Random numerical semigroups and sums of subsets of cyclic groups

We investigate properties of random numerical semigroups using a probabilistic model based on the Erdös-Rényi model for random graphs and propose a new probabilistic model. We provide a new and more elementary proof of a lower bound of the expected embedding dimension, genus, and Frobenius number of...

Full description

Autores:
Morales Duarte, Santiago
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/73668
Acceso en línea:
https://hdl.handle.net/1992/73668
Palabra clave:
Numerical semigroups
Probabilistic methods
Matemáticas
Rights
openAccess
License
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id UNIANDES2_67bfff6ba760efbda37a43dc23d8e3c1
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/73668
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Random numerical semigroups and sums of subsets of cyclic groups
title Random numerical semigroups and sums of subsets of cyclic groups
spellingShingle Random numerical semigroups and sums of subsets of cyclic groups
Numerical semigroups
Probabilistic methods
Matemáticas
title_short Random numerical semigroups and sums of subsets of cyclic groups
title_full Random numerical semigroups and sums of subsets of cyclic groups
title_fullStr Random numerical semigroups and sums of subsets of cyclic groups
title_full_unstemmed Random numerical semigroups and sums of subsets of cyclic groups
title_sort Random numerical semigroups and sums of subsets of cyclic groups
dc.creator.fl_str_mv Morales Duarte, Santiago
dc.contributor.advisor.none.fl_str_mv Bogart, Tristram
dc.contributor.author.none.fl_str_mv Morales Duarte, Santiago
dc.contributor.jury.none.fl_str_mv Quiroz Salazar, Adolfo José
dc.subject.keyword.eng.fl_str_mv Numerical semigroups
Probabilistic methods
topic Numerical semigroups
Probabilistic methods
Matemáticas
dc.subject.themes.spa.fl_str_mv Matemáticas
description We investigate properties of random numerical semigroups using a probabilistic model based on the Erdös-Rényi model for random graphs and propose a new probabilistic model. We provide a new and more elementary proof of a lower bound of the expected embedding dimension, genus, and Frobenius number of a random semigroup, and provide a tighter probabilistic upper bound. Our results derive from the application of the Probabilistic Method to the generation of random numerical semigroups and observations about sums of uniformly random subsets of cyclic groups. We include experiments that motivated our results.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-12-06
dc.date.accessioned.none.fl_str_mv 2024-01-31T14:30:19Z
dc.date.available.none.fl_str_mv 2024-01-31T14:30:19Z
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/73668
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/73668
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv A. Assi, M. D’Anna, and P. A. Garcı́a-Sánchez, Numerical semigroups and applications. Springer Nature, 2020, vol. 3.
J. De Loera, C. O’Neill, and D. Wilburne, “Random numerical semigroups and a simplicial complex of irreducible semigroups,” The Electronic Journal of Combinatorics, P4–37, 2018.
C. O’Neill, Numsgps-sage, https://github.com/coneill-math/numsgps-sage, 2013.
M. Delgado, P. Garcıa-Sánchez, and J. Morais, “Numericalsgps,” A GAP package for numerical semigroups. Available via http://www. gap-system. org, 2015.
M. Delgado, “Intpic,” a GAP package for drawing integers, Available via http://www. fc.up.pt/cmup/mdelgado/software, 2013.
S. Morales, Randnumsgps, https://github.com/smoralesduarte/randnumsgps, 2023.
N. Alon and J. H. Spencer, The Probabilistic Method. John Wiley & Sons, 2016.
