The wavefront set and its applications in quantum field theory

This work explores the relevance of the wavefront set in Quantum Field Theory (QFT) with a focus on addressing the problem of divergences. It begins with an introduction to QFT, detailing the interaction picture, Dyson series, and Wick’s theorems, which are fundamental tools for understanding partic...

Full description

Autores:
Granados Rodríguez, Juana
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/74846
Acceso en línea:
https://hdl.handle.net/1992/74846
Palabra clave:
Wavefront Set
Quantum Field Theory (QFT)
Divergences
Distribution Theory
Hörmander’s Condition
Wightman Propagator
Feynman Propagator
Epstein-Glaser Renormalization
Renormalization Methods
Mathematical Physics
Física
Rights
openAccess
License
Attribution 4.0 International
id UNIANDES2_699c5d187598b6f2e3a52b955db4e4f4
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/74846
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv The wavefront set and its applications in quantum field theory
dc.title.alternative.spa.fl_str_mv El conjunto frente de onda y sus aplicaciones en teoría cuántica de campos
title The wavefront set and its applications in quantum field theory
spellingShingle The wavefront set and its applications in quantum field theory
Wavefront Set
Quantum Field Theory (QFT)
Divergences
Distribution Theory
Hörmander’s Condition
Wightman Propagator
Feynman Propagator
Epstein-Glaser Renormalization
Renormalization Methods
Mathematical Physics
Física
title_short The wavefront set and its applications in quantum field theory
title_full The wavefront set and its applications in quantum field theory
title_fullStr The wavefront set and its applications in quantum field theory
title_full_unstemmed The wavefront set and its applications in quantum field theory
title_sort The wavefront set and its applications in quantum field theory
dc.creator.fl_str_mv Granados Rodríguez, Juana
dc.contributor.advisor.none.fl_str_mv Reyes Lega, Andrés Fernando
dc.contributor.author.none.fl_str_mv Granados Rodríguez, Juana
dc.contributor.jury.none.fl_str_mv Téllez Acosta, Gabriel
dc.subject.keyword.eng.fl_str_mv Wavefront Set
Quantum Field Theory (QFT)
Divergences
Distribution Theory
Hörmander’s Condition
Wightman Propagator
Feynman Propagator
Epstein-Glaser Renormalization
Renormalization Methods
Mathematical Physics
topic Wavefront Set
Quantum Field Theory (QFT)
Divergences
Distribution Theory
Hörmander’s Condition
Wightman Propagator
Feynman Propagator
Epstein-Glaser Renormalization
Renormalization Methods
Mathematical Physics
Física
dc.subject.themes.spa.fl_str_mv Física
description This work explores the relevance of the wavefront set in Quantum Field Theory (QFT) with a focus on addressing the problem of divergences. It begins with an introduction to QFT, detailing the interaction picture, Dyson series, and Wick’s theorems, which are fundamental tools for understanding particle interactions and the emergence of divergences. The work transitions into an examination of distribution theory, providing the necessary mathematical framework to handle the infinities associated with these divergences. The wavefront set is defined and examined through the lens of Hörmander's condition, with detailed analyses of wavefront sets for common distributions. The wavefront sets of both the Wightman and the Feynman propagator are also explored, demonstrating the relevance of these mathematical tools in the field. The final section discusses the integration of the wavefront set into a more modern version of the Epstein-Glaser renormalization method, emphasizing the practical benefits and challenges of using the wavefront set in this context. The study concludes with reflections on the potential of this approach to offer deeper insights and more robust solutions to the persistent issues of renormalization in QFT.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-31T21:52:40Z
dc.date.available.none.fl_str_mv 2024-07-31T21:52:40Z
dc.date.issued.none.fl_str_mv 2024-07-30
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/74846
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/74846
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv J. J. Sakurai and J. Napolitano, Modern Quantum Mechanics. Boston: Addison-Wesley, 2nd ed., 2011.
F. Scheck, Quantum Physics: With 102 Exercises, Hints and Solutions. Berlin Heidelberg: Springer, 2007.
N. N. Bogoliubov and D. V. Shirkov, Quantum Fields. Massachusetts, U.S.A.: Benjamin/Cummings Publishing Company, 1st english ed., 1982.
C. Brouder, N. V. Dang, and F. Hélein, “A smooth introduction to the wavefront set,” Journal of Physics A: Mathematical and Theoretical, vol. 47, p. 443001, Nov. 2014.
L. Hörmander, The Analysis of Linear Partial Differential Operators I. Springer Berlin, Heidelberg, 2003.
G. Tellez, Métodos Matemáticos. Bogotá, Colombia: Ediciones Uniandes, 2nd ed., 2022.
A. Giniatoulline, Introducción a las Distribuciones (Funciones Generalizadas). 1999.
J. Rauch, Partial Differential Equations. Springer Science & Business Media, Dec 2012.
M. Reed and B. Simon, Methods of Modern Mathematical Physics. Volume II: Fourier Analysis, Self-Adjointness. No. v. 2 in II: Fourier Analysis, Self-Adjointness, Elsevier Science, 1975.
