A decomposition approach for correlated random vector generation
"When doing simulation studies, it is necessary to consider correlation in input variables in order to obtain correct results. Generating correlated random nurnbers is not always an easy task, as the accuracy and computational stability of some methods depend of the probabilit, y distribution o...
- Autores:
-
Guaje Acosta, Oscar Orlando
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/61040
- Acceso en línea:
- http://hdl.handle.net/1992/61040
- Palabra clave:
- Correlación (Estadística)
Métodos de simulación
Optimización matemática
- Rights
- openAccess
- License
- https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id |
UNIANDES2_6c2b4d0512ca427d94005f9b3b9d8cfe |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/61040 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Medaglia González, Andrés L163ee545-71d0-42a2-8b75-61c957347fb6500Guaje Acosta, Oscar Orlando26871500Mura, IvanSefair Cristancho, Jorge Alberto2022-09-26T22:07:46Z2022-09-26T22:07:46Z2016http://hdl.handle.net/1992/61040instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/754062-1001"When doing simulation studies, it is necessary to consider correlation in input variables in order to obtain correct results. Generating correlated random nurnbers is not always an easy task, as the accuracy and computational stability of some methods depend of the probabilit, y distribution of input variables. We present a method based on mixed-integer programrning to generate correlated random numbers. Since this method does not perform acceptably, we show a column generation procedure used to accelerate the MIP. We implemented our method and found significant computational improvements over the base MIP while improving the accuracy of the solution over known methods.".-- Tomado del resumen.Magíster en Ingeniería IndustrialMaestría23 hojasapplication/pdfspaUniversidad de los AndesMaestría en Ingeniería IndustrialFacultad de IngenieríaDepartamento de Ingeniería IndustrialA decomposition approach for correlated random vector generationTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMCorrelación (Estadística)Métodos de simulaciónOptimización matemática200714242PublicationTEXT11314.pdf.txt11314.pdf.txtExtracted texttext/plain38632https://repositorio.uniandes.edu.co/bitstreams/ef9838e2-a426-44dd-8667-ce3da179273c/downloadb7bb00be00bb36745511021347d67515MD52ORIGINAL11314.pdfapplication/pdf456160https://repositorio.uniandes.edu.co/bitstreams/dfe7a19e-e129-4886-8fb8-356b7df6c396/downloadec01e0e9e8240da27f819684acdd8595MD51THUMBNAIL11314.pdf.jpg11314.pdf.jpgIM Thumbnailimage/jpeg5606https://repositorio.uniandes.edu.co/bitstreams/1eb6450a-d665-4d77-908b-fd2c0aea1f93/download94a5f0c17ece179cfcfd88483604959fMD531992/61040oai:repositorio.uniandes.edu.co:1992/610402023-10-10 17:23:27.247https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |
dc.title.spa.fl_str_mv |
A decomposition approach for correlated random vector generation |
title |
A decomposition approach for correlated random vector generation |
spellingShingle |
A decomposition approach for correlated random vector generation Correlación (Estadística) Métodos de simulación Optimización matemática |
title_short |
A decomposition approach for correlated random vector generation |
title_full |
A decomposition approach for correlated random vector generation |
title_fullStr |
A decomposition approach for correlated random vector generation |
title_full_unstemmed |
A decomposition approach for correlated random vector generation |
title_sort |
A decomposition approach for correlated random vector generation |
dc.creator.fl_str_mv |
Guaje Acosta, Oscar Orlando |
dc.contributor.advisor.none.fl_str_mv |
Medaglia González, Andrés L |
dc.contributor.author.none.fl_str_mv |
Guaje Acosta, Oscar Orlando |
dc.contributor.jury.none.fl_str_mv |
Mura, Ivan Sefair Cristancho, Jorge Alberto |
dc.subject.keyword.spa.fl_str_mv |
Correlación (Estadística) Métodos de simulación Optimización matemática |
topic |
Correlación (Estadística) Métodos de simulación Optimización matemática |
description |
"When doing simulation studies, it is necessary to consider correlation in input variables in order to obtain correct results. Generating correlated random nurnbers is not always an easy task, as the accuracy and computational stability of some methods depend of the probabilit, y distribution of input variables. We present a method based on mixed-integer programrning to generate correlated random numbers. Since this method does not perform acceptably, we show a column generation procedure used to accelerate the MIP. We implemented our method and found significant computational improvements over the base MIP while improving the accuracy of the solution over known methods.".-- Tomado del resumen. |
publishDate |
2016 |
dc.date.issued.spa.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2022-09-26T22:07:46Z |
dc.date.available.none.fl_str_mv |
2022-09-26T22:07:46Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/61040 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
dc.identifier.local.spa.fl_str_mv |
754062-1001 |
url |
http://hdl.handle.net/1992/61040 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ 754062-1001 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.uri.*.fl_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
23 hojas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.spa.fl_str_mv |
Maestría en Ingeniería Industrial |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ingeniería Industrial |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/ef9838e2-a426-44dd-8667-ce3da179273c/download https://repositorio.uniandes.edu.co/bitstreams/dfe7a19e-e129-4886-8fb8-356b7df6c396/download https://repositorio.uniandes.edu.co/bitstreams/1eb6450a-d665-4d77-908b-fd2c0aea1f93/download |
bitstream.checksum.fl_str_mv |
b7bb00be00bb36745511021347d67515 ec01e0e9e8240da27f819684acdd8595 94a5f0c17ece179cfcfd88483604959f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133934337622016 |