Development of a machine learning model based on results obtained from CFD solvers for the ease of the iterative processes in the early stages of design
In the following paper, three different approaches to study steady state fluid flow using machine learning are presented. Through the use of deep convolutional neural networks, the velocity and pressure fields were obtained by using computational fluid dynamics (CFD) simulations as training data. Th...
- Autores:
-
Giraldo Grueso, Felipe
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2020
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/51595
- Acceso en línea:
- http://hdl.handle.net/1992/51595
- Palabra clave:
- Dinámica de fluidos
Aprendizaje automático (Inteligencia artificial)
Redes neuronales convolucionales
Ingeniería
- Rights
- openAccess
- License
- https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id |
UNIANDES2_6996289568114f909fe9d28653c07827 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/51595 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2González Mancera, Andrés Leonardo1a96c006-a679-415f-870a-e3c375a5259a400Giraldo Grueso, Felipef58ed331-54f3-4f3a-886b-1215e4599e025002021-08-10T18:33:10Z2021-08-10T18:33:10Z2020http://hdl.handle.net/1992/5159522795.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/In the following paper, three different approaches to study steady state fluid flow using machine learning are presented. Through the use of deep convolutional neural networks, the velocity and pressure fields were obtained by using computational fluid dynamics (CFD) simulations as training data. The first approach, regarding the use of a convolutional neural network, proved to be successful by approximating the velocity and pressure fields with a normalized root mean squared error of (4.96¿1.83)% for the velocity field in the x direction, (17.95¿2.04)% for the velocity field in the y direction and (15.77¿1.66)% for the pressure field. As well as this, the use of this convolutional neural network proved to be (23410¿5405) times faster than common CFD solvers. The second approach, concerning the inclusion of a custom physics informed loss function in the latter convolutional neural network...En el siguiente documento se presentan tres enfoques diferentes para estudiar el flujo de fluidos en estado estable utilizando machine learning. Mediante el uso de redes neuronales convolucionales profundas, se obtuvieron los campos de velocidad y presión utilizando simulaciones de dinámica de fluidos computacional (CFD) como datos de entrenamiento. El primer enfoque, referente al uso de una red neural convolucional, demostró ser exitoso al aproximar los campos de velocidad y presión con un error cuadrático medio normalizado de (4.96¿1.83)% para el campo de velocidad en la dirección x, (17.95¿2.04)% para el campo de velocidad en la dirección y y (15.77¿1.66)% para el campo de presión. Además, el uso de esta red neural convolucional demostró ser (23410¿5405) veces más rápido que las soluciones comunes de CFD. El segundo enfoque, considerando la inclusión de una función de pérdida informada por la física personalizada en esta última red neural convolucional,..Ingeniero MecánicoPregrado13 hojasapplication/pdfengUniversidad de los AndesIngeniería MecánicaFacultad de IngenieríaDepartamento de Ingeniería MecánicaDevelopment of a machine learning model based on results obtained from CFD solvers for the ease of the iterative processes in the early stages of designTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPDinámica de fluidosAprendizaje automático (Inteligencia artificial)Redes neuronales convolucionalesIngeniería201631172PublicationORIGINAL22795.pdfapplication/pdf4468403https://repositorio.uniandes.edu.co/bitstreams/1bbb5e23-d228-43cb-ba15-ffdb009eaf16/download559348626f2d71d62fde17ae8da32f8fMD51THUMBNAIL22795.pdf.jpg22795.pdf.jpgIM Thumbnailimage/jpeg24240https://repositorio.uniandes.edu.co/bitstreams/b813ceb6-1ea3-4925-9fdb-cb8e97656571/download7d92a9475afca3197a347e95f26bf637MD55TEXT22795.pdf.txt22795.pdf.txtExtracted texttext/plain51538https://repositorio.uniandes.edu.co/bitstreams/58cd6deb-8c1e-48e0-8eea-589093776dd5/download79a933e2341ba72c62618c523fa8363dMD541992/51595oai:repositorio.uniandes.edu.co:1992/515952023-10-10 18:49:12.943https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |
dc.title.spa.fl_str_mv |
Development of a machine learning model based on results obtained from CFD solvers for the ease of the iterative processes in the early stages of design |
title |
Development of a machine learning model based on results obtained from CFD solvers for the ease of the iterative processes in the early stages of design |
spellingShingle |
Development of a machine learning model based on results obtained from CFD solvers for the ease of the iterative processes in the early stages of design Dinámica de fluidos Aprendizaje automático (Inteligencia artificial) Redes neuronales convolucionales Ingeniería |
title_short |
Development of a machine learning model based on results obtained from CFD solvers for the ease of the iterative processes in the early stages of design |
title_full |
Development of a machine learning model based on results obtained from CFD solvers for the ease of the iterative processes in the early stages of design |
title_fullStr |
Development of a machine learning model based on results obtained from CFD solvers for the ease of the iterative processes in the early stages of design |
title_full_unstemmed |
Development of a machine learning model based on results obtained from CFD solvers for the ease of the iterative processes in the early stages of design |
title_sort |
Development of a machine learning model based on results obtained from CFD solvers for the ease of the iterative processes in the early stages of design |
dc.creator.fl_str_mv |
Giraldo Grueso, Felipe |
dc.contributor.advisor.none.fl_str_mv |
González Mancera, Andrés Leonardo |
dc.contributor.author.none.fl_str_mv |
Giraldo Grueso, Felipe |
dc.subject.armarc.none.fl_str_mv |
Dinámica de fluidos Aprendizaje automático (Inteligencia artificial) Redes neuronales convolucionales |
topic |
Dinámica de fluidos Aprendizaje automático (Inteligencia artificial) Redes neuronales convolucionales Ingeniería |
dc.subject.themes.none.fl_str_mv |
Ingeniería |
description |
In the following paper, three different approaches to study steady state fluid flow using machine learning are presented. Through the use of deep convolutional neural networks, the velocity and pressure fields were obtained by using computational fluid dynamics (CFD) simulations as training data. The first approach, regarding the use of a convolutional neural network, proved to be successful by approximating the velocity and pressure fields with a normalized root mean squared error of (4.96¿1.83)% for the velocity field in the x direction, (17.95¿2.04)% for the velocity field in the y direction and (15.77¿1.66)% for the pressure field. As well as this, the use of this convolutional neural network proved to be (23410¿5405) times faster than common CFD solvers. The second approach, concerning the inclusion of a custom physics informed loss function in the latter convolutional neural network... |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-08-10T18:33:10Z |
dc.date.available.none.fl_str_mv |
2021-08-10T18:33:10Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/51595 |
dc.identifier.pdf.none.fl_str_mv |
22795.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/51595 |
identifier_str_mv |
22795.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
13 hojas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Ingeniería Mecánica |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.none.fl_str_mv |
Departamento de Ingeniería Mecánica |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/1bbb5e23-d228-43cb-ba15-ffdb009eaf16/download https://repositorio.uniandes.edu.co/bitstreams/b813ceb6-1ea3-4925-9fdb-cb8e97656571/download https://repositorio.uniandes.edu.co/bitstreams/58cd6deb-8c1e-48e0-8eea-589093776dd5/download |
bitstream.checksum.fl_str_mv |
559348626f2d71d62fde17ae8da32f8f 7d92a9475afca3197a347e95f26bf637 79a933e2341ba72c62618c523fa8363d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812134018602237952 |