Opers as a generalisation of complex projective structures

Essentially, complex projective structures arise as geometries modeled in the projective line. Meanwhile, opers appear as local systems of representation-theoretic nature and are linked to principal bundles with connections. These objects where first introduced in the punctured disk by Drinfeld and...

Full description

Autores:
Aragón Rodríguez, Manuel Alejandro
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/73825
Acceso en línea:
https://hdl.handle.net/1992/73825
Palabra clave:
Opers
Principal bundles
Complex geometry
Lie groups
Riemann surfaces
Matemáticas
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNIANDES2_6c8423385c55271f5cb0d4d20e3e5a56
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/73825
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Opers as a generalisation of complex projective structures
title Opers as a generalisation of complex projective structures
spellingShingle Opers as a generalisation of complex projective structures
Opers
Principal bundles
Complex geometry
Lie groups
Riemann surfaces
Matemáticas
title_short Opers as a generalisation of complex projective structures
title_full Opers as a generalisation of complex projective structures
title_fullStr Opers as a generalisation of complex projective structures
title_full_unstemmed Opers as a generalisation of complex projective structures
title_sort Opers as a generalisation of complex projective structures
dc.creator.fl_str_mv Aragón Rodríguez, Manuel Alejandro
dc.contributor.advisor.none.fl_str_mv Schaffhauser, Florent Marie Roland
Cardona Guio, Alexander
dc.contributor.author.none.fl_str_mv Aragón Rodríguez, Manuel Alejandro
dc.contributor.jury.none.fl_str_mv Malakhaltsev, Mikhail
dc.subject.keyword.eng.fl_str_mv Opers
Principal bundles
Complex geometry
Lie groups
Riemann surfaces
topic Opers
Principal bundles
Complex geometry
Lie groups
Riemann surfaces
Matemáticas
dc.subject.themes.spa.fl_str_mv Matemáticas
description Essentially, complex projective structures arise as geometries modeled in the projective line. Meanwhile, opers appear as local systems of representation-theoretic nature and are linked to principal bundles with connections. These objects where first introduced in the punctured disk by Drinfeld and Sokolov in their study of KdV-type hierarchies and were later given a coordinate-free description for a general reductive group by Beilinson and Drinfeld. Recently, they have been studied in their connection to the geometrical Langlands correspondence and their role in the theory of vertex algebras, as developed by Frenkel. In this thesis, we study the connection between complex projective structures and opers in a geometric and algebraic way and explain how opers generalise complex projective structures when a general complex Lie group is studied.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-02-02T18:20:51Z
dc.date.available.none.fl_str_mv 2024-02-02T18:20:51Z
dc.date.issued.none.fl_str_mv 2024-01-17
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/73825
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/73825
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv [1] A. Beilinson and V. Drinfeld. “Opers”. In: (2005). arXiv: math/0501398 [math.AG].
[2] L. Bers. “Simultaneous uniformization”. In: Bulletin of the American Mathematical Society 66.2 (1960), pp. 94–97.
[3] V. G. Drinfeld and V. V Sokolov. “Lie Algebras and Equations of Korteweg-de Vries Type”. In: Journal of Mathematical Sciences 30 (1985), pp. 1975–2036. doi: 10.1007/BF02105860.
[4] D. Dumas. “Complex Projective Structures”. In: (2009). arXiv: 0902.1951 [math.DG].
[5] E. Frenkel. “Gaudin model and opers”. In: (2005). arXiv: math/0407524 [math.QA].
[6] E. Frenkel. “Langlands Correspondence for Loop Groups”. In: (1992).
[7] E. Frenkel. “Lectures on Wakimoto modules, opers and the center at the critical level”. In: (2002). arXiv: math/0210029 [math.QA].
[8] R. C. Gunning. Lectures on Riemann Surfaces. Princeton, NJ: Princeton University Press, 1982.
[9] R. C. Gunning. “Special coordinate coverings of Riemann surfaces”. In: Math. Ann. 170 (1967), pp. 67–86. doi: 10.1007/BF01362287.
[10] James E. Humphreys. Introduction to Lie Algebras and Representation Theory. Gradu-ate Texts in Mathematics, Vol. 9. New York: Springer, 1978.
[11] P. Michor I. Kolar and J. lovak. Natural Operations in Differential Geometry. 1993.
[12] A. W. Knapp. Lie Groups Beyond an Introduction. 2nd. Progress in Mathematics No140. Birkhäuser, 1996.