J. M. Gracia-Bondía, “The epstein-glaser approach to qft,” AIP Conference Proceedings, vol. 809, pp. 24–43, Jan 2006.
G. Popineau and R. Stora, “A pedagogical remark on the main theorem of perturbative renormalization theory,” Nuclear Physics B, vol. 912, pp. 70–78, 2016. Mathematical Foundations of Quantum Field Theory: A volume dedicated to the Memory of Raymond Stora.
S. A. Fulling, Aspects of Quantum Field Theory in Curved Space-Time. Cambridge University Press, 1989.
dc.rights.en.fl_str_mv Attribution 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 58 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Física
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Física
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/e249704e-c233-4923-bfc9-767cf5c112b9/download
https://repositorio.uniandes.edu.co/bitstreams/b8e0e231-e120-4d07-b384-c64cfb403437/download
https://repositorio.uniandes.edu.co/bitstreams/60940037-30fe-4f8d-9d7c-02c9649d993b/download
https://repositorio.uniandes.edu.co/bitstreams/0e1938c5-1cf1-4065-8cae-ed834dfa7948/download
https://repositorio.uniandes.edu.co/bitstreams/e6127523-b79c-4c2b-8677-28ca84e657ac/download
https://repositorio.uniandes.edu.co/bitstreams/b0c711dd-aaca-4cf0-8df6-56aff3c19f9b/download
https://repositorio.uniandes.edu.co/bitstreams/03c52dbc-fc6b-40fe-b993-20aa3a7ebb0b/download
https://repositorio.uniandes.edu.co/bitstreams/aea588de-8a33-476b-a628-9e7561bade72/download
bitstream.checksum.fl_str_mv 0175ea4a2d4caec4bbcc37e300941108
15962d02bf1780f4a832a20a213fa045
21cf1e19d4de3b23efc10ac7ab40d46e
ae9e573a68e7f92501b6913cc846c39f
11e3314f39c9b4faf6060a70934e0ed7
a2758b084c919b4fe729c54fa846cd19
8e34e24544eb0560f0835cc2709114b2
049980e6d7301a16f5a0a9168971e448
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133915686600704
spelling Reyes Lega, Andrés Fernandovirtual::19402-1Granados Rodríguez, JuanaTéllez Acosta, Gabrielvirtual::19403-12024-07-31T21:52:40Z2024-07-31T21:52:40Z2024-07-30https://hdl.handle.net/1992/74846instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/This work explores the relevance of the wavefront set in Quantum Field Theory (QFT) with a focus on addressing the problem of divergences. It begins with an introduction to QFT, detailing the interaction picture, Dyson series, and Wick’s theorems, which are fundamental tools for understanding particle interactions and the emergence of divergences. The work transitions into an examination of distribution theory, providing the necessary mathematical framework to handle the infinities associated with these divergences. The wavefront set is defined and examined through the lens of Hörmander's condition, with detailed analyses of wavefront sets for common distributions. The wavefront sets of both the Wightman and the Feynman propagator are also explored, demonstrating the relevance of these mathematical tools in the field. The final section discusses the integration of the wavefront set into a more modern version of the Epstein-Glaser renormalization method, emphasizing the practical benefits and challenges of using the wavefront set in this context. The study concludes with reflections on the potential of this approach to offer deeper insights and more robust solutions to the persistent issues of renormalization in QFT.Este trabajo explora la relevancia del conjunto de ondas en la Teoría Cuántica de Campos (QFT) con un enfoque en abordar el problema de las divergencias. Comienza con una introducción a la QFT, detallando el cuadro de interacción, la serie de Dyson y los teoremas de Wick, que son fundamentales para entender las interacciones de partículas y la emergencia de divergencias. El trabajo transita hacia un examen de la teoría de distribuciones, proporcionando el marco matemático necesario para manejar los infinitos asociadas con estas divergencias. Se define y examina el conjunto frente de onda a través del criterio de Hörmander, con análisis detallados de los conjuntos frente de onda para distribuciones comunes. También se exploran los conjuntos frente de onda del propagador de Wightman y el de Feynman, demostrando la relevancia de estas herramientas matemáticas en el campo. La sección final discute la integración del conjunto de ondas en una versión más moderna del método de renormalización de Epstein-Glaser, enfatizando los beneficios prácticos y los desafíos de usar el conjunto de ondas en este contexto. El estudio concluye con reflexiones sobre el potencial de este enfoque para ofrecer percepciones más profundas y soluciones más robustas