A Machine learning approach for forecasting financial bubbles

The goal of this document is to categorically foresee bubble like behavior in stocks. In order to accomplish this a wide variety of libraries, including Google¿s renowned Tensorflow and a well founded and updated stock market dataset were be used. The data gathering process for this project was with...

Full description

Autores:
Londoño Bohórquez, Daniel Santiago
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/58811
Acceso en línea:
http://hdl.handle.net/1992/58811
Palabra clave:
Machine Learning
Ingeniería
Rights
openAccess
License
Atribución 4.0 Internacional
id UNIANDES2_6e4e66cf79dd22551523abd8871b1492
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/58811
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv A Machine learning approach for forecasting financial bubbles
dc.title.alternative.none.fl_str_mv Machine Learning como aproximacion para predecir burbujas financieras
title A Machine learning approach for forecasting financial bubbles
spellingShingle A Machine learning approach for forecasting financial bubbles
Machine Learning
Ingeniería
title_short A Machine learning approach for forecasting financial bubbles
title_full A Machine learning approach for forecasting financial bubbles
title_fullStr A Machine learning approach for forecasting financial bubbles
title_full_unstemmed A Machine learning approach for forecasting financial bubbles
title_sort A Machine learning approach for forecasting financial bubbles
dc.creator.fl_str_mv Londoño Bohórquez, Daniel Santiago
dc.contributor.advisor.none.fl_str_mv Takahashi Rodríguez, Silvia
dc.contributor.author.none.fl_str_mv Londoño Bohórquez, Daniel Santiago
dc.subject.keyword.none.fl_str_mv Machine Learning
topic Machine Learning
Ingeniería
dc.subject.themes.es_CO.fl_str_mv Ingeniería
description The goal of this document is to categorically foresee bubble like behavior in stocks. In order to accomplish this a wide variety of libraries, including Google¿s renowned Tensorflow and a well founded and updated stock market dataset were be used. The data gathering process for this project was without a doubt the biggest challenge of all. This is basically due to the fact that we are studying dead companies. The 2001 Dotcom Crash forced hundreds of companies file for chapter 11, forcing their financial data to become unavailable, even in large databases such as Bloomberg¿s or the SEC¿s. The final model is optimal when it comes evaluate bubble behavior in securities.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-13T21:21:49Z
dc.date.available.none.fl_str_mv 2022-07-13T21:21:49Z
dc.date.issued.none.fl_str_mv 2022-07-09
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/58811
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/58811
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.license.spa.fl_str_mv Atribución 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 20 paginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Ingeniería de Sistemas y Computación
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ingeniería
dc.publisher.department.es_CO.fl_str_mv Departamento de Ingeniería Sistemas y Computación
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/20ca87b0-e03f-4433-9529-870a18a2586b/download
https://repositorio.uniandes.edu.co/bitstreams/6becf167-a426-42d0-9369-ee2612749c71/download
https://repositorio.uniandes.edu.co/bitstreams/ac68cb47-2c22-407c-9bb1-31652a3ed03f/download
https://repositorio.uniandes.edu.co/bitstreams/b6f5ece7-dd7d-4e05-b304-7b69e6c92998/download
https://repositorio.uniandes.edu.co/bitstreams/fe8caba6-22de-4764-b02e-9281e8e8322c/download
https://repositorio.uniandes.edu.co/bitstreams/d9c8818d-eafe-48cc-b8c8-379ea9bb5228/download
https://repositorio.uniandes.edu.co/bitstreams/ba19f0b3-a3c9-448e-b9c6-a6560afd7c65/download
https://repositorio.uniandes.edu.co/bitstreams/4724a8c9-e2fb-40ef-83a5-87fcae30f132/download
