Strongly minimal reducts of algebraically closed valued fields
In this thesis we prove the following restricted version of Zilber's Trichotomy: Let $K=(K,+,\cdot,v,\Gamma)$ be an algebraically closed valued field and let $(G,\+)$ be a K$-definable group that is either the multiplicative group or contains a finite index subgroup that is $ K$-definably isomo...
- Autores:
-
Pinzón Palacios, Santiago Iván
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/69392
- Acceso en línea:
- http://hdl.handle.net/1992/69392
- Palabra clave:
- ACVF
Zilber's Trichotomy
Valued Fields
Strongly Minimal
Matemáticas
- Rights
- openAccess
- License
- Atribución 4.0 Internacional
id |
UNIANDES2_7161b28d517691088ee8ae9bf3995461 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/69392 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.none.fl_str_mv |
Strongly minimal reducts of algebraically closed valued fields |
title |
Strongly minimal reducts of algebraically closed valued fields |
spellingShingle |
Strongly minimal reducts of algebraically closed valued fields ACVF Zilber's Trichotomy Valued Fields Strongly Minimal Matemáticas |
title_short |
Strongly minimal reducts of algebraically closed valued fields |
title_full |
Strongly minimal reducts of algebraically closed valued fields |
title_fullStr |
Strongly minimal reducts of algebraically closed valued fields |
title_full_unstemmed |
Strongly minimal reducts of algebraically closed valued fields |
title_sort |
Strongly minimal reducts of algebraically closed valued fields |
dc.creator.fl_str_mv |
Pinzón Palacios, Santiago Iván |
dc.contributor.advisor.none.fl_str_mv |
Hasson, Assaf Onshuus Niño, Alf |
dc.contributor.author.none.fl_str_mv |
Pinzón Palacios, Santiago Iván |
dc.contributor.jury.none.fl_str_mv |
Cubides Kovacsics, Pablo Kowalski, Piotr Peterzil, Kobi |
dc.subject.keyword.none.fl_str_mv |
ACVF Zilber's Trichotomy Valued Fields Strongly Minimal |
topic |
ACVF Zilber's Trichotomy Valued Fields Strongly Minimal Matemáticas |
dc.subject.themes.es_CO.fl_str_mv |
Matemáticas |
description |
In this thesis we prove the following restricted version of Zilber's Trichotomy: Let $K=(K,+,\cdot,v,\Gamma)$ be an algebraically closed valued field and let $(G,\+)$ be a K$-definable group that is either the multiplicative group or contains a finite index subgroup that is $ K$-definably isomorphic to a $K$-definable subgroup of $(K,+)$. Then if $\mathcal G=(G,\+,\ldots)$ is a strongly minimal non locally modular structure definable in $ K$ and expanding $(G,\oplus)$, it interprets an infinite field. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-08-08T17:06:01Z |
dc.date.available.none.fl_str_mv |
2023-08-08T17:06:01Z |
dc.date.issued.none.fl_str_mv |
2023-08-01 |
dc.type.es_CO.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.es_CO.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/69392 |
dc.identifier.doi.none.fl_str_mv |
10.57784/1992/69392 |
dc.identifier.instname.es_CO.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.es_CO.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.es_CO.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/69392 |
identifier_str_mv |
10.57784/1992/69392 instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.relation.references.es_CO.fl_str_mv |
Shreeram Shankar Abhyankar. Local analytic geometry, volume 14. World Scientific, 2001. Juan Pablo Acosta. One dimensional commutative groups definable in algebraically closed valued fields and in the pseudo-local fields. arXiv preprint arXiv:2112.00430, 2021. Toni Annala. B´ezout's theorem. Helsingfors universitet, 2016. Emil Artin. Geometric algebra. Interscience Publishers, Inc., 1957. Elisabeth Bouscaren, A Nesin, and A Pillay. The group configuration-after e. hrushovski. The model theory of groups, pages 199-209, 1989. Benjamin Castle. Restricted trichotomy in characteristic zero. arXiv preprint arXiv:2209.00730, 2022. Benjamin Castle and Assaf Hasson. Very ampleness in strongly minimal sets. arXiv preprint arXiv:2212.03774, 2022. Pantelis E Eleftheriou, Assaf Hasson, and Ya'acov Peterzil. Strongly minimal groups in o-minimal structures. Journal of the European Mathematical Society, 23(10):3351-3418, 2021. Robin Hartshorne. Algebraic geometry, volume 52. Springer Science & Business Media, 2013. Deirdre Haskell, Ehud Hrushovski, and Dugald Macpherson. Stable domination and independence in algebraically closed valued fields. arXiv