higgs-boson.pdf, 2023. Accessed: 2023-10-12.
S Fukuda and et.al. The super-kamiokande detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 501(2):418–462, 2003.
N. Jelley, A. McDonald, B. Robertson, and R.G. Hamish. The sudbury neutrino observatory. Annual Review of Nuclear and Particle Science, 59(1):431–465, 2009.
Paul. Langacker. The standard model and beyond; 1st ed. Series in high energy physics, cosmology, and gravitation. Taylor and Francis, Boca Raton, FL, 2010.
G. Ardila. Stable majoron radiation in the type 1 see-saw mechanism and its hypothetical detection at the lhc. Msc. thesis, Universit¨at Heidelberg, 2020.
R. N. Mohapatra and P. B. Pal. Massive Neutrinos in Physics and Astrophysics; 3rd ed. World Scientific lecture notes in physics. World Scientific, Singapore, 2004.
P. Minkowski. μ → eγ at a rate of one out of 109 muon decays? Physics Letters B, 67(4):421–428, 1977.
Y. Chikashige, R.N. Mohapatra, and R.D. Peccei. Are there real goldstone bosons associated with broken lepton number? Physics Letters B, 98(4):265–268, 1981.
C. Garcia-Cely and J. Heeck. Neutrino lines from majoron dark matter. Journal of High Energy Physics, 2017(5):102, 2017.
J. Heeck and H. Patel. Majoron at two loops. Phys. Rev. D, 100:095015, Nov 2019.
K. Akita and M. Niibo. Updated constraints and future prospects on majoron dark matter. Journal of High Energy Physics, 2023(7):132, 2023.
Ernest Ma. Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Physical Review D, 73(7), April 2006.
Y. Cai, J. Herrero Garc´ıa, M. A. Schmidt, A. Vicente, and R. R. Volkas. From the trees to the forest: A review of radiative neutrino mass models. Frontiers in Physics, 5, 2017.
C. Hagedorn, J. Herrero-Garc´ıa, E. Molinaro, and M. A. Schmidt. Phenomenology of the generalised scotogenic model with fermionic dark matter. Journal of High Energy Physics, 2018(11):103, 2018.
I. M. ´Avila, V. De Romeri, L. Duarte, and Jos´eW. F. Valle. Phenomenology of scotogenic scalar dark matter. The European Physical Journal C, 80(10):908, 2020.
Gianfranco Bertone, Dan Hooper, and Joseph Silk. Particle dark matter: evidence, candidates and constraints. Physics Reports, 405(5–6):279–390, January 2005.
James B. R. Battat. Resource letter dm1: Dark matter: An overview of theory and experiment. American Journal of Physics, 92:247–257, 2024.
Giorgio Arcadi and Dutra. The Waning of the WIMP? A Review of Models, Searches, and Constraints. Int. J. Mod. Phys. A, 32(13):1730025, 2017.
G. Jungman, M. Kamionkowski, and K. Griest. Supersymmetric dark matter. Physics Reports, 267:195–373, 1996.
V. C. Rubin and W. K. Ford. Rotation of the andromeda nebula from a spectroscopic survey of emission regions. Astrophysical Journal, 159:379–403, 1970.
N. Aghanim et al. Planck 2018 results. VI. Cosmological parameters. 2018.
XENON Collaboration. Dark matter search results from xenonnt. Physical Review Letters, 130:161001, 2023.
J. Aalbers and et.al. First dark matter search results from the lux-zeplin (lz) experiment. Phys. Rev. Lett., 131:041002, Jul 2023.
D.S. Akerib et al. The lux-zeplin (lz) experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 953:163047, 2020.
S. Abdollahi et al. Fermi large area telescope fourth source catalog. The Astrophysical Journal Supplement Series, 247(1):33, March 2020.
Danyer Perez Adan. Dark matter searches at cms and atlas, 2023.
Carla Macolino and for the DARWIN collaboration. Darwin: direct dark matter search with the ultimate detector. Journal of Physics: Conference Series, 1468(1):012068, feb 2020.
