Strongly minimal reducts of algebraically closed valued fields

In this thesis we prove the following restricted version of Zilber's Trichotomy: Let $K=(K,+,\cdot,v,\Gamma)$ be an algebraically closed valued field and let $(G,\+)$ be a K$-definable group that is either the multiplicative group or contains a finite index subgroup that is $ K$-definably isomo...

Full description

Autores:
Pinzón Palacios, Santiago Iván
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/69392
Acceso en línea:
http://hdl.handle.net/1992/69392
Palabra clave:
ACVF
Zilber's Trichotomy
Valued Fields
Strongly Minimal
Matemáticas
Rights
openAccess
License
Atribución 4.0 Internacional
id UNIANDES2_7161b28d517691088ee8ae9bf3995461
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/69392
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Strongly minimal reducts of algebraically closed valued fields
title Strongly minimal reducts of algebraically closed valued fields
spellingShingle Strongly minimal reducts of algebraically closed valued fields
ACVF
Zilber's Trichotomy
Valued Fields
Strongly Minimal
Matemáticas
title_short Strongly minimal reducts of algebraically closed valued fields
title_full Strongly minimal reducts of algebraically closed valued fields
title_fullStr Strongly minimal reducts of algebraically closed valued fields
title_full_unstemmed Strongly minimal reducts of algebraically closed valued fields
title_sort Strongly minimal reducts of algebraically closed valued fields
dc.creator.fl_str_mv Pinzón Palacios, Santiago Iván
dc.contributor.advisor.none.fl_str_mv Hasson, Assaf
Onshuus Niño, Alf
dc.contributor.author.none.fl_str_mv Pinzón Palacios, Santiago Iván
dc.contributor.jury.none.fl_str_mv Cubides Kovacsics, Pablo
Kowalski, Piotr
Peterzil, Kobi
dc.subject.keyword.none.fl_str_mv ACVF
Zilber's Trichotomy
Valued Fields
Strongly Minimal
topic ACVF
Zilber's Trichotomy
Valued Fields
Strongly Minimal
Matemáticas
dc.subject.themes.es_CO.fl_str_mv Matemáticas
description In this thesis we prove the following restricted version of Zilber's Trichotomy: Let $K=(K,+,\cdot,v,\Gamma)$ be an algebraically closed valued field and let $(G,\+)$ be a K$-definable group that is either the multiplicative group or contains a finite index subgroup that is $ K$-definably isomorphic to a $K$-definable subgroup of $(K,+)$. Then if $\mathcal G=(G,\+,\ldots)$ is a strongly minimal non locally modular structure definable in $ K$ and expanding $(G,\oplus)$, it interprets an infinite field.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-08-08T17:06:01Z
dc.date.available.none.fl_str_mv 2023-08-08T17:06:01Z
dc.date.issued.none.fl_str_mv 2023-08-01
dc.type.es_CO.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv https://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/69392
dc.identifier.doi.none.fl_str_mv 10.57784/1992/69392
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/69392
identifier_str_mv 10.57784/1992/69392
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.relation.references.es_CO.fl_str_mv Shreeram Shankar Abhyankar. Local analytic geometry, volume 14. World Scientific, 2001.
Juan Pablo Acosta. One dimensional commutative groups definable in algebraically closed valued fields and in the pseudo-local fields. arXiv preprint arXiv:2112.00430, 2021.
Toni Annala. B´ezout's theorem. Helsingfors universitet, 2016.
Emil Artin. Geometric algebra. Interscience Publishers, Inc., 1957.
Elisabeth Bouscaren, A Nesin, and A Pillay. The group configuration-after e. hrushovski. The model theory of groups, pages 199-209, 1989.
Benjamin Castle. Restricted trichotomy in characteristic zero. arXiv preprint arXiv:2209.00730, 2022.
Benjamin Castle and Assaf Hasson. Very ampleness in strongly minimal sets. arXiv preprint arXiv:2212.03774, 2022.
Pantelis E Eleftheriou, Assaf Hasson, and Ya'acov Peterzil. Strongly minimal groups in o-minimal structures. Journal of the European Mathematical Society, 23(10):3351-3418, 2021.
Robin Hartshorne. Algebraic geometry, volume 52. Springer Science & Business Media, 2013.
Deirdre Haskell, Ehud Hrushovski, and Dugald Macpherson. Stable domination and independence in algebraically closed valued fields. arXiv preprint math/0511310, 2005.
Jan E Holly. Canonical forms for definable subsets of algebraically closed and real closed valued fields. The Journal of Symbolic Logic, 60(3):843-860, 1995.
Ehud Hrushovski. Contributions to stable model theory. University of California, Berkeley, 1986.
Ehud Hrushovski. A new strongly minimal set. Annals of pure and applied logic, 62(2):147-166, 1993.
Assaf Hasson and Dmitry Sustretov. Incidence systems on cartesian powers of algebraic curves. arXiv preprint arXiv:1702.05554, 2017.