preprint math/0511310, 2005. Jan E Holly. Canonical forms for definable subsets of algebraically closed and real closed valued fields. The Journal of Symbolic Logic, 60(3):843-860, 1995. Ehud Hrushovski. Contributions to stable model theory. University of California, Berkeley, 1986. Ehud Hrushovski. A new strongly minimal set. Annals of pure and applied logic, 62(2):147-166, 1993. Assaf Hasson and Dmitry Sustretov. Incidence systems on cartesian powers of algebraic curves. arXiv preprint arXiv:1702.05554, 2017. Ehud Hrushovski and Boris Zilber. Zariski geometries. Journal of the American mathematical society, pages 1-56, 1996. Piotr Kowalski and Serge Randriambololona. Strongly minimal reducts of valued fields. The Journal of Symbolic Logic, 81(2):510-523, 2016. Juan Pablo Acosta L´opez. One dimensional groups definable in the p-adic numbers. The Journal of Symbolic Logic, 86(2):801-816, 2021. David Marker. Model theory: an introduction, volume 217. Springer Science & Business Media, 2006. David Marker. Strongly minimal sets and geometry. In Colloquium'95 (Haifa), pages 191-213, 2017. Samaria Montenegro, Alf Onshuus, and Pierre Simon. Stabilizers,-generics, and prc fields. Journal of the Institute of Mathematics of Jussieu, 19(3):821-853, 2020. Evgenia D Rabinovich. Definability of a field in sufficiently rich incidence systems, volume 14. School of Mathematical Sciences, Queen Mary and Westfield College, 1993. Stan Wagon. The Banach-Tarski Paradox. Number 24. Cambridge University Press, 1993. |
dc.rights.license.*.fl_str_mv |
Atribución 4.0 Internacional |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
85 páginas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Doctorado en Matemáticas |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Matemáticas |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/4f6e055e-8ddb-4ad1-bd71-0b52d744c151/download https://repositorio.uniandes.edu.co/bitstreams/bce73c26-4d06-4af5-8010-58e335b5fd5a/download https://repositorio.uniandes.edu.co/bitstreams/a68637b5-0154-4ee3-b320-14d8ff7019ce/download https://repositorio.uniandes.edu.co/bitstreams/301c6d72-012f-4ab0-ae38-dabb276d011d/download https://repositorio.uniandes.edu.co/bitstreams/c2566bce-683d-489f-b949-105b3d584c51/download https://repositorio.uniandes.edu.co/bitstreams/1fc322d4-25c6-4db9-8d02-f84251daa814/download https://repositorio.uniandes.edu.co/bitstreams/a75ffee9-f3bc-4471-a826-9bdec5757d48/download https://repositorio.uniandes.edu.co/bitstreams/694e472d-1120-4a7a-a353-a65833b6181f/download |
bitstream.checksum.fl_str_mv |
5aa5c691a1ffe97abd12c2966efcb8d6 079cedc7e2d53297b2c5dfd7f11397cd bf794bde3be93e59c7cb8053e51f901a 5f990b9cbfa3a0e2b2c486d49fe3d4bc a55022f69dfa21667e07653025d20d45 7c229a7eb3bb82c6cb75fee6a1915856 0e21a5a8ab9566cc0ae88fc93083a403 0175ea4a2d4caec4bbcc37e300941108 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1818111961365217280 |
spelling |
Atribución 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hasson, AssafOnshuus Niño, Alfvirtual::20915-1Pinzón Palacios, Santiago Iván26597600Cubides Kovacsics, PabloKowalski, PiotrPeterzil, Kobi2023-08-08T17:06:01Z2023-08-08T17:06:01Z2023-08-01http://hdl.handle.net/1992/6939210.57784/1992/69392instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/In this thesis we prove the following restricted version of Zilber's Trichotomy: Let $K=(K,+,\cdot,v,\Gamma)$ be an algebraically closed valued field and let $(G,\+)$ be a K$-definable group that is either the multiplicative group or contains a finite index subgroup that is $ K$-definably isomorphic to a $K$-definable subgroup of $(K,+)$. Then if $\mathcal G=(G,\+,\ldots)$ is a strongly minimal non locally modular structure definable in $ K$ and expanding $(G,\oplus)$, it interprets an infinite field.Doctor en MatemáticasDoctoradoModel TheoryZilbers Trichotomy85 páginasapplication/pdfengUniversidad de los AndesDoctorado en MatemáticasFacultad de CienciasDepartamento de MatemáticasStrongly minimal reducts of algebraically closed valued fieldsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDACVFZilber's TrichotomyValued FieldsStrongly MinimalMatemáticasShreeram Shankar Abhyankar. Local analytic geometry, volume 14. World Scientific, 2001.Juan Pablo Acosta. One dimensional commutative groups definable in algebraically closed valued fields and in the pseudo-local fields. arXiv preprint arXiv:2112.00430, 2021.Toni Annala. B´ezout's theorem. Helsingfors