Mark Srednicki. Relic abundances and the boltzmann equation, 2000.
E. W. Kolb and M. S. Turner. The early universe. Addison-Wesley, 1990.
Florian Staub. SARAH 4: A tool for (not only SUSY) model builders. Comput. Phys. Commun., 185:1773–1790, 2014.
W. Porod and F. Staub. SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM. Comput. Phys. Commun., 183:2458–2469, 2012.
G. B´elanger, F. Boudjema, A. Goudelis, A. Pukhov, and B. Zald´ıvar. micromegas5.0 : Freeze-in. Computer Physics Communications, 231:173–186, 2018.
A. S. Moretti, P. A. N. Borgonovo, and F. Maltoni. Feynrules: A tool for the parametrization of particles and decays in a universal lagrangian. Journal of High Energy Physics, 2012(6):128, 2012.
J. Alwall, F. Herquet, M. andMaltoni, O. Mattelaer, and T. Stelzer. MadGraph 5: Going beyond. Journal of High Energy Physics, 2011(6):128, June 2011.
N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of state calculations by fast computing machines. J. Chem. Phys., 21:1087–1092, 1953.
A. A. Markov. Extension of the limit theorems of probability theory to a sum of variables connected in a chain. reprinted in Appendix B of: R. Howard, Dynamic Probabilistic Systems, volume 1: Markov Chains, John Wiley and Sons, 1971.
F. Staub. Sarah: A tool for (not only susy) model builders. Computer Physics Communications, 185(6):1773–1790, 2014.
John W Backus and William P Heising. Fortran. IEEE Transactions on Electronic Computers, (4):382–385, 1964.
W. Porod. Spheno, a program for calculating supersymmetric spectra, susy particle decays and susy particle production at e+e colliders. Computer Physics Communications, 153(3):275–315, 2003.
G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov. micromegas: A program for calculating the relic density in the mssm. Computer Physics Communications, 149(1):103–120, 2002.
Avelino Vicente. Computer tools in particle physics. arXiv preprint arXiv:1507.06349, 2015.
Gregory F. Lawler and Vlada Limic. Random Walk: A Modern Introduction. Cambridge University Press, 2010.
Frank Spitzer. Principles of Random Walk. Springer-Verlag, 1970.
M. Sarazin, J. Bernigaud, and B. Herrmann. Dark matter and lepton flavour phenomenology in a singlet-doublet scotogenic model. Journal of High Energy Physics, 2021(12):116, 2021.
J. A. Casas and A. Ibarra. Oscillating neutrinos and μ → e, γ. Nucl. Phys. B, 618:171–204, 2001.
W. K. Hastings. Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika, 57:97–109, 1970.
Siddhartha Chib. Marginal likelihood from the gibbs output. Journal of the American Statistical Association, 90(432):1313–1321, 1995.
B. Pontecorvo. Mesonium and antimesonium. Soviet Physics JETP, 6:429, 1957.
Z. Maki, M. Nakagawa, and S. Sakata. Remarks on the unified model of elementary particles. Progress of Theoretical Physics, 28(5):870–880, 1962.
S. M. Bilenky and B. Pontecorvo. Lepton mixing and neutrino oscillations. Physics Reports, 41(4):225–261, 1978.
Y. Fukuda et al. Evidence for oscillation of atmospheric neutrinos. Physical Review Letters, 81(8):1562, 1998.
Q. R. Ahmad et al. Direct evidence for neutrino flavor transformation from neutral-current
interactions in the sudbury neutrino observatory. Physical Review Letters, 89(1):011301, 2002.
J.A. Casas and A. Ibarra. Oscillating neutrinos and μ → eγ. Nuclear Physics B, 618(1):171204, 2001.
Ivan Esteban, M. C. Gonzalez-Garcia, Michele Maltoni, Ivan Martinez-Soler, and Jordi Salvado. Updated constraints on non-standard interactions from global analysis of oscillation data. Journal of High Energy Physics, 2018(8), August 2018.
