Dual-Modality Transformer-Based Approach for Viral Protein Classification Integrating Protein Language Models and 3Di FASTA Representations

Viruses significantly impact ecosystems by influencing microbial diversity and facilitating genetic exchange, but their genomes remain poorly annotated. Accurate viral genome annotation is challenging due to limited viral protein representation in databases and rapid sequence divergence. We present...

Full description

Autores:
Puentes Mozo, Juanita
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/74920
Acceso en línea:
https://hdl.handle.net/1992/74920
Palabra clave:
Phage protein classification
Multi-modality approach
Viral proteins
Transformer models
Deep learning
Artificial intelligence
PHROGs database
PHROG-function prediction
Transfer learning in virology
Microbiología
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNIANDES2_6cd6305c7d07f4b4cbb33014f6a7ab0a
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/74920
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Dual-Modality Transformer-Based Approach for Viral Protein Classification Integrating Protein Language Models and 3Di FASTA Representations
title Dual-Modality Transformer-Based Approach for Viral Protein Classification Integrating Protein Language Models and 3Di FASTA Representations
spellingShingle Dual-Modality Transformer-Based Approach for Viral Protein Classification Integrating Protein Language Models and 3Di FASTA Representations
Phage protein classification
Multi-modality approach
Viral proteins
Transformer models
Deep learning
Artificial intelligence
PHROGs database
PHROG-function prediction
Transfer learning in virology
Microbiología
title_short Dual-Modality Transformer-Based Approach for Viral Protein Classification Integrating Protein Language Models and 3Di FASTA Representations
title_full Dual-Modality Transformer-Based Approach for Viral Protein Classification Integrating Protein Language Models and 3Di FASTA Representations
title_fullStr Dual-Modality Transformer-Based Approach for Viral Protein Classification Integrating Protein Language Models and 3Di FASTA Representations
title_full_unstemmed Dual-Modality Transformer-Based Approach for Viral Protein Classification Integrating Protein Language Models and 3Di FASTA Representations
title_sort Dual-Modality Transformer-Based Approach for Viral Protein Classification Integrating Protein Language Models and 3Di FASTA Representations
dc.creator.fl_str_mv Puentes Mozo, Juanita
dc.contributor.advisor.none.fl_str_mv García Botero, Camilo
Reyes Muñoz, Alejandro
dc.contributor.author.none.fl_str_mv Puentes Mozo, Juanita
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ciencias::Biología Computacional y Ecología Microbiana
dc.subject.keyword.eng.fl_str_mv Phage protein classification
Multi-modality approach
Viral proteins
Transformer models
Deep learning
Artificial intelligence
PHROGs database
PHROG-function prediction
Transfer learning in virology
topic Phage protein classification
Multi-modality approach
Viral proteins
Transformer models
Deep learning
Artificial intelligence
PHROGs database
PHROG-function prediction
Transfer learning in virology
Microbiología
dc.subject.themes.none.fl_str_mv Microbiología
description Viruses significantly impact ecosystems by influencing microbial diversity and facilitating genetic exchange, but their genomes remain poorly annotated. Accurate viral genome annotation is challenging due to limited viral protein representation in databases and rapid sequence divergence. We present a novel approach for viral protein classification by integrating text embeddings from protein language models (pLMs) and visual features from 3Di FASTA representations using transformer models. Leveraging pre-trained models such as ProteinBERT, ProteinBFD, and ESM, we performed a series of viral protein classification experiments at two levels: category level (9 classes) and PHROGs family level (1159 classes). Our model achieved superior results with PHROGs labels, attaining precision, recall, and F-score values of 0.784, 0.789, and 0.786, respectively, at the category level. The integration of 3Di image features with FASTA sequences further improved classification accuracy, enhancing true positive rates across most classes. These findings highlight the importance of accurate functional annotations and demonstrate the potential of transformer-based models in viral protein classification. The results also suggest that homology-based labels, such as those used by Pharokka, may introduce inconsistencies, warranting further investigation. Our dual-modality approach provides a robust framework for future research, promoting more precise and comprehensive protein classification methodologies.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-08-02T18:46:45Z
