Development of a machine learning model based on results obtained from CFD solvers for the ease of the iterative processes in the early stages of design

In the following paper, three different approaches to study steady state fluid flow using machine learning are presented. Through the use of deep convolutional neural networks, the velocity and pressure fields were obtained by using computational fluid dynamics (CFD) simulations as training data. Th...

Full description

Autores:
Giraldo Grueso, Felipe
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/51595
Acceso en línea:
http://hdl.handle.net/1992/51595
Palabra clave:
Dinámica de fluidos
Aprendizaje automático (Inteligencia artificial)
Redes neuronales convolucionales
Ingeniería
Rights
openAccess
License
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id UNIANDES2_6996289568114f909fe9d28653c07827
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/51595
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2González Mancera, Andrés Leonardo1a96c006-a679-415f-870a-e3c375a5259a400Giraldo Grueso, Felipef58ed331-54f3-4f3a-886b-1215e4599e025002021-08-10T18:33:10Z2021-08-10T18:33:10Z2020http://hdl.handle.net/1992/5159522795.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/In the following paper, three different approaches to study steady state fluid flow using machine learning are presented. Through the use of deep convolutional neural networks, the velocity and pressure fields were obtained by using computational fluid dynamics (CFD) simulations as training data. The first approach, regarding the use of a convolutional neural network, proved to be successful by approximating the velocity and pressure fields with a normalized root mean squared error of (4.96¿1.83)% for the velocity field in the x direction, (17.95¿2.04)% for the velocity field in the y direction and (15.77¿1.66)% for the pressure field. As well as this, the use of this convolutional neural network proved to be (23410¿5405) times faster than common CFD solvers. The second approach, concerning the inclusion of a custom physics informed loss function in the latter convolutional neural network...En el siguiente documento se presentan tres enfoques diferentes para estudiar el flujo de fluidos en estado estable utilizando machine learning. Mediante el uso de redes neuronales convolucionales profundas, se obtuvieron los campos de velocidad y presión utilizando simulaciones de dinámica de fluidos computacional (CFD) como datos de entrenamiento. El primer enfoque, referente al uso de una red neural convolucional, demostró ser exitoso al aproximar los campos de velocidad y presión con un error cuadrático medio normalizado de (4.96¿1.83)% para el campo de velocidad en la dirección x, (17.95¿2.04)% para el campo de velocidad en la dirección y y (15.77¿1.66)% para el campo de presión. Además, el uso de esta red neural convolucional demostró ser (23410¿5405) veces más rápido que las soluciones comunes de CFD. El segundo enfoque, considerando la inclusión de una función de pérdida informada por la física personalizada en esta última red neural convolucional,..Ingeniero MecánicoPregrado13 hojasapplication/pdfengUniversidad de los AndesIngeniería MecánicaFacultad de IngenieríaDepartamento de Ingeniería MecánicaDevelopment of a machine learning model based on results obtained from CFD solvers for the ease of the iterative processes in the early stages of designTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPDinámica de fluidosAprendizaje automático (Inteligencia artificial)Redes neuronales convolucionalesIngeniería201631172PublicationORIGINAL22795.pdfapplication/pdf4468403https://repositorio.uniandes.edu.co/bitstreams/1bbb5e23-d228-43cb-ba15-ffdb009eaf16/download559348626f2d71d62fde17ae8da32f8fMD51THUMBNAIL22795.pdf.jpg22795.pdf.jpgIM Thumbnailimage/jpeg24240https://repositorio.uniandes.edu.co/bitstreams/b813ceb6-1ea3-4925-9fdb-cb8e97656571/download7d92a9475afca3197a347e95f26bf637MD55TEXT22795.pdf.txt22795.pdf.txtExtracted texttext/plain51538https://repositorio.uniandes.edu.co/bitstreams/58cd6deb-8c1e-48e0-8eea-589093776dd5/download79a933e2341ba72c62618c523fa8363dMD541992/51595oai:repositorio.uniandes.edu.co:1992/515952023-10-10 18:49:12.943https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co
dc.title.spa.fl_str_mv Development of a machine learning model based on results obtained from CFD solvers for the ease of the iterative processes in the early stages of design
title Development of a machine learning model based on results obtained from CFD solvers for the ease of the iterative processes in the early stages of design
spellingShingle Development of a machine learning model based on results obtained from CFD solvers for the ease of the iterative processes in the early stages of design
Dinámica de fluidos
Aprendizaje automático (Inteligencia artificial)
Redes neuronales convolucionales
Ingeniería
title_short Development of a machine learning model based on results obtained from CFD solvers for the ease of the iterative processes in the early stages of design
title_full Development of a machine learning model based on results obtained from CFD solvers for the ease of the iterative processes in the early stages of design
title_fullStr Development of a machine learning model based on results obtained from CFD solvers for the ease of the iterative processes in the early stages of design
title_full_unstemmed Development of a machine learning model based on results obtained from CFD solvers for the ease of the iterative processes in the early stages of design
title_sort Development of a machine learning model based on results obtained from CFD solvers for the ease of the iterative processes in the early stages of design
dc.creator.fl_str_mv Giraldo Grueso, Felipe
dc.contributor.advisor.none.fl_str_mv González Mancera, Andrés Leonardo
dc.contributor.author.none.fl_str_mv Giraldo Grueso, Felipe
dc.subject.armarc.none.fl_str_mv Dinámica de fluidos
Aprendizaje automático (Inteligencia artificial)
Redes neuronales convolucionales
topic Dinámica de fluidos
Aprendizaje automático (Inteligencia artificial)
Redes neuronales convolucionales
Ingeniería
dc.subject.themes.none.fl_str_mv Ingeniería
description In the following paper, three different approaches to study steady state fluid flow using machine learning are presented. Through the use of deep convolutional neural networks, the velocity and pressure fields were obtained by using computational fluid dynamics (CFD) simulations as training data. The first approach, regarding the use of a convolutional neural network, proved to be successful by approximating the velocity and pressure fields with a normalized root mean squared error of (4.96¿1.83)% for the velocity field in the x direction, (17.95¿2.04)% for the velocity field in the y direction and (15.77¿1.66)% for the pressure field. As well as this, the use of this convolutional neural network proved to be (23410¿5405) times faster than common CFD solvers. The second approach, concerning the inclusion of a custom physics informed loss function in the latter convolutional neural network...
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-08-10T18:33:10Z
dc.date.available.none.fl_str_mv 2021-08-10T18:33:10Z
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/51595
dc.identifier.pdf.none.fl_str_mv 22795.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/51595
identifier_str_mv 22795.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 13 hojas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Ingeniería Mecánica
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.department.none.fl_str_mv Departamento de Ingeniería Mecánica
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/1bbb5e23-d228-43cb-ba15-ffdb009eaf16/download
https://repositorio.uniandes.edu.co/bitstreams/b813ceb6-1ea3-4925-9fdb-cb8e97656571/download
https://repositorio.uniandes.edu.co/bitstreams/58cd6deb-8c1e-48e0-8eea-589093776dd5/download
bitstream.checksum.fl_str_mv 559348626f2d71d62fde17ae8da32f8f
7d92a9475afca3197a347e95f26bf637
79a933e2341ba72c62618c523fa8363d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134018602237952