Strongly minimal reducts of algebraically closed valued fields

In this thesis we prove the following restricted version of Zilber's Trichotomy: Let $K=(K,+,\cdot,v,\Gamma)$ be an algebraically closed valued field and let $(G,\+)$ be a K$-definable group that is either the multiplicative group or contains a finite index subgroup that is $ K$-definably isomo...

Full description

Autores:
Pinzón Palacios, Santiago Iván
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/69392
Acceso en línea:
http://hdl.handle.net/1992/69392
Palabra clave:
ACVF
Zilber's Trichotomy
Valued Fields
Strongly Minimal
Matemáticas
Rights
openAccess
License
Atribución 4.0 Internacional
Description
Summary:In this thesis we prove the following restricted version of Zilber's Trichotomy: Let $K=(K,+,\cdot,v,\Gamma)$ be an algebraically closed valued field and let $(G,\+)$ be a K$-definable group that is either the multiplicative group or contains a finite index subgroup that is $ K$-definably isomorphic to a $K$-definable subgroup of $(K,+)$. Then if $\mathcal G=(G,\+,\ldots)$ is a strongly minimal non locally modular structure definable in $ K$ and expanding $(G,\oplus)$, it interprets an infinite field.