dc.date.available.none.fl_str_mv 2024-08-02T18:46:45Z
dc.date.issued.none.fl_str_mv 2024-08-02
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/74920
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/74920
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G. R., Wang, J., Cong, Q., Kinch, L. N., Schaeffer, R. D., et al. (2021). Accurate prediction of protein structures and interactions using a three-track neural network. Science, 373(6557), 871–876. Bebis, G., & Georgiopoulos, M. (1994). Feed-forward neural networks. Ieee Potentials, 13(4), 27–31. Bouras, G., Nepal, R., Houtak, G., Psaltis, A. J., Wormald, P.-J., & Vreugde, S. (2023). Pharokka: A fast scalable bacteriophage annotation tool. Bioinformatics, 39(1), btac776. Brandes, N., Ofer, D., Peleg, Y., Rappoport, N., & Linial, M. (2022). Proteinbert: A universal deep-learning model of protein sequence and function. Bioinformatics, 38(8), 2102–2110. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners. Advances in neural information processing systems, 33, 1877–1901. Câmara, G. B., Coutinho, M. G., Silva, L. M. d., Gadelha, W. V. d. N., Torquato, M. F., Barbosa, R. d. M., & Fernandes, M. A. (2022). Convolutional neural network applied to sars-cov-2 sequence classification. Sensors, 22(15), 5730. Choi, S. R., & Lee, M. (2023). Transformer architecture and attention mechanisms in genome data analysis: A comprehensive review. Biology, 12(7), 1033. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. Elnaggar, A., Heinzinger, M., Dallago, C., et al. (2020). Prottrans: Towards cracking the language of life’s code through 500 self-supervised deep learning and high performance computing [j]. IEEE Trans, 685. Fang, Z., Feng, T., Zhou, H., & Chen, M. (2022). Deepvp: Identification and classification of phage virion proteins using deep learning. Gigascience, 11, giac076. Fang, Z., & Zhou, H. (2021). Virionfinder: Identification of complete and partial prokaryote virus virion protein from virome data using the sequence and biochemical properties of amino acids. Frontiers in microbiology, 12, 615711. Flamholz, Z. N., Biller, S. J., & Kelly, L. (2024). Large language models improve annotation of prokaryotic viral proteins. Nature Microbiology, 9(2), 537–549. Hatfull, G. F., & Hendrix, R. W. (2011). Bacteriophages and their genomes. Current opinion in virology, 1(4), 298–303. Heinzinger, M., Weissenow, K., Sanchez, J. G., Henkel, A., Mirdita, M., Steinegger, M., & Rost, B. (2023). Bilingual language model for protein sequence and structure. bioRxiv, 2023–07. Jain, P., & Hirst, J. D. (2010). Automatic structure classification of small proteins using random forest. BMC bioinformatics, 11, 1–14. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al. (2021). Highly accurate protein structure prediction with alphafold. nature, 596(7873), 583–589. Li, L. H., Yatskar, M., Yin, D., Hsieh, C.-J., & Chang, K.-W. (2019). Visualbert: A simple and performant baseline for vision and language. arXiv preprint arXiv:1908.03557. McNair, K., Zhou, C., Dinsdale, E. A., Souza, B., & Edwards, R. A. (2019). Phanotate: A novel approach to gene identification in phage genomes. Bioinformatics, 35(22), 4537–4542. Modak, S., Mehta, S., Sehgal, D., & Valadi, J. (2019). Application of support vector machines in viral biology. Global Virology III: Virology in the 21st Century, 361–403. Rives, A., Meier, J., Sercu, T., Goyal, S., Lin, Z., Liu, J., Guo, D., Ott, M., Zitnick, C. L., Ma, J., et al. (2021). Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proceedings of the National Academy of Sciences, 118(15), e2016239118. Shen, Y., Chen, Z., Mamalakis, M., He, L., Xia, H., Li, T., Su, Y., He, J., & Wang, Y. G. (2024). A fine-tuning dataset and benchmark for large language models for protein understanding. arXiv preprint arXiv:2406.05540. Smug, B. J., Szczepaniak, K., Rocha, E. P., Dunin-Horkawicz, S., & Mostowy, R. J. (2023). Ongoing shuffling of protein fragments diversifies core viral functions linked to interactions with bacterial hosts. Nature Communications, 14(1), 7460. Terzian, P., Olo Ndela, E., Galiez, C., Lossouarn, J., Pérez Bucio, R. E., Mom, R., Toussaint, A., Petit, M.-A., & Enault, F. (2021). Phrog: Families of prokaryotic virus proteins clustered using remote homology. NAR Genomics and Bioinformatics, 3(3), lqab067. Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., et al. (2023). Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288. Van Kempen, M., Kim, S. S., Tumescheit, C., Mirdita, M., Lee, J., Gilchrist, C. L., Söding, J., & Steinegger, M. (2024). Fast and accurate protein structure search with foldseek. Nature biotechnology, 42(2), 243–246. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 22 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Microbiología