Ehud Hrushovski and Boris Zilber. Zariski geometries. Journal of the American mathematical society, pages 1-56, 1996.
Piotr Kowalski and Serge Randriambololona. Strongly minimal reducts of valued fields. The Journal of Symbolic Logic, 81(2):510-523, 2016.
Juan Pablo Acosta L´opez. One dimensional groups definable in the p-adic numbers. The Journal of Symbolic Logic, 86(2):801-816, 2021.
David Marker. Model theory: an introduction, volume 217. Springer Science & Business Media, 2006.
David Marker. Strongly minimal sets and geometry. In Colloquium'95 (Haifa), pages 191-213, 2017.
Samaria Montenegro, Alf Onshuus, and Pierre Simon. Stabilizers,-generics, and prc fields. Journal of the Institute of Mathematics of Jussieu, 19(3):821-853, 2020.
Evgenia D Rabinovich. Definability of a field in sufficiently rich incidence systems, volume 14. School of Mathematical Sciences, Queen Mary and Westfield College, 1993.
Stan Wagon. The Banach-Tarski Paradox. Number 24. Cambridge University Press, 1993.
dc.rights.license.*.fl_str_mv Atribución 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 85 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Doctorado en Matemáticas
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Matemáticas
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/4f6e055e-8ddb-4ad1-bd71-0b52d744c151/download
https://repositorio.uniandes.edu.co/bitstreams/bce73c26-4d06-4af5-8010-58e335b5fd5a/download
https://repositorio.uniandes.edu.co/bitstreams/a68637b5-0154-4ee3-b320-14d8ff7019ce/download
https://repositorio.uniandes.edu.co/bitstreams/301c6d72-012f-4ab0-ae38-dabb276d011d/download
https://repositorio.uniandes.edu.co/bitstreams/c2566bce-683d-489f-b949-105b3d584c51/download
https://repositorio.uniandes.edu.co/bitstreams/1fc322d4-25c6-4db9-8d02-f84251daa814/download
https://repositorio.uniandes.edu.co/bitstreams/a75ffee9-f3bc-4471-a826-9bdec5757d48/download
https://repositorio.uniandes.edu.co/bitstreams/694e472d-1120-4a7a-a353-a65833b6181f/download
bitstream.checksum.fl_str_mv 5aa5c691a1ffe97abd12c2966efcb8d6
079cedc7e2d53297b2c5dfd7f11397cd
bf794bde3be93e59c7cb8053e51f901a
5f990b9cbfa3a0e2b2c486d49fe3d4bc
a55022f69dfa21667e07653025d20d45
7c229a7eb3bb82c6cb75fee6a1915856
0e21a5a8ab9566cc0ae88fc93083a403
0175ea4a2d4caec4bbcc37e300941108
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1818111961365217280
spelling Atribución 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hasson, AssafOnshuus Niño, Alfvirtual::20915-1Pinzón Palacios, Santiago Iván26597600Cubides Kovacsics, PabloKowalski, PiotrPeterzil, Kobi2023-08-08T17:06:01Z2023-08-08T17:06:01Z2023-08-01http://hdl.handle.net/1992/6939210.57784/1992/69392instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/In this thesis we prove the following restricted version of Zilber's Trichotomy: Let $K=(K,+,\cdot,v,\Gamma)$ be an algebraically closed valued field and let $(G,\+)$ be a K$-definable group that is either the multiplicative group or contains a finite index subgroup that is $ K$-definably isomorphic to a $K$-definable subgroup of $(K,+)$. Then if $\mathcal G=(G,\+,\ldots)$ is a strongly minimal non locally modular structure definable in $ K$ and expanding $(G,\oplus)$, it interprets an infinite field.Doctor en MatemáticasDoctoradoModel TheoryZilbers Trichotomy85 páginasapplication/pdfengUniversidad de los AndesDoctorado en MatemáticasFacultad de CienciasDepartamento de MatemáticasStrongly minimal reducts of algebraically closed valued fieldsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDACVFZilber's TrichotomyValued FieldsStrongly MinimalMatemáticasShreeram Shankar Abhyankar. Local analytic geometry, volume 14. World Scientific, 2001.Juan Pablo Acosta. One dimensional commutative groups definable in algebraically closed valued fields and in the pseudo-local fields. arXiv preprint arXiv:2112.00430, 2021.Toni Annala. B´ezout's theorem. Helsingfors universitet, 2016.Emil Artin. Geometric algebra. Interscience Publishers, Inc., 1957.Elisabeth Bouscaren, A Nesin, and A Pillay. The group configuration-after e. hrushovski. The model theory of groups, pages 199-209, 1989.Benjamin Castle. Restricted trichotomy in