Ivan Esteban, M. C. Gonzalez-Garcia, Michele Maltoni, Thomas Schwetz, and Albert Zhou. The fate of hints: updated global analysis of three-flavor neutrino oscillations. JHEP, 09:178, 2020.
P. A. Zyla et al. Review of Particle Physics. PTEP, 2020 (and 2021 update)(8):083C01, 2020.
Georges Aad et al. Combined Measurement of the Higgs Boson Mass in pp Collisions at √s = 7 and 8 TeV with the ATLAS and CMS Experiments. Phys. Rev. Lett., 114:191803, 2015.
Planck Collaboration. Planck 2018 results. vi. cosmological parameters. Astronomy & Astrophysics, 2018.
P. Athron et al. Global fits of the scalar singlet dark matter model. European Physical Journal C, 78:830, 2018.
Laura Lopez Honorez, Emmanuel Nezri, Josep F. Oliver, and Michel H. G. Tytgat. The Inert Doublet Model: An Archetype for Dark Matter. JCAP, 02:028, 2007.
C. P. Burgess et al. The minimal supersymmetric standard model. Physics Reports, 330:193-325, 2000.
J. M. Cline et al. Scalar singlet dark matter models. Physics Review D, 88:055025, 2013.
A. Blondel et al. The minimal supersymmetric standard model. Physics Reports, 330:193–325, 2013.
dc.rights.uri.none.fl_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 80 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Física
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Física
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/a77d63f6-c968-4107-acfd-fd394e1f08a2/download
https://repositorio.uniandes.edu.co/bitstreams/56deb471-5ee0-4568-939a-b19b48fd2084/download
https://repositorio.uniandes.edu.co/bitstreams/871dbcf8-ba9c-44a0-a13b-7dbe578d1440/download
https://repositorio.uniandes.edu.co/bitstreams/9aed0c37-0d5a-4472-b22d-6beb830fc8b5/download
https://repositorio.uniandes.edu.co/bitstreams/200b8012-7130-4b8a-9b5d-d7ed3103d4a4/download
https://repositorio.uniandes.edu.co/bitstreams/86ae0176-be40-46b4-b46d-58d0a5c43e51/download
https://repositorio.uniandes.edu.co/bitstreams/c49e9a2f-ffc4-47e9-a8ca-9d8f4902f8f1/download
bitstream.checksum.fl_str_mv c6d84be61e832f8ae16dd9692a599bba
26f472a92cd3268b1b9976947295d5c7
ae9e573a68e7f92501b6913cc846c39f
7e3541d0e9f9bf9e123644f28112da28
0e078fc50118f929117a0933199a3371
9a6e1e9477a133d8982f9e68a5ebe302
fb59c42e974bf51e7f20b24a5bcc3c63
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1828159214109851648
spelling Flórez Bustos, Carlos Andrésvirtual::22164-1Sarazin, MaudGarcía Bautista, Johan EstebanKelkar, Neelima Govindvirtual::22165-1Facultad de Ciencias::Grupo de Fisica de Altas energias de la Universidad de los Andes2025-01-21T15:55:24Z2025-01-21T15:55:24Z2025-01-15https://hdl.handle.net/1992/75532instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/En este proyecto se busca explicar las masas de neutrinos y la materia oscura mediante procesos de un bucle con nuevos campos que surgen a partir de la extensión del modelo escotogénico original. Aunque presenta retos debido a las restricciones experimentales y teóricas, la inclusión de un nuevo singlete escalar podría ampliar las posibilidades. El objetivo de este proyecto es analizar cómo el nuevo singlete afecta a la fenomenología de las masas de neutrinos y de los candidatos a materia oscura. Para ello, se realizaron cálculos que se implementaron en software especializado como SARAH, SPheno, FeynRules, MicrOmegas y MadGraph para evaluar la estabilidad, el espectro de masas, la densidad de reliquia de la materia oscura y las secciones eficaces de producción. Los resultados muestran que la inclusión del nuevo singlete escalar modifica ligeramente la