Optimal intervention policy for projects with growing stochastic demand

Developers of projects with a fixed capacity and an increasing demand over time will be interested in an optimal decision-making policy on when to increase capacity and by how much. Demand, X, is an increasing function with a stochastic diffusion term (Brownian Motion) and capacity, K, is a piece-wi...

Full description

Autores:
Wiesner Urbina, Federico
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/74755
Acceso en línea:
https://hdl.handle.net/1992/74755
Palabra clave:
Stochastic
Quasi-Variational Inequalities
Optimal Policy
Matemáticas
Ingeniería
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNIANDES2_6e628e63d232cabd7275fdb4110337ab
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/74755
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Optimal intervention policy for projects with growing stochastic demand
dc.title.alternative.spa.fl_str_mv Política óptima de inversión para proyectos con demanda estocástica creciente
title Optimal intervention policy for projects with growing stochastic demand
spellingShingle Optimal intervention policy for projects with growing stochastic demand
Stochastic
Quasi-Variational Inequalities
Optimal Policy
Matemáticas
Ingeniería
title_short Optimal intervention policy for projects with growing stochastic demand
title_full Optimal intervention policy for projects with growing stochastic demand
title_fullStr Optimal intervention policy for projects with growing stochastic demand
title_full_unstemmed Optimal intervention policy for projects with growing stochastic demand
title_sort Optimal intervention policy for projects with growing stochastic demand
dc.creator.fl_str_mv Wiesner Urbina, Federico
dc.contributor.advisor.none.fl_str_mv Sánchez Silva, Edgar Mauricio
Junca Peláez, Mauricio José
dc.contributor.author.none.fl_str_mv Wiesner Urbina, Federico
dc.contributor.jury.none.fl_str_mv Serrano Perdomo, Rafael Antonio
dc.subject.keyword.eng.fl_str_mv Stochastic
Quasi-Variational Inequalities
Optimal Policy
topic Stochastic
Quasi-Variational Inequalities
Optimal Policy
Matemáticas
Ingeniería
dc.subject.themes.none.fl_str_mv Matemáticas
Ingeniería
description Developers of projects with a fixed capacity and an increasing demand over time will be interested in an optimal decision-making policy on when to increase capacity and by how much. Demand, X, is an increasing function with a stochastic diffusion term (Brownian Motion) and capacity, K, is a piece-wise constant function. The difference K−X can be seen as an inventory: surplus capacity are the available units. This project seeks to analytically prove that an (s, S) policy -whereby inventory is always brought up to a level S every time that it drops under s- is an optimal decision policy, a solution to the Stochastic Control Problem. Ito Calculus is used to state Quasi-Variational Inequalities equivalent to the Hamilton-Jacobi-Bellman equation, while Green Functions and Real Analysis are used to prove the existence of solutions. Moreover, the value of s is proven to be unique. For the second part, a numerically based method using Finite Differences and Iterative Methods will be used to estimate the values of s and S, given parameters to model capacity and demand.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-29T18:04:42Z
dc.date.available.none.fl_str_mv 2024-07-29T18:04:42Z
dc.date.issued.none.fl_str_mv 2024-07-29
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/74755
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/74755
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv J. R. Yzer, W. E. Walker, V. A. W. J. Marchau, and J. H. Kwakkel, “Dynamic adaptive policies: A way to improve the cost-benefit performance of megaprojects?” Environment and Planning B: Planning and Design, 2014.
I. Clark, “Level of service f, is it really as bad as it gets?” Transportation Group New Zealand, 2008.
J. H. Saleh, G. Mark, and N. C. Jordan, “Flexibility: A multi-disciplinary literature review and a research agenda for designing flexible engineering systems”, Journal of Engineering Design, 2009.
M. Amran and N. Kulatikala, Real Options. Harvard Business School Press, 1998.
M. A. Cardin, “Enabling flexibility in engineering systems: A taxonomy of procedures and a design framework,” Journal of Mechanical Design, 2014.
M. Junca and M. Sánchez-Silva, “Optimal maintenance policy for a compound poisson shock process,” IEEE Transactions on Reliability, 2018.
Merriam-Webster, Merriam-Webster English Dictionary. 2024.
F. W. Harris, Operations and Cost (Factory Management Series). A. W. Shaw, 1915.
K. Siegrist, Random: Probability, mathematical statistics, stochastic processes, https://www.randomservices.org/random/index.html.
H. B. Wolfe, “A model for control of style merchandise,” Industrial Management Review, 1968.
H. Schmidli, Stochastic Control in Insurance. Springer, 2008.
A. Bensoussan, Dynamic Programming and Inventory Control. IOS Press, 2011.
A. Bensoussan and J. L. Lions, Impulse Control and Quasi-Variational Inequalities. Gauthier-Villars, 1984.
Y. Yoo, Stochastic calculus and black-scholes model, https://math.uchicago.edu/~may/REU2017/REUPapers/Yoo.pdf.
S. P. Lalley, Stochastic differential equations, https://galton.uchicago.edu/~lalley/Courses/385/SDE.pdf.
J. Liu, K. F. C. Yiu, and A. Bensoussan, “Optimal inventory control with jump diffusion and nonlinear dynamics in the demand,” SIAM Journal on Control and Optimization, 2018.