[13] Anthony W. Knapp. Lie Groups Beyond an Introduction. Progress in Mathematics. Birkhäuser Boston, MA, 1996. isbn: 978-1-4757-2453-0. doi: 10.1007/978-1-4757-2453-0.
[14] F. Loray and D. Marín. “Projective structures and projective bundles over compact Riemann surfaces”. In: (2007). arXiv: 0706.3608 [math.CA].
[15] W. P. Thurston. “Zippers and univalent functions”. In: 1986. doi: 10.1090/SURV/021/
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 47 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Matemáticas
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Matemáticas
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/ea5c9d36-ef76-44a4-aecd-6470dc709509/download
https://repositorio.uniandes.edu.co/bitstreams/3df8f07b-742b-4d1e-8f35-951b966d9408/download
https://repositorio.uniandes.edu.co/bitstreams/95767e2b-2f6f-4de9-b547-b01de665c521/download
https://repositorio.uniandes.edu.co/bitstreams/7244b742-f9a9-4da7-8ad4-409495b7648d/download
https://repositorio.uniandes.edu.co/bitstreams/02945dfd-2e6d-448e-9c36-f866823f89b4/download
https://repositorio.uniandes.edu.co/bitstreams/6ac08b92-0811-4d3f-b4de-52931f251181/download
https://repositorio.uniandes.edu.co/bitstreams/2b9fce93-bc13-4447-acae-2ee45d6d6674/download
https://repositorio.uniandes.edu.co/bitstreams/00d4185f-d96f-4258-a3aa-3c490c00f1b2/download
bitstream.checksum.fl_str_mv ae9e573a68e7f92501b6913cc846c39f
6a03f8023167d2770063cc0c2044881d
e93bc5e83cf48312e8c24fc822feb42c
4460e5956bc1d1639be9ae6146a50347
70b9d0cd8b9fea878a08f58c147c9eab
d65cfc8195993c532b7ca092bfd5a6c0
60104648b1506c7bb3b7faa2cbcf1713
66c3c5d0cfa9b24bd9aacc29db84e6b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134020128964608
spelling Schaffhauser, Florent Marie Rolandvirtual::321-1Cardona Guio, Alexandervirtual::322-1Aragón Rodríguez, Manuel AlejandroMalakhaltsev, Mikhailvirtual::323-12024-02-02T18:20:51Z2024-02-02T18:20:51Z2024-01-17https://hdl.handle.net/1992/73825instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Essentially, complex projective structures arise as geometries modeled in the projective line. Meanwhile, opers appear as local systems of representation-theoretic nature and are linked to principal bundles with connections. These objects where first introduced in the punctured disk by Drinfeld and Sokolov in their study of KdV-type hierarchies and were later given a coordinate-free description for a general reductive group by Beilinson and Drinfeld. Recently, they have been studied in their connection to the geometrical Langlands correspondence and their role in the theory of vertex algebras, as developed by Frenkel. In this thesis, we study the connection between complex projective structures and opers in a geometric and algebraic way and explain how opers generalise complex projective structures when a general complex Lie group is studied.MatemáticoPregrado47 páginasapplication/pdfengUniversidad de los AndesMatemáticasFacultad de CienciasDepartamento de MatemáticasAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Opers as a generalisation of complex projective structuresTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPOpersPrincipal bundlesComplex geometryLie groupsRiemann surfacesMatemáticas[1] A. Beilinson and V. Drinfeld. “Opers”. In: (2005). arXiv: math/0501398 [math.AG].[2] L. Bers. “Simultaneous uniformization”. In: Bulletin of the American Mathematical Society 66.2 (1960), pp. 94–97.[3] V. G. Drinfeld and V. V Sokolov. “Lie Algebras and Equations of Korteweg-de Vries Type”. In: Journal of Mathematical Sciences 30 (1985), pp. 1975–2036. doi: 10.1007/BF02105860.[4] D. Dumas. “Complex Projective Structures”. In: (2009). arXiv: 0902.1951 [math.DG].[5] E. Frenkel. “Gaudin model and opers”. In: (2005). arXiv: math/0407524 [math.QA].