fenomenología de masas de neutrinos y materia oscura, expandiendo el espacio de parámetros del modelo original. El análisis realizado se llevó a cabo mediante un algoritmo MCMC, y muestra que el espacio de parámetros ampliado converge con las restricciones experimentales actuales, proporcionando nuevas perspectivas y oportunidades para la investigación en este campo de la física de partículas.In this thesis we will present a scotogenic model which aims to explain neutrino masses and dark matter by the means of one loop processes with new fields. Although it presents challenges due to experimental and theoretical constraints, including a new scalar singlet could expand the possibilities. The goal of this project is to analyze how the new singlet modifies the phenomenology of neutrino masses and dark matter candidates. For this purpose, the calculations were performed and implemented in specialized software such as SARAH, SPheno, FeyRules, MicrOmegas and MadGraph to evaluate stability, mass spectrum, dark matter relic density and cross-sections production. The results show that the inclusion of a new scalar singlet slightly modifies the phenomenology of neutrino masses and dark matter, expanding the parameter space of the original model. The performed analysis was carried out by the means of a MCMC algorithm, and shows that the extended parameter space converges with the current experimental constraints, providing new perspectives and opportunities for research in this field of particle physics.PregradoFenomenología80 páginasapplication/pdfspaUniversidad de los AndesFísicaFacultad de CienciasDepartamento de Físicahttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Extensión del modelo escotogénico original para explorar neutrinos pesados y materia oscuraOriginal stotogenic model extended to explore heavy neutrinos and dark matterTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPFenomenologíaMateria OscuraPartículasNeutrinosFísicaParticlesPhysicsDark matterQuantum FieldsPhenomenologyScotogenicFísicaGordon Kane. Modern Elementary Particle Physics: Explaining and Extending the Standard Model. Cambridge University Press, 2 edition, 2017.Cush. Standard model of elementary particles anti.svg. Wikimedia Commons, 2018. Consultado el 9 de mayo de 2024.Gordon Kane. Modern elementary particle physics : quarks, leptons, and their interactions. Addison-Wesley, Redwood City, Calf, 1987.Dave Goldberg. The Standard Model in a Nutshell. Princeton University Press, 2017.David Griffiths. Introduction to Elementary Particles. Wiley-VCH, 2nd edition, 2008.Sheldon L. Glashow. Partial symmetries of weak interactions. Nuclear Physics, 22, September 1961.Fran¸cois Englert and Robert Brout. Broken symmetry and the mass of gauge vector mesons. Physical Review Letters, 13(9), August 1964.Michael E. Peskin and Daniel V. Schroeder. An Introduction to Quantum Field Theory. Addison-Wesley, 1995.Steven Weinberg. The Quantum Theory of Fields, volume 2. Cambridge University Press, 1996.Pierre Ramond. Field Theory: A Modern Primer. Westview Press, 2nd edition, 2001.Peter W. Higgs. Broken symmetries and the masses of gauge bosons. Physical Review Letters, 13(16), October 1964.Kien Nguyen. Higgs mechanism. Universidad de M´unich, 2009. Accedido: 2024-09-11.Hideki Yukawa. On the interaction of elementary particles. Progress of Theoretical Physics Supplement, 17, January 1935.Particle Data Group. Higgs boson. https://pdg.lbl.gov/2023/reviews/rpp2023-rev-higgs-boson.pdf, 2023. Accessed: 2023-10-12.S Fukuda