characteristic zero. arXiv preprint arXiv:2209.00730, 2022.Benjamin Castle and Assaf Hasson. Very ampleness in strongly minimal sets. arXiv preprint arXiv:2212.03774, 2022.Pantelis E Eleftheriou, Assaf Hasson, and Ya'acov Peterzil. Strongly minimal groups in o-minimal structures. Journal of the European Mathematical Society, 23(10):3351-3418, 2021.Robin Hartshorne. Algebraic geometry, volume 52. Springer Science & Business Media, 2013.Deirdre Haskell, Ehud Hrushovski, and Dugald Macpherson. Stable domination and independence in algebraically closed valued fields. arXiv preprint math/0511310, 2005.Jan E Holly. Canonical forms for definable subsets of algebraically closed and real closed valued fields. The Journal of Symbolic Logic, 60(3):843-860, 1995.Ehud Hrushovski. Contributions to stable model theory. University of California, Berkeley, 1986.Ehud Hrushovski. A new strongly minimal set. Annals of pure and applied logic, 62(2):147-166, 1993.Assaf Hasson and Dmitry Sustretov. Incidence systems on cartesian powers of algebraic curves. arXiv preprint arXiv:1702.05554, 2017.Ehud Hrushovski and Boris Zilber. Zariski geometries. Journal of the American mathematical society, pages 1-56, 1996.Piotr Kowalski and Serge Randriambololona. Strongly minimal reducts of valued fields. The Journal of Symbolic Logic, 81(2):510-523, 2016.Juan Pablo Acosta L´opez. One dimensional groups definable in the p-adic numbers. The Journal of Symbolic Logic, 86(2):801-816, 2021.David Marker. Model theory: an introduction, volume 217. Springer Science & Business Media, 2006.David Marker. Strongly minimal sets and geometry. In Colloquium'95 (Haifa), pages 191-213, 2017.Samaria Montenegro, Alf Onshuus, and Pierre Simon. Stabilizers,-generics, and prc fields. Journal of the Institute of Mathematics of Jussieu, 19(3):821-853, 2020.Evgenia D Rabinovich. Definability of a field in sufficiently rich incidence systems, volume 14. School of Mathematical Sciences, Queen Mary and Westfield College, 1993.Stan Wagon. The Banach-Tarski Paradox. Number 24. Cambridge University Press, 1993.201115695Publicationhttps://scholar.google.es/citations?user=Ov2U9EoAAAAJvirtual::20915-10000-0001-7593-1553virtual::20915-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000246409virtual::20915-15a750db4-a429-4f4f-af11-b70f91dd30eavirtual::20915-15a750db4-a429-4f4f-af11-b70f91dd30eavirtual::20915-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/4f6e055e-8ddb-4ad1-bd71-0b52d744c151/download5aa5c691a1ffe97abd12c2966efcb8d6MD51THUMBNAILTESIS_FootNote_Final (10).pdf.jpgTESIS_FootNote_Final (10).pdf.jpgIM Thumbnailimage/jpeg5107https://repositorio.uniandes.edu.co/bitstreams/bce73c26-4d06-4af5-8010-58e335b5fd5a/download079cedc7e2d53297b2c5dfd7f11397cdMD56autorizacion tesis (1).pdf.jpgautorizacion tesis (1).pdf.jpgIM Thumbnailimage/jpeg15285https://repositorio.uniandes.edu.co/bitstreams/a68637b5-0154-4ee3-b320-14d8ff7019ce/downloadbf794bde3be93e59c7cb8053e51f901aMD58ORIGINALTESIS_FootNote_Final (10).pdfTESIS_FootNote_Final (10).pdfDocumento de Tesis - Doctorado en matemáticasapplication/pdf548556https://repositorio.uniandes.edu.co/bitstreams/301c6d72-012f-4ab0-ae38-dabb276d011d/download5f990b9cbfa3a0e2b2c486d49fe3d4bcMD53autorizacion tesis (1).pdfautorizacion tesis (1).pdfHIDEapplication/pdf82579https://repositorio.uniandes.edu.co/bitstreams/c2566bce-683d-489f-b949-105b3d584c51/downloada55022f69dfa21667e07653025d20d45MD54TEXTTESIS_FootNote_Final (10).pdf.txtTESIS_FootNote_Final (10).pdf.txtExtracted texttext/plain144960https://repositorio.uniandes.edu.co/bitstreams/1fc322d4-25c6-4db9-8d02-f84251daa814/download7c229a7eb3bb82c6cb75fee6a1915856MD55autorizacion tesis (1).pdf.txtautorizacion tesis (1).pdf.txtExtracted texttext/plain1314https://repositorio.uniandes.edu.co/bitstreams/a75ffee9-f3bc-4471-a826-9bdec5757d48/download0e21a5a8ab9566cc0ae88fc93083a403MD57CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/694e472d-1120-4a7a-a353-a65833b6181f/download0175ea4a2d4caec4bbcc37e300941108MD521992/69392oai:repositorio.uniandes.edu.co:1992/693922024-12-04 16:54:49.433http://creativecommons.org/licenses/by/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==