universitet, 2016.Emil Artin. Geometric algebra. Interscience Publishers, Inc., 1957.Elisabeth Bouscaren, A Nesin, and A Pillay. The group configuration-after e. hrushovski. The model theory of groups, pages 199-209, 1989.Benjamin Castle. Restricted trichotomy in characteristic zero. arXiv preprint arXiv:2209.00730, 2022.Benjamin Castle and Assaf Hasson. Very ampleness in strongly minimal sets. arXiv preprint arXiv:2212.03774, 2022.Pantelis E Eleftheriou, Assaf Hasson, and Ya'acov Peterzil. Strongly minimal groups in o-minimal structures. Journal of the European Mathematical Society, 23(10):3351-3418, 2021.Robin Hartshorne. Algebraic geometry, volume 52. Springer Science & Business Media, 2013.Deirdre Haskell, Ehud Hrushovski, and Dugald Macpherson. Stable domination and independence in algebraically closed valued fields. arXiv preprint math/0511310, 2005.Jan E Holly. Canonical forms for definable subsets of algebraically closed and real closed valued fields. The Journal of Symbolic Logic, 60(3):843-860, 1995.Ehud Hrushovski. Contributions to stable model theory. University of California, Berkeley, 1986.Ehud Hrushovski. A new strongly minimal set. Annals of pure and applied logic, 62(2):147-166, 1993.Assaf Hasson and Dmitry Sustretov. Incidence systems on cartesian powers of algebraic curves. arXiv preprint arXiv:1702.05554, 2017.Ehud Hrushovski and Boris Zilber. Zariski geometries. Journal of the American mathematical society, pages 1-56, 1996.Piotr Kowalski and Serge Randriambololona. Strongly minimal reducts of valued fields. The Journal of Symbolic Logic, 81(2):510-523, 2016.Juan Pablo Acosta L´opez. One dimensional groups definable in the p-adic numbers. The Journal of Symbolic Logic, 86(2):801-816, 2021.David Marker. Model theory: an introduction, volume 217. Springer Science & Business Media, 2006.David Marker. Strongly minimal sets and geometry. In Colloquium'95 (Haifa), pages 191-213, 2017.Samaria Montenegro, Alf Onshuus, and Pierre Simon. Stabilizers,-generics, and prc fields. Journal of the Institute of Mathematics of Jussieu, 19(3):821-853, 2020.Evgenia D Rabinovich. Definability of a field in sufficiently rich incidence systems, volume 14. School of Mathematical Sciences, Queen Mary and Westfield College, 1993.Stan Wagon. The Banach-Tarski Paradox. Number 24. Cambridge University Press, 1993.201115695Publicationhttps://scholar.google.es/citations?user=Ov2U9EoAAAAJvirtual::20915-10000-0001-7593-1553virtual::20915-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000246409virtual::20915-15a750db4-a429-4f4f-af11-b70f91dd30eavirtual::20915-15a750db4-a429-4f4f-af11-b70f91dd30eavirtual::20915-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/4f6e055e-8ddb-4ad1-bd71-0b52d744c151/download5aa5c691a1ffe97abd12c2966efcb8d6MD51THUMBNAILTESIS_FootNote_Final (10).pdf.jpgTESIS_FootNote_Final (10).pdf.jpgIM Thumbnailimage/jpeg5107https://repositorio.uniandes.edu.co/bitstreams/bce73c26-4d06-4af5-8010-58e335b5fd5a/download079cedc7e2d53297b2c5dfd7f11397cdMD56autorizacion tesis (1).pdf.jpgautorizacion tesis (1).pdf.jpgIM Thumbnailimage/jpeg15285https://repositorio.uniandes.edu.co/bitstreams/a68637b5-0154-4ee3-b320-14d8ff7019ce/downloadbf794bde3be93e59c7cb8053e51f901aMD58ORIGINALTESIS_FootNote_Final (10).pdfTESIS_FootNote_Final (10).pdfDocumento de Tesis - Doctorado en matemáticasapplication/pdf548556https://repositorio.uniandes.edu.co/bitstreams/301c6d72-012f-4ab0-ae38-dabb276d011d/download5f990b9cbfa3a0e2b2c486d49fe3d4bcMD53autorizacion tesis (1).pdfautorizacion tesis (1).pdfHIDEapplication/pdf82579https://repositorio.uniandes.edu.co/bitstreams/c2566bce-683d-489f-b949-105b3d584c51/downloada55022f69dfa21667e07653025d20d45MD54TEXTTESIS_FootNote_Final (10).pdf.txtTESIS_FootNote_Final (10).pdf.txtExtracted texttext/plain144960https://repositorio.uniandes.edu.co/bitstreams/1fc322d4-25c6-4db9-8d02-f84251daa814/download7c229a7eb3bb82c6cb75fee6a1915856MD55autorizacion tesis (1).pdf.txtautorizacion tesis (1).pdf.txtExtracted texttext/plain1314https://repositorio.uniandes.edu.co/bitstreams/a75ffee9-f3bc-4471-a826-9bdec5757d48/download0e21a5a8ab9566cc0ae88fc93083a403MD57CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/694e472d-1120-4a7a-a353-a65833b6181f/download0175ea4a2d4caec4bbcc37e300941108MD521992/69392oai:repositorio.uniandes.edu.co:1992/693922024-12-04 16:54:49.433http://creativecommons.org/licenses/by/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg== |