a los problemas persistentes de renormalización en la QFT.Pregrado58 páginasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2The wavefront set and its applications in quantum field theoryEl conjunto frente de onda y sus aplicaciones en teoría cuántica de camposTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPWavefront SetQuantum Field Theory (QFT)DivergencesDistribution TheoryHörmander’s ConditionWightman PropagatorFeynman PropagatorEpstein-Glaser RenormalizationRenormalization MethodsMathematical PhysicsFísicaJ. J. Sakurai and J. Napolitano, Modern Quantum Mechanics. Boston: Addison-Wesley, 2nd ed., 2011.F. Scheck, Quantum Physics: With 102 Exercises, Hints and Solutions. Berlin Heidelberg: Springer, 2007.N. N. Bogoliubov and D. V. Shirkov, Quantum Fields. Massachusetts, U.S.A.: Benjamin/Cummings Publishing Company, 1st english ed., 1982.C. Brouder, N. V. Dang, and F. Hélein, “A smooth introduction to the wavefront set,” Journal of Physics A: Mathematical and Theoretical, vol. 47, p. 443001, Nov. 2014.L. Hörmander, The Analysis of Linear Partial Differential Operators I. Springer Berlin, Heidelberg, 2003.G. Tellez, Métodos Matemáticos. Bogotá, Colombia: Ediciones Uniandes, 2nd ed., 2022.A. Giniatoulline, Introducción a las Distribuciones (Funciones Generalizadas). 1999.J. Rauch, Partial Differential Equations. Springer Science & Business Media, Dec 2012.M. Reed and B. Simon, Methods of Modern Mathematical Physics. Volume II: Fourier Analysis, Self-Adjointness. No. v. 2 in II: Fourier Analysis, Self-Adjointness, Elsevier Science, 1975.J. M. Gracia-Bondía, “The epstein-glaser approach to qft,” AIP Conference Proceedings, vol. 809, pp. 24–43, Jan 2006.G. Popineau and R. Stora, “A pedagogical remark on the main theorem of perturbative renormalization theory,” Nuclear Physics B, vol. 912, pp. 70–78, 2016. Mathematical Foundations of Quantum Field Theory: A volume dedicated to the Memory of Raymond Stora.S. A. Fulling, Aspects of Quantum Field Theory in Curved Space-Time. Cambridge University Press, 1989.202015134Publicationhttps://scholar.google.es/citations?user=04V0g64AAAAJvirtual::19402-1https://scholar.google.es/citations?user=1JHuoIAAAAAJvirtual::19403-10000-0002-6357-260Xvirtual::19403-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000055174virtual::19402-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000077224virtual::19403-19cfe3fb3-ca67-4abc-bf3f-6ceb7f9f4adfvirtual::19402-19cfe3fb3-ca67-4abc-bf3f-6ceb7f9f4adfvirtual::19402-198ad9270-ae12-4bd0-9e5e-6ff873936418virtual::19403-198ad9270-ae12-4bd0-9e5e-6ff873936418virtual::19403-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/e249704e-c233-4923-bfc9-767cf5c112b9/download0175ea4a2d4caec4bbcc37e300941108MD51ORIGINALWavefront Set and its Applications in QuantumField Theory.pdfWavefront Set and its Applications in QuantumField Theory.pdfapplication/pdf702596https://repositorio.uniandes.edu.co/bitstreams/b8e0e231-e120-4d07-b384-c64cfb403437/download15962d02bf1780f4a832a20a213fa045MD52formato_autorizacion-firmado.pdfformato_autorizacion-firmado.pdfHIDEapplication/pdf328543https://repositorio.uniandes.edu.co/bitstreams/60940037-30fe-4f8d-9d7c-02c9649d993b/download21cf1e19d4de3b23efc10ac7ab40d46eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/0e1938c5-1cf1-4065-8cae-ed834dfa7948/downloadae9e573a68e7f92501b6913cc846c39fMD53TEXTWavefront Set and its Applications in QuantumField Theory.pdf.txtWavefront Set and its Applications in QuantumField Theory.pdf.txtExtracted texttext/plain104028https://repositorio.uniandes.edu.co/bitstreams/e6127523-b79c-4c2b-8677-28ca84e657ac/download11e3314f39c9b4faf6060a70934e0ed7MD55formato_autorizacion-firmado.pdf.txtformato_autorizacion-firmado.pdf.txtExtracted texttext/plain1980https://repositorio.uniandes.edu.co/bitstreams/b0c711dd-aaca-4cf0-8df6-56aff3c19f9b/downloada2758b084c919b4fe729c54fa846cd19MD57THUMBNAILWavefront Set and its Applications in QuantumField Theory.pdf.jpgWavefront Set and its Applications in QuantumField Theory.pdf.jpgGenerated Thumbnailimage/jpeg7025https://repositorio.uniandes.edu.co/bitstreams/03c52dbc-fc6b-40fe-b993-20aa3a7ebb0b/download8e34e24544eb0560f0835cc2709114b2MD56formato_autorizacion-firmado.pdf.jpgformato_autorizacion-firmado.pdf.jpgGenerated Thumbnailimage/jpeg11044https://repositorio.uniandes.edu.co/bitstreams/aea588de-8a33-476b-a628-9e7561bade72/download049980e6d7301a16f5a0a9168971e448MD581992/74846oai:repositorio.uniandes.edu.co:1992/748462024-09-12 15:51:53.125http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K