A Machine learning approach for forecasting financial bubbles
The goal of this document is to categorically foresee bubble like behavior in stocks. In order to accomplish this a wide variety of libraries, including Google¿s renowned Tensorflow and a well founded and updated stock market dataset were be used. The data gathering process for this project was with...
- Autores:
-
Londoño Bohórquez, Daniel Santiago
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2022
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/58811
- Acceso en línea:
- http://hdl.handle.net/1992/58811
- Palabra clave:
- Machine Learning
Ingeniería
- Rights
- openAccess
- License
- Atribución 4.0 Internacional
id |
UNIANDES2_6e4e66cf79dd22551523abd8871b1492 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/58811 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.none.fl_str_mv |
A Machine learning approach for forecasting financial bubbles |
dc.title.alternative.none.fl_str_mv |
Machine Learning como aproximacion para predecir burbujas financieras |
title |
A Machine learning approach for forecasting financial bubbles |
spellingShingle |
A Machine learning approach for forecasting financial bubbles Machine Learning Ingeniería |
title_short |
A Machine learning approach for forecasting financial bubbles |
title_full |
A Machine learning approach for forecasting financial bubbles |
title_fullStr |
A Machine learning approach for forecasting financial bubbles |
title_full_unstemmed |
A Machine learning approach for forecasting financial bubbles |
title_sort |
A Machine learning approach for forecasting financial bubbles |
dc.creator.fl_str_mv |
Londoño Bohórquez, Daniel Santiago |
dc.contributor.advisor.none.fl_str_mv |
Takahashi Rodríguez, Silvia |
dc.contributor.author.none.fl_str_mv |
Londoño Bohórquez, Daniel Santiago |
dc.subject.keyword.none.fl_str_mv |
Machine Learning |
topic |
Machine Learning Ingeniería |
dc.subject.themes.es_CO.fl_str_mv |
Ingeniería |
description |
The goal of this document is to categorically foresee bubble like behavior in stocks. In order to accomplish this a wide variety of libraries, including Google¿s renowned Tensorflow and a well founded and updated stock market dataset were be used. The data gathering process for this project was without a doubt the biggest challenge of all. This is basically due to the fact that we are studying dead companies. The 2001 Dotcom Crash forced hundreds of companies file for chapter 11, forcing their financial data to become unavailable, even in large databases such as Bloomberg¿s or the SEC¿s. The final model is optimal when it comes evaluate bubble behavior in securities. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-07-13T21:21:49Z |
dc.date.available.none.fl_str_mv |
2022-07-13T21:21:49Z |
dc.date.issued.none.fl_str_mv |
2022-07-09 |
dc.type.es_CO.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.es_CO.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/58811 |
dc.identifier.instname.es_CO.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.es_CO.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.es_CO.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/58811 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.rights.license.spa.fl_str_mv |
Atribución 4.0 Internacional |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
20 paginas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Ingeniería de Sistemas y Computación |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Ingeniería Sistemas y Computación |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/20ca87b0-e03f-4433-9529-870a18a2586b/download https://repositorio.uniandes.edu.co/bitstreams/6becf167-a426-42d0-9369-ee2612749c71/download https://repositorio.uniandes.edu.co/bitstreams/ac68cb47-2c22-407c-9bb1-31652a3ed03f/download https://repositorio.uniandes.edu.co/bitstreams/b6f5ece7-dd7d-4e05-b304-7b69e6c92998/download https://repositorio.uniandes.edu.co/bitstreams/fe8caba6-22de-4764-b02e-9281e8e8322c/download https://repositorio.uniandes.edu.co/bitstreams/d9c8818d-eafe-48cc-b8c8-379ea9bb5228/download https://repositorio.uniandes.edu.co/bitstreams/ba19f0b3-a3c9-448e-b9c6-a6560afd7c65/download https://repositorio.uniandes.edu.co/bitstreams/4724a8c9-e2fb-40ef-83a5-87fcae30f132/download |