[6] E. Frenkel. “Langlands Correspondence for Loop Groups”. In: (1992).[7] E. Frenkel. “Lectures on Wakimoto modules, opers and the center at the critical level”. In: (2002). arXiv: math/0210029 [math.QA].[8] R. C. Gunning. Lectures on Riemann Surfaces. Princeton, NJ: Princeton University Press, 1982.[9] R. C. Gunning. “Special coordinate coverings of Riemann surfaces”. In: Math. Ann. 170 (1967), pp. 67–86. doi: 10.1007/BF01362287.[10] James E. Humphreys. Introduction to Lie Algebras and Representation Theory. Gradu-ate Texts in Mathematics, Vol. 9. New York: Springer, 1978.[11] P. Michor I. Kolar and J. lovak. Natural Operations in Differential Geometry. 1993.[12] A. W. Knapp. Lie Groups Beyond an Introduction. 2nd. Progress in Mathematics No140. Birkhäuser, 1996.[13] Anthony W. Knapp. Lie Groups Beyond an Introduction. Progress in Mathematics. Birkhäuser Boston, MA, 1996. isbn: 978-1-4757-2453-0. doi: 10.1007/978-1-4757-2453-0.[14] F. Loray and D. Marín. “Projective structures and projective bundles over compact Riemann surfaces”. In: (2007). arXiv: 0706.3608 [math.CA].[15] W. P. Thurston. “Zippers and univalent functions”. In: 1986. doi: 10.1090/SURV/021/201923451Publicationhttps://scholar.google.es/citations?user=Xu_2niIAAAAJvirtual::321-10000-0002-9511-1760virtual::321-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001495730virtual::321-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000555789virtual::323-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000055190virtual::322-1ce3016b4-e0fe-47c4-8953-f7fbc22fa01avirtual::321-1b65b9b87-c23b-4157-ac5a-55f34b071dc7virtual::322-1ce3016b4-e0fe-47c4-8953-f7fbc22fa01avirtual::321-1b65b9b87-c23b-4157-ac5a-55f34b071dc7virtual::322-1680ba16d-3876-4cbe-ab2b-9b0a0964eadbvirtual::323-1680ba16d-3876-4cbe-ab2b-9b0a0964eadbvirtual::323-1LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/ea5c9d36-ef76-44a4-aecd-6470dc709509/downloadae9e573a68e7f92501b6913cc846c39fMD51ORIGINALFormato_Repositorio.pdfFormato_Repositorio.pdfHIDEapplication/pdf452810https://repositorio.uniandes.edu.co/bitstreams/3df8f07b-742b-4d1e-8f35-951b966d9408/download6a03f8023167d2770063cc0c2044881dMD53Opers as a generalisation of complex projective structures.pdfOpers as a generalisation of complex projective structures.pdfapplication/pdf366547https://repositorio.uniandes.edu.co/bitstreams/95767e2b-2f6f-4de9-b547-b01de665c521/downloade93bc5e83cf48312e8c24fc822feb42cMD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/7244b742-f9a9-4da7-8ad4-409495b7648d/download4460e5956bc1d1639be9ae6146a50347MD55TEXTFormato_Repositorio.pdf.txtFormato_Repositorio.pdf.txtExtracted texttext/plain1999https://repositorio.uniandes.edu.co/bitstreams/02945dfd-2e6d-448e-9c36-f866823f89b4/download70b9d0cd8b9fea878a08f58c147c9eabMD56Opers as a generalisation of complex projective structures.pdf.txtOpers as a generalisation of complex projective structures.pdf.txtExtracted texttext/plain103208https://repositorio.uniandes.edu.co/bitstreams/6ac08b92-0811-4d3f-b4de-52931f251181/downloadd65cfc8195993c532b7ca092bfd5a6c0MD58THUMBNAILFormato_Repositorio.pdf.jpgFormato_Repositorio.pdf.jpgGenerated Thumbnailimage/jpeg11287https://repositorio.uniandes.edu.co/bitstreams/2b9fce93-bc13-4447-acae-2ee45d6d6674/download60104648b1506c7bb3b7faa2cbcf1713MD57Opers as a generalisation of complex projective structures.pdf.jpgOpers as a generalisation of complex projective structures.pdf.jpgGenerated Thumbnailimage/jpeg8087https://repositorio.uniandes.edu.co/bitstreams/00d4185f-d96f-4258-a3aa-3c490c00f1b2/download66c3c5d0cfa9b24bd9aacc29db84e6b7MD591992/73825oai:repositorio.uniandes.edu.co:1992/738252024-02-16 15:23:13.343http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K