and et.al. The super-kamiokande detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 501(2):418–462, 2003.N. Jelley, A. McDonald, B. Robertson, and R.G. Hamish. The sudbury neutrino observatory. Annual Review of Nuclear and Particle Science, 59(1):431–465, 2009.Paul. Langacker. The standard model and beyond; 1st ed. Series in high energy physics, cosmology, and gravitation. Taylor and Francis, Boca Raton, FL, 2010.G. Ardila. Stable majoron radiation in the type 1 see-saw mechanism and its hypothetical detection at the lhc. Msc. thesis, Universit¨at Heidelberg, 2020.R. N. Mohapatra and P. B. Pal. Massive Neutrinos in Physics and Astrophysics; 3rd ed. World Scientific lecture notes in physics. World Scientific, Singapore, 2004.P. Minkowski. μ → eγ at a rate of one out of 109 muon decays? Physics Letters B, 67(4):421–428, 1977.Y. Chikashige, R.N. Mohapatra, and R.D. Peccei. Are there real goldstone bosons associated with broken lepton number? Physics Letters B, 98(4):265–268, 1981.C. Garcia-Cely and J. Heeck. Neutrino lines from majoron dark matter. Journal of High Energy Physics, 2017(5):102, 2017.J. Heeck and H. Patel. Majoron at two loops. Phys. Rev. D, 100:095015, Nov 2019.K. Akita and M. Niibo. Updated constraints and future prospects on majoron dark matter. Journal of High Energy Physics, 2023(7):132, 2023.Ernest Ma. Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Physical Review D, 73(7), April 2006.Y. Cai, J. Herrero Garc´ıa, M. A. Schmidt, A. Vicente, and R. R. Volkas. From the trees to the forest: A review of radiative neutrino mass models. Frontiers in Physics, 5, 2017.C. Hagedorn, J. Herrero-Garc´ıa, E. Molinaro, and M. A. Schmidt. Phenomenology of the generalised scotogenic model with fermionic dark matter. Journal of High Energy Physics, 2018(11):103, 2018.I. M. ´Avila, V. De Romeri, L. Duarte, and Jos´eW. F. Valle. Phenomenology of scotogenic scalar dark matter. The European Physical Journal C, 80(10):908, 2020.Gianfranco Bertone, Dan Hooper, and Joseph Silk. Particle dark matter: evidence, candidates and constraints. Physics Reports, 405(5–6):279–390, January 2005.James B. R. Battat. Resource letter dm1: Dark matter: An overview of theory and experiment. American Journal of Physics, 92:247–257, 2024.Giorgio Arcadi and Dutra. The Waning of the WIMP? A Review of Models, Searches, and Constraints. Int. J. Mod. Phys. A, 32(13):1730025, 2017.G. Jungman, M. Kamionkowski, and K. Griest. Supersymmetric dark matter. Physics Reports, 267:195–373, 1996.V. C. Rubin and W. K. Ford. Rotation of the andromeda nebula from a spectroscopic survey of emission regions. Astrophysical Journal, 159:379–403, 1970.N. Aghanim et al. Planck 2018 results. VI. Cosmological parameters. 2018.XENON Collaboration. Dark matter search results from xenonnt. Physical Review Letters, 130:161001, 2023.J. Aalbers and et.al. First dark matter search results from the lux-zeplin (lz) experiment. Phys. Rev. Lett., 131:041002, Jul 2023.D.S. Akerib et al. The lux-zeplin (lz) experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 953:163047, 2020.S. Abdollahi et al. Fermi large area telescope fourth source catalog. The Astrophysical Journal Supplement Series, 247(1):33, March 2020.Danyer Perez Adan. Dark matter searches at cms and atlas, 2023.Carla Macolino and for the DARWIN collaboration. Darwin: direct dark matter search with the ultimate detector. Journal of Physics: Conference Series, 1468(1):012068, feb 2020.Mark Srednicki. Relic abundances and the boltzmann equation, 2000.E. W. Kolb