P. D. Lax, “On the existence of green’s function,” Proceedings of the AMS, 1951.
J. Liu, K. Yiu, and A. Bensoussan, “Optimality of (s, S) policies with nonlinear processes,” Discrete and Continuous Dynamical Systems - Series B, vol. 22, pp. 161–185, Dec. 2016. doi: 10.3934/dcdsb.2017008.25
V. Pando, L. A. San-Jose, and J. Sicilia, “An inventory model with stock dependent demand rate and maximization of the return on investment,” Mathematics (MDPI), 2021.
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 26 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Matemáticas
Ingeniería Civil
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
Facultad de Ingeniería
dc.publisher.department.none.fl_str_mv Departamento de Matemáticas
Departamento de Ingeniería Civil y Ambiental
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/fded991e-9531-4f49-bbff-208113377c57/download
https://repositorio.uniandes.edu.co/bitstreams/23cbbfe9-fb67-4dda-8f14-849fc4a1141c/download
https://repositorio.uniandes.edu.co/bitstreams/50cc8084-229c-4ee4-8527-30f79c61995b/download
https://repositorio.uniandes.edu.co/bitstreams/727e9640-70ac-4de3-b86a-9450372855db/download
https://repositorio.uniandes.edu.co/bitstreams/873d0e2b-5784-43dc-807b-db4b78495414/download
https://repositorio.uniandes.edu.co/bitstreams/6cccfdd0-7cdc-4cf6-b683-c18046d5988f/download
https://repositorio.uniandes.edu.co/bitstreams/de1ca5a1-533e-4192-b113-c725b836c458/download
https://repositorio.uniandes.edu.co/bitstreams/28364951-f53d-4e85-9fa1-5b10affeb5b7/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
ae9e573a68e7f92501b6913cc846c39f
c77e3a95df84b5d96f46c84000e1feec
47c8f39b053fa6452327fdbffd6e91b1
ec5b0c89fe1d721f8e2af193a8fb23b9
8fce43edd2af4b3dfeb63683020e7e6b
de3932fd5b5fd7cfa987bf7301a8fb98
777168aba6437fbca9c7ba2e5a315ec0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133903839789056
spelling Sánchez Silva, Edgar Mauriciovirtual::19338-1Junca Peláez, Mauricio Josévirtual::19339-1Wiesner Urbina, FedericoSerrano Perdomo, Rafael Antonio2024-07-29T18:04:42Z2024-07-29T18:04:42Z2024-07-29https://hdl.handle.net/1992/74755instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Developers of projects with a fixed capacity and an increasing demand over time will be interested in an optimal decision-making policy on when to increase capacity and by how much. Demand, X, is an increasing function with a stochastic diffusion term (Brownian Motion) and capacity, K, is a piece-wise constant function. The difference K−X can be seen as an inventory: surplus capacity are the available units. This project seeks to analytically prove that an (s, S) policy -whereby inventory is always brought up to a level S every time that it drops under s- is an optimal decision policy, a solution to the Stochastic Control Problem. Ito Calculus is used to state Quasi-Variational Inequalities equivalent to the Hamilton-Jacobi-Bellman equation, while Green Functions and Real Analysis are used to prove the existence of solutions. Moreover, the value of s is proven to be unique. For the second part, a numerically based method using Finite Differences and Iterative Methods will be used to estimate the values of s and S, given parameters to model capacity and demand.Pregrado26 páginasapplication/pdfengUniversidad de los AndesMatemáticasIngeniería CivilFacultad de CienciasFacultad de IngenieríaDepartamento de MatemáticasDepartamento de Ingeniería Civil y AmbientalAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Optimal intervention policy for projects with growing stochastic demandPolítica óptima de inversión para proyectos con demanda estocástica crecienteTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPStochasticQuasi-Variational InequalitiesOptimal PolicyMatemáticasIngenieríaJ. R. Yzer, W. E. Walker, V. A. W. J. Marchau, and J. H. Kwakkel, “Dynamic adaptive policies: A way to improve the cost-benefit performance of megaprojects?” Environment and Planning B: Planning and Design, 2014.I. Clark, “Level of service f, is it really as bad as it gets?” Transportation Group New Zealand, 2008.J. H. Saleh, G. Mark, and N. C. Jordan, “Flexibility: A multi-disciplinary literature review and a research agenda for designing flexible engineering systems”, Journal of Engineering Design, 2009.M. Amran and N. Kulatikala, Real Options. Harvard Business School Press, 1998.M. A. Cardin, “Enabling flexibility in engineering systems: A taxonomy of procedures and a design framework,” Journal of Mechanical Design, 2014.M. Junca and M. Sánchez-Silva, “Optimal maintenance policy for a compound poisson shock process,” IEEE Transactions on Reliability, 2018.Merriam-Webster, Merriam-Webster English Dictionary. 