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Ciencias Biológicas
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/8e003380-4546-4df5-a7a3-082b7a10aa66/download
https://repositorio.uniandes.edu.co/bitstreams/aced0295-62b1-4315-8a95-157817e4cbdb/download
https://repositorio.uniandes.edu.co/bitstreams/2b2fb0b1-3b01-4dcb-8d80-99426a667e04/download
https://repositorio.uniandes.edu.co/bitstreams/5bdb38de-304d-4483-85d0-966db4b55342/download
bitstream.checksum.fl_str_mv 92e670e8c05956900492ba0f065966e1
e6a613d0486149d2364b8df1d441589d
ae9e573a68e7f92501b6913cc846c39f
4460e5956bc1d1639be9ae6146a50347
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1808390480818339840
spelling García Botero, CamiloReyes Muñoz, Alejandrovirtual::19647-1Puentes Mozo, JuanitaFacultad de Ciencias::Biología Computacional y Ecología Microbiana2024-08-02T18:46:45Z2024-08-02T18:46:45Z2024-08-02https://hdl.handle.net/1992/74920instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Viruses significantly impact ecosystems by influencing microbial diversity and facilitating genetic exchange, but their genomes remain poorly annotated. Accurate viral genome annotation is challenging due to limited viral protein representation in databases and rapid sequence divergence. We present a novel approach for viral protein classification by integrating text embeddings from protein language models (pLMs) and visual features from 3Di FASTA representations using transformer models. Leveraging pre-trained models such as ProteinBERT, ProteinBFD, and ESM, we performed a series of viral protein classification experiments at two levels: category level (9 classes) and PHROGs family level (1159 classes). Our model achieved superior results with PHROGs labels, attaining precision, recall, and F-score values of 0.784, 0.789, and 0.786, respectively, at the category level. The integration of 3Di image features with FASTA sequences further improved classification accuracy, enhancing true positive rates across most classes. These findings highlight the importance of accurate functional annotations and demonstrate the potential of transformer-based models in viral protein classification. The results also suggest that homology-based labels, such as those used by Pharokka, may introduce inconsistencies, warranting further investigation. Our dual-modality approach provides a robust framework for future research, promoting more precise and comprehensive protein classification methodologies.PregradoBiología Computacional22 páginasapplication/pdfengUniversidad de los AndesMicrobiologíaFacultad de CienciasDepartamento de Ciencias BiológicasAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Dual-Modality Transformer-Based Approach for Viral Protein Classification Integrating Protein Language Models and 3Di FASTA RepresentationsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPPhage protein classificationMulti-modality approachViral proteinsTransformer modelsDeep learningArtificial intelligencePHROGs databasePHROG-function predictionTransfer learning in virologyMicrobiologíaBaek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G. R., Wang, J., Cong, Q., Kinch, L. N., Schaeffer, R. D., et al. (2021). Accurate prediction of protein structures and interactions using a three-track neural network. Science, 373(6557), 871–876. Bebis, G., & Georgiopoulos, M. (1994). Feed-forward neural networks. Ieee Potentials, 13(4), 27–31. Bouras, G., Nepal, R., Houtak, G., Psaltis, A. J., Wormald, P.-J., & Vreugde, S. (2023). Pharokka: A fast scalable bacteriophage annotation tool. Bioinformatics, 39(1), btac776. Brandes, N., Ofer, D., Peleg, Y., Rappoport, N., & Linial, M. (2022). Proteinbert: A universal deep-learning model of protein sequence and function. Bioinformatics, 38(8), 2102–2110. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners. Advances in neural information processing systems, 33, 1877–1901. Câmara, G. B., Coutinho, M. G., Silva, L. M. d., Gadelha, W. V. d. N., Torquato, M. F., Barbosa, R. d. M., & Fernandes, M. A. (2022). Convolutional neural network applied to sars-cov-2 sequence classification. Sensors, 22(15), 5730. Choi, S. R., & Lee, M. (2023). Transformer architecture and attention mechanisms in genome data analysis: A comprehensive review. Biology, 12(7), 1033. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. Elnaggar, A., Heinzinger, M., Dallago, C., et al. (2020). Prottrans: Towards cracking the language of life’s code through 500 self-supervised deep learning and high performance computing [j]. IEEE Trans, 685. Fang, Z., Feng, T., Zhou, H., & Chen, M. (2022). Deepvp: Identification and classification of phage virion proteins using deep learning. Gigascience, 11, giac076. Fang, Z., & Zhou, H. (2021). Virionfinder: Identification of complete and partial prokaryote virus virion protein from virome data using the sequence and biochemical properties of amino acids. Frontiers in microbiology, 12, 615711. Flamholz, Z. N., Biller, S. J., & Kelly, L. (2024). Large language models improve annotation of prokaryotic viral proteins. Nature Microbiology, 9(2), 537–549. Hatfull, G. F., & Hendrix, R. W. (2011). Bacteriophages and their genomes. Current opinion in virology, 1(4), 298–303. Heinzinger, M., Weissenow, K., Sanchez, J. G., Henkel, A., Mirdita, M., Steinegger, M., & Rost, B. (2023). Bilingual language model for protein sequence and structure. bioRxiv, 2023–07. Jain, P., & Hirst, J. D. (2010). Automatic structure classification of small proteins using random forest. BMC bioinformatics, 11, 1–14. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al. (2021). Highly accurate protein structure prediction with alphafold. nature, 596(7873), 583–589. Li, L. H., Yatskar, M., Yin, D., Hsieh, C.-J., & Chang, K.-W. (2019). Visualbert: A simple and performant baseline for vision and language. arXiv preprint arXiv:1908.03557. McNair, K., Zhou, C., Dinsdale, E. A., Souza, B., & Edwards, R. A. (2019). Phanotate: A novel approach to gene identification in phage genomes. Bioinformatics, 35(22), 4537–4542. Modak, S., Mehta, S., Sehgal, D., & Valadi, J. (2019). Application of support vector machines in viral biology. Global Virology III: Virology in the 21st Century, 361–403. Rives, A., Meier, J., Sercu, T., Goyal, S., Lin, Z., Liu, J., Guo, D., Ott, M., Zitnick, C. L., Ma, J., et al. (2021). Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proceedings of the National Academy of Sciences, 118(15), e2016239118. Shen, Y., Chen, Z., Mamalakis, M., He, L., Xia, H., Li, T., Su, Y., He, J., & Wang, Y. G. (2024). A fine-tuning dataset and benchmark for large language models for protein understanding. arXiv preprint arXiv:2406.05540. Smug, B. J., Szczepaniak, K., Rocha, E. P., Dunin-Horkawicz, S., & Mostowy, R. J. (2023). Ongoing shuffling of protein fragments diversifies core viral functions linked to interactions with bacterial hosts. Nature Communications, 14(1), 7460. Terzian, P., Olo Ndela, E., Galiez, C., Lossouarn, J., Pérez Bucio, R. E., Mom, R., Toussaint, A., Petit, M.-A., & Enault, F. (2021). Phrog: Families of prokaryotic virus proteins clustered using remote homology. NAR Genomics and Bioinformatics, 3(3), lqab067. Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., et al. (2023). Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288. Van Kempen, M., Kim, S. S., Tumescheit, C., Mirdita, M., Lee, J., Gilchrist, C. L., Söding, J., & Steinegger, M. (2024). Fast and accurate protein structure search with foldseek. Nature biotechnology, 42(2), 243–246. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.201814823Publicationhttps://scholar.google.es/citations?user=hbXF8UEAAAAJhttps://scholar.google.es/citations?user=hbXF8UEAAAAJvirtual::19647-10000-0003-2907-32650000-0003-2907-3265virtual::19647-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000395927https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000395927virtual::19647-1f71489e5-69f6-4e6b-90a6-c6b1d3fecec7virtual::19647-1f71489e5-69f6-4e6b-90a6-c6b1d3fecec7f71489e5-69f6-4e6b-90a6-c6b1d3fecec7virtual::19647-1ORIGINAL201824823_ForAutEntTesis_TraGraSisBib_202410.pdf201824823_ForAutEntTesis_TraGraSisBib_202410.pdfHIDEapplication/pdf344206https://repositorio.uniandes.edu.co/bitstreams/8e003380-4546-4df5-a7a3-082b7a10aa66/download92e670e8c05956900492ba0f065966e1MD51Dual-Modality Transformer-Based Approach for Viral Protein Classification Integrating Protein Language Models and 3Di FASTA Representations.pdfDual-Modality Transformer-Based Approach for Viral Protein Classification Integrating Protein Language Models and 3Di FASTA Representations.pdfapplication/pdf5010989https://repositorio.uniandes.edu.co/bitstreams/aced0295-62b1-4315-8a95-157817e4cbdb/downloade6a613d0486149d2364b8df1d441589dMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/2b2fb0b1-3b01-4dcb-8d80-99426a667e04/downloadae9e573a68e7f92501b6913cc846c39fMD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/5bdb38de-304d-4483-85d0-966db4b55342/download4460e5956bc1d1639be9ae6146a50347MD551992/74920oai:repositorio.uniandes.edu.co:1992/749202024-08-02 13:48:50.898http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K