bitstream.checksum.fl_str_mv 5aa5c691a1ffe97abd12c2966efcb8d6
e23e7d1e327f8b6feb6a0072d6e2dc68
bc905cc5fde7dea5bf3ddd7f2dfb5ed6
0175ea4a2d4caec4bbcc37e300941108
02c84be78d7989ade95cb1ce7f29b06c
4491fe1afb58beaaef41a73cf7ff2e27
4ab7527a4c423c8431d0732cd794a8a3
82ced6a61167e6251fb1d0725b3ec72b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134028162105344
spelling Atribución 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Takahashi Rodríguez, Silviavirtual::14398-1Londoño Bohórquez, Daniel Santiago2c5ebb74-bbbe-4075-a0da-d827eede32c26002022-07-13T21:21:49Z2022-07-13T21:21:49Z2022-07-09http://hdl.handle.net/1992/58811instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The goal of this document is to categorically foresee bubble like behavior in stocks. In order to accomplish this a wide variety of libraries, including Google¿s renowned Tensorflow and a well founded and updated stock market dataset were be used. The data gathering process for this project was without a doubt the biggest challenge of all. This is basically due to the fact that we are studying dead companies. The 2001 Dotcom Crash forced hundreds of companies file for chapter 11, forcing their financial data to become unavailable, even in large databases such as Bloomberg¿s or the SEC¿s. The final model is optimal when it comes evaluate bubble behavior in securities.Ingeniero de Sistemas y ComputaciónPregrado20 paginasapplication/pdfengUniversidad de los AndesIngeniería de Sistemas y ComputaciónFacultad de IngenieríaDepartamento de Ingeniería Sistemas y ComputaciónA Machine learning approach for forecasting financial bubblesMachine Learning como aproximacion para predecir burbujas financierasTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPMachine LearningIngeniería201821363Publicationhttps://scholar.google.es/citations?user=x7gjZ04AAAAJvirtual::14398-10000-0001-7971-8979virtual::14398-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000143898virtual::14398-17ab9a4e1-60f0-4e06-936b-39f2bf93d8a0virtual::14398-17ab9a4e1-60f0-4e06-936b-39f2bf93d8a0virtual::14398-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/20ca87b0-e03f-4433-9529-870a18a2586b/download5aa5c691a1ffe97abd12c2966efcb8d6MD51ORIGINALSenior Thesis Final Document (3).pdfSenior Thesis Final Document (3).pdfTrabajo de Gradoapplication/pdf1893849https://repositorio.uniandes.edu.co/bitstreams/6becf167-a426-42d0-9369-ee2612749c71/downloade23e7d1e327f8b6feb6a0072d6e2dc68MD53documento_requerido.pdfdocumento_requerido.pdfHIDEapplication/pdf235524https://repositorio.uniandes.edu.co/bitstreams/ac68cb47-2c22-407c-9bb1-31652a3ed03f/downloadbc905cc5fde7dea5bf3ddd7f2dfb5ed6MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/b6f5ece7-dd7d-4e05-b304-7b69e6c92998/download0175ea4a2d4caec4bbcc37e300941108MD52TEXTSenior Thesis Final Document (3).pdf.txtSenior Thesis Final Document (3).pdf.txtExtracted texttext/plain29673https://repositorio.uniandes.edu.co/bitstreams/fe8caba6-22de-4764-b02e-9281e8e8322c/download02c84be78d7989ade95cb1ce7f29b06cMD55documento_requerido.pdf.txtdocumento_requerido.pdf.txtExtracted texttext/plain1163https://repositorio.uniandes.edu.co/bitstreams/d9c8818d-eafe-48cc-b8c8-379ea9bb5228/download4491fe1afb58beaaef41a73cf7ff2e27MD57THUMBNAILSenior Thesis Final Document (3).pdf.jpgSenior Thesis Final Document (3).pdf.jpgIM Thumbnailimage/jpeg5179https://repositorio.uniandes.edu.co/bitstreams/ba19f0b3-a3c9-448e-b9c6-a6560afd7c65/download4ab7527a4c423c8431d0732cd794a8a3MD56documento_requerido.pdf.jpgdocumento_requerido.pdf.jpgIM Thumbnailimage/jpeg15929https://repositorio.uniandes.edu.co/bitstreams/4724a8c9-e2fb-40ef-83a5-87fcae30f132/download82ced6a61167e6251fb1d0725b3ec72bMD581992/58811oai:repositorio.uniandes.edu.co:1992/588112024-03-13 15:11:30.588http://creativecommons.org/licenses/by/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==