bitstream.checksum.fl_str_mv |
5aa5c691a1ffe97abd12c2966efcb8d6 e23e7d1e327f8b6feb6a0072d6e2dc68 bc905cc5fde7dea5bf3ddd7f2dfb5ed6 0175ea4a2d4caec4bbcc37e300941108 02c84be78d7989ade95cb1ce7f29b06c 4491fe1afb58beaaef41a73cf7ff2e27 4ab7527a4c423c8431d0732cd794a8a3 82ced6a61167e6251fb1d0725b3ec72b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812134028162105344 |
spelling |
Atribución 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Takahashi Rodríguez, Silviavirtual::14398-1Londoño Bohórquez, Daniel Santiago2c5ebb74-bbbe-4075-a0da-d827eede32c26002022-07-13T21:21:49Z2022-07-13T21:21:49Z2022-07-09http://hdl.handle.net/1992/58811instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The goal of this document is to categorically foresee bubble like behavior in stocks. In order to accomplish this a wide variety of libraries, including Google¿s renowned Tensorflow and a well founded and updated stock market dataset were be used. The data gathering process for this project was without a doubt the biggest challenge of all. This is basically due to the fact that we are studying dead companies. The 2001 Dotcom Crash forced hundreds of companies file for chapter 11, forcing their financial data to become unavailable, even in large databases such as Bloomberg¿s or the SEC¿s. The final model is optimal when it comes evaluate bubble behavior in securities.Ingeniero de Sistemas y ComputaciónPregrado20 paginasapplication/pdfengUniversidad de los AndesIngeniería de Sistemas y ComputaciónFacultad de IngenieríaDepartamento de Ingeniería Sistemas y ComputaciónA Machine learning approach for forecasting financial bubblesMachine Learning como aproximacion para predecir burbujas financierasTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPMachine LearningIngeniería201821363Publicationhttps://scholar.google.es/citations?user=x7gjZ04AAAAJvirtual::14398-10000-0001-7971-8979virtual::14398-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000143898virtual::14398-17ab9a4e1-60f0-4e06-936b-39f2bf93d8a0virtual::14398-17ab9a4e1-60f0-4e06-936b-39f2bf93d8a0virtual::14398-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/20ca87b0-e03f-4433-9529-870a18a2586b/download5aa5c691a1ffe97abd12c2966efcb8d6MD51ORIGINALSenior Thesis Final Document (3).pdfSenior Thesis Final Document (3).pdfTrabajo de Gradoapplication/pdf1893849https://repositorio.uniandes.edu.co/bitstreams/6becf167-a426-42d0-9369-ee2612749c71/downloade23e7d1e327f8b6feb6a0072d6e2dc68MD53documento_requerido.pdfdocumento_requerido.pdfHIDEapplication/pdf235524https://repositorio.uniandes.edu.co/bitstreams/ac68cb47-2c22-407c-9bb1-31652a3ed03f/downloadbc905cc5fde7dea5bf3ddd7f2dfb5ed6MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/b6f5ece7-dd7d-4e05-b304-7b69e6c92998/download0175ea4a2d4caec4bbcc37e300941108MD52TEXTSenior Thesis Final Document (3).pdf.txtSenior Thesis Final Document (3).pdf.txtExtracted texttext/plain29673https://repositorio.uniandes.edu.co/bitstreams/fe8caba6-22de-4764-b02e-9281e8e8322c/download02c84be78d7989ade95cb1ce7f29b06cMD55documento_requerido.pdf.txtdocumento_requerido.pdf.txtExtracted texttext/plain1163https://repositorio.uniandes.edu.co/bitstreams/d9c8818d-eafe-48cc-b8c8-379ea9bb5228/download4491fe1afb58beaaef41a73cf7ff2e27MD57THUMBNAILSenior Thesis Final Document (3).pdf.jpgSenior Thesis Final Document (3).pdf.jpgIM Thumbnailimage/jpeg5179https://repositorio.uniandes.edu.co/bitstreams/ba19f0b3-a3c9-448e-b9c6-a6560afd7c65/download4ab7527a4c423c8431d0732cd794a8a3MD56documento_requerido.pdf.jpgdocumento_requerido.pdf.jpgIM Thumbnailimage/jpeg15929https://repositorio.uniandes.edu.co/bitstreams/4724a8c9-e2fb-40ef-83a5-87fcae30f132/download82ced6a61167e6251fb1d0725b3ec72bMD581992/58811oai:repositorio.uniandes.edu.co:1992/588112024-03-13 15:11:30.588http://creativecommons.org/licenses/by/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg== |