and M. S. Turner. The early universe. Addison-Wesley, 1990.Florian Staub. SARAH 4: A tool for (not only SUSY) model builders. Comput. Phys. Commun., 185:1773–1790, 2014.W. Porod and F. Staub. SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM. Comput. Phys. Commun., 183:2458–2469, 2012.G. B´elanger, F. Boudjema, A. Goudelis, A. Pukhov, and B. Zald´ıvar. micromegas5.0 : Freeze-in. Computer Physics Communications, 231:173–186, 2018.A. S. Moretti, P. A. N. Borgonovo, and F. Maltoni. Feynrules: A tool for the parametrization of particles and decays in a universal lagrangian. Journal of High Energy Physics, 2012(6):128, 2012.J. Alwall, F. Herquet, M. andMaltoni, O. Mattelaer, and T. Stelzer. MadGraph 5: Going beyond. Journal of High Energy Physics, 2011(6):128, June 2011.N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of state calculations by fast computing machines. J. Chem. Phys., 21:1087–1092, 1953.A. A. Markov. Extension of the limit theorems of probability theory to a sum of variables connected in a chain. reprinted in Appendix B of: R. Howard, Dynamic Probabilistic Systems, volume 1: Markov Chains, John Wiley and Sons, 1971.F. Staub. Sarah: A tool for (not only susy) model builders. Computer Physics Communications, 185(6):1773–1790, 2014.John W Backus and William P Heising. Fortran. IEEE Transactions on Electronic Computers, (4):382–385, 1964.W. Porod. Spheno, a program for calculating supersymmetric spectra, susy particle decays and susy particle production at e+e colliders. Computer Physics Communications, 153(3):275–315, 2003.G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov. micromegas: A program for calculating the relic density in the mssm. Computer Physics Communications, 149(1):103–120, 2002.Avelino Vicente. Computer tools in particle physics. arXiv preprint arXiv:1507.06349, 2015.Gregory F. Lawler and Vlada Limic. Random Walk: A Modern Introduction. Cambridge University Press, 2010.Frank Spitzer. Principles of Random Walk. Springer-Verlag, 1970.M. Sarazin, J. Bernigaud, and B. Herrmann. Dark matter and lepton flavour phenomenology in a singlet-doublet scotogenic model. Journal of High Energy Physics, 2021(12):116, 2021.J. A. Casas and A. Ibarra. Oscillating neutrinos and μ → e, γ. Nucl. Phys. B, 618:171–204, 2001.W. K. Hastings. Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika, 57:97–109, 1970.Siddhartha Chib. Marginal likelihood from the gibbs output. Journal of the American Statistical Association, 90(432):1313–1321, 1995.B. Pontecorvo. Mesonium and antimesonium. Soviet Physics JETP, 6:429, 1957.Z. Maki, M. Nakagawa, and S. Sakata. Remarks on the unified model of elementary particles. Progress of Theoretical Physics, 28(5):870–880, 1962.S. M. Bilenky and B. Pontecorvo. Lepton mixing and neutrino oscillations. Physics Reports, 41(4):225–261, 1978.Y. Fukuda et al. Evidence for oscillation of atmospheric neutrinos. Physical Review Letters, 81(8):1562, 1998.Q. R. Ahmad et al. Direct evidence for neutrino flavor transformation from neutral-currentinteractions in the sudbury neutrino observatory. Physical Review Letters, 89(1):011301, 2002.J.A. Casas and A. Ibarra. Oscillating neutrinos and μ → eγ. Nuclear Physics B, 618(1):171204, 2001.Ivan Esteban, M. C. Gonzalez-Garcia, Michele Maltoni, Ivan Martinez-Soler, and Jordi Salvado. Updated constraints on non-standard interactions from global analysis of oscillation data. Journal of High Energy Physics, 2018(8), August 2018.Ivan Esteban, M. C. Gonzalez-Garcia, Michele Maltoni, Thomas Schwetz, and