J. Park and H. Pham, “A proof of the Kahn–Kalai conjecture,” Journal of the American Mathematical Society, 2023.
J. C. Rosales, P. A. Garcı́a-Sánchez, et al., Numerical semigroups. Springer, 2009.
J. Grime. “How to order 43 mcnuggets - numberphile,” Youtube. (2012), [Online]. Avail- able: https://www.youtube.com/watch?v=vNTSugyS038&ab_channel=Numberphile.
J. L. Ramı́rez-Alfonsı́n, “Complexity of the Frobenius problem,” Combinatorica, vol. 16, pp. 143–147, 1996.
I. Aliev, M. Henk, and A. Hinrichs, “Expected Frobenius numbers,” Journal of Combi- natorial Theory, Series A, vol. 118, no. 2, pp. 525–531, 2011.
R. Apéry, “Sur les branches superlinéaires des courbes algébriques,” CR Acad. Sci. Paris, vol. 222, no. 1198, p. 2000, 1946.
E. S. Selmer, “On the linear Diophantine problem of Frobenius,” 1977.
H. S. Wilf, “A circle-of-lights algorithm for the “money-changing problem”,” The American Mathematical Monthly, vol. 85, no. 7, pp. 562–565, 1978.
M. Delgado, “Conjecture of Wilf: A survey,” Numerical Semigroups: IMNS 2018, pp. 39–62, 2020.
V. I. Arnold, “Weak asymptotics for the numbers of solutions of Diophantine problems,” Functional Analysis and Its Applications, vol. 33, no. 4, pp. 292–293, 1999.
P. Erdös and R. Graham, “On a linear Diophantine problem of Frobenius,” Acta Arithmetica, vol. 1, no. 21, pp. 399–408, 1972.
I. M. Aliev and P. M. Gruber, “An optimal lower bound for the Frobenius problem,” Journal of Number Theory, vol. 123, no. 1, pp. 71–79, 2007.
V. I. Arnold, Arnold’s problems. Springer, 2004.
R. P. Stanley, Combinatorics and commutative algebra. Springer Science & Business Media, 2007, vol. 41.
G. H. Hardy and E. M. Wright, An introduction to the theory of numbers. Oxford university press, 1979.
W. Feller, An introduction to probability theory and its applications. John Wiley & Sons, 1971, vol. 1.
dc.rights.uri.none.fl_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 47 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Matemáticas
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Matemáticas
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/7ee3293c-a300-44c3-9056-eb953c01fb6e/download
https://repositorio.uniandes.edu.co/bitstreams/db0a3d2d-525a-46df-ba6a-befc0c2f0f28/download
https://repositorio.uniandes.edu.co/bitstreams/500494eb-b4bd-4e02-9097-a80877b6e577/download
https://repositorio.uniandes.edu.co/bitstreams/df2e2b7a-aef1-4e53-bbba-2870061df2ab/download
https://repositorio.uniandes.edu.co/bitstreams/903d7066-86fe-402a-a7f2-cc82c73a75c3/download
https://repositorio.uniandes.edu.co/bitstreams/bfae791b-d51c-466e-8703-2b078e6198fa/download
https://repositorio.uniandes.edu.co/bitstreams/81e68f71-b522-489d-be7a-64a31e9c7a16/download
bitstream.checksum.fl_str_mv e2a24fe9ecc2316626612aa69fc863a2
82a28756d18f4126551776ddc526564e
ae9e573a68e7f92501b6913cc846c39f
6cbd006db2e4b40fe3eb41f2cc8604c8
3c9cc75f74a0f17e30ef4edcf033785a
7739281520db87b5cfc840145cafcb87
f4eca0be28b802bbeaea4f6c9dd83986
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133996179488768
spelling Bogart, TristramMorales Duarte, SantiagoQuiroz Salazar, Adolfo José2024-01-31T14:30:19Z2024-01-31T14:30:19Z2023-12-06https://hdl.handle.net/1992/73668instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/We investigate properties of random numerical semigroups using a probabilistic model based on the Erdös-Rényi model for random graphs and propose a new probabilistic model. We provide a new and more elementary proof of a lower bound of the expected embedding dimension, genus, and Frobenius number of a random semigroup, and provide a tighter probabilistic upper bound. Our results derive from the application of the Probabilistic