2024.F. W. Harris, Operations and Cost (Factory Management Series). A. W. Shaw, 1915.K. Siegrist, Random: Probability, mathematical statistics, stochastic processes, https://www.randomservices.org/random/index.html.H. B. Wolfe, “A model for control of style merchandise,” Industrial Management Review, 1968.H. Schmidli, Stochastic Control in Insurance. Springer, 2008.A. Bensoussan, Dynamic Programming and Inventory Control. IOS Press, 2011.A. Bensoussan and J. L. Lions, Impulse Control and Quasi-Variational Inequalities. Gauthier-Villars, 1984.Y. Yoo, Stochastic calculus and black-scholes model, https://math.uchicago.edu/~may/REU2017/REUPapers/Yoo.pdf.S. P. Lalley, Stochastic differential equations, https://galton.uchicago.edu/~lalley/Courses/385/SDE.pdf.J. Liu, K. F. C. Yiu, and A. Bensoussan, “Optimal inventory control with jump diffusion and nonlinear dynamics in the demand,” SIAM Journal on Control and Optimization, 2018.P. D. Lax, “On the existence of green’s function,” Proceedings of the AMS, 1951.J. Liu, K. Yiu, and A. Bensoussan, “Optimality of (s, S) policies with nonlinear processes,” Discrete and Continuous Dynamical Systems - Series B, vol. 22, pp. 161–185, Dec. 2016. doi: 10.3934/dcdsb.2017008.25V. Pando, L. A. San-Jose, and J. Sicilia, “An inventory model with stock dependent demand rate and maximization of the return on investment,” Mathematics (MDPI), 2021.201823064Publicationhttps://scholar.google.es/citations?user=0qgd0wkAAAAJvirtual::19338-1https://scholar.google.es/citations?user=CoIlxH0AAAAJhttps://scholar.google.es/citations?user=CoIlxH0AAAAJvirtual::19339-10000-0002-3626-6690virtual::19338-10000-0002-5541-07580000-0002-5541-0758virtual::19339-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000076813virtual::19338-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000155861https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000155861virtual::19339-124c11e3d-0ed1-4dc6-8d0f-47041642d01fvirtual::19338-11e5c3dc6-4d9c-406b-9f99-5c91523b7e49virtual::19339-11e5c3dc6-4d9c-406b-9f99-5c91523b7e4924c11e3d-0ed1-4dc6-8d0f-47041642d01fvirtual::19338-11e5c3dc6-4d9c-406b-9f99-5c91523b7e49virtual::19339-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/fded991e-9531-4f49-bbff-208113377c57/download4460e5956bc1d1639be9ae6146a50347MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/23cbbfe9-fb67-4dda-8f14-849fc4a1141c/downloadae9e573a68e7f92501b6913cc846c39fMD52ORIGINALautorizacion tesis MSW.pdfautorizacion tesis MSW.pdfHIDEapplication/pdf352794https://repositorio.uniandes.edu.co/bitstreams/50cc8084-229c-4ee4-8527-30f79c61995b/downloadc77e3a95df84b5d96f46c84000e1feecMD54Optimal intervention policy for projects with growing stochastic demand.pdfOptimal intervention policy for projects with growing stochastic demand.pdfapplication/pdf349988https://repositorio.uniandes.edu.co/bitstreams/727e9640-70ac-4de3-b86a-9450372855db/download47c8f39b053fa6452327fdbffd6e91b1MD55TEXTautorizacion tesis MSW.pdf.txtautorizacion tesis MSW.pdf.txtExtracted texttext/plain2053https://repositorio.uniandes.edu.co/bitstreams/873d0e2b-5784-43dc-807b-db4b78495414/downloadec5b0c89fe1d721f8e2af193a8fb23b9MD56Optimal intervention policy for projects with growing stochastic demand.pdf.txtOptimal intervention policy for projects with growing stochastic demand.pdf.txtExtracted texttext/plain51068https://repositorio.uniandes.edu.co/bitstreams/6cccfdd0-7cdc-4cf6-b683-c18046d5988f/download8fce43edd2af4b3dfeb63683020e7e6bMD58THUMBNAILautorizacion tesis MSW.pdf.jpgautorizacion tesis MSW.pdf.jpgGenerated Thumbnailimage/jpeg11160https://repositorio.uniandes.edu.co/bitstreams/de1ca5a1-533e-4192-b113-c725b836c458/downloadde3932fd5b5fd7cfa987bf7301a8fb98MD57Optimal intervention policy for projects with growing stochastic demand.pdf.jpgOptimal intervention policy for projects with growing stochastic demand.pdf.jpgGenerated Thumbnailimage/jpeg7144https://repositorio.uniandes.edu.co/bitstreams/28364951-f53d-4e85-9fa1-5b10affeb5b7/download777168aba6437fbca9c7ba2e5a315ec0MD591992/74755oai:repositorio.uniandes.edu.co:1992/747552024-09-12 15:52:57.266http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K