Albert Zhou. The fate of hints: updated global analysis of three-flavor neutrino oscillations. JHEP, 09:178, 2020.P. A. Zyla et al. Review of Particle Physics. PTEP, 2020 (and 2021 update)(8):083C01, 2020.Georges Aad et al. Combined Measurement of the Higgs Boson Mass in pp Collisions at √s = 7 and 8 TeV with the ATLAS and CMS Experiments. Phys. Rev. Lett., 114:191803, 2015.Planck Collaboration. Planck 2018 results. vi. cosmological parameters. Astronomy & Astrophysics, 2018.P. Athron et al. Global fits of the scalar singlet dark matter model. European Physical Journal C, 78:830, 2018.Laura Lopez Honorez, Emmanuel Nezri, Josep F. Oliver, and Michel H. G. Tytgat. The Inert Doublet Model: An Archetype for Dark Matter. JCAP, 02:028, 2007.C. P. Burgess et al. The minimal supersymmetric standard model. Physics Reports, 330:193-325, 2000.J. M. Cline et al. Scalar singlet dark matter models. Physics Review D, 88:055025, 2013.A. Blondel et al. The minimal supersymmetric standard model. Physics Reports, 330:193–325, 2013.202012165Publicationhttps://scholar.google.es/citations?user=SUG6ga0AAAAJvirtual::22164-1https://scholar.google.es/citations?user=BMxIj5AAAAAJvirtual::22165-10000-0002-3222-0249virtual::22164-10000-0003-1129-8263virtual::22165-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001541878virtual::22164-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000521795virtual::22165-136748a10-0a15-454e-8153-6373f14be738virtual::22164-136748a10-0a15-454e-8153-6373f14be738virtual::22164-199028683-12da-47c6-b475-e4e674a36d28virtual::22165-199028683-12da-47c6-b475-e4e674a36d28virtual::22165-1ORIGINALOriginal Stotogenic Model Extended to Explore Heavy Neutrinos and Dark Matter.pdfOriginal Stotogenic Model Extended to Explore Heavy Neutrinos and Dark Matter.pdfapplication/pdf3329836https://repositorio.uniandes.edu.co/bitstreams/a77d63f6-c968-4107-acfd-fd394e1f08a2/downloadc6d84be61e832f8ae16dd9692a599bbaMD51autorizacion_tesis_Johan.pdfautorizacion_tesis_Johan.pdfHIDEapplication/pdf265260https://repositorio.uniandes.edu.co/bitstreams/56deb471-5ee0-4568-939a-b19b48fd2084/download26f472a92cd3268b1b9976947295d5c7MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/871dbcf8-ba9c-44a0-a13b-7dbe578d1440/downloadae9e573a68e7f92501b6913cc846c39fMD52TEXTOriginal Stotogenic Model Extended to Explore Heavy Neutrinos and Dark Matter.pdf.txtOriginal Stotogenic Model Extended to Explore Heavy Neutrinos and Dark Matter.pdf.txtExtracted texttext/plain104399https://repositorio.uniandes.edu.co/bitstreams/9aed0c37-0d5a-4472-b22d-6beb830fc8b5/download7e3541d0e9f9bf9e123644f28112da28MD54autorizacion_tesis_Johan.pdf.txtautorizacion_tesis_Johan.pdf.txtExtracted texttext/plain2055https://repositorio.uniandes.edu.co/bitstreams/200b8012-7130-4b8a-9b5d-d7ed3103d4a4/download0e078fc50118f929117a0933199a3371MD56THUMBNAILOriginal Stotogenic Model Extended to Explore Heavy Neutrinos and Dark Matter.pdf.jpgOriginal Stotogenic Model Extended to Explore Heavy Neutrinos and Dark Matter.pdf.jpgGenerated Thumbnailimage/jpeg7992https://repositorio.uniandes.edu.co/bitstreams/86ae0176-be40-46b4-b46d-58d0a5c43e51/download9a6e1e9477a133d8982f9e68a5ebe302MD55autorizacion_tesis_Johan.pdf.jpgautorizacion_tesis_Johan.pdf.jpgGenerated Thumbnailimage/jpeg10878https://repositorio.uniandes.edu.co/bitstreams/c49e9a2f-ffc4-47e9-a8ca-9d8f4902f8f1/downloadfb59c42e974bf51e7f20b24a5bcc3c63MD571992/75532oai:repositorio.uniandes.edu.co:1992/755322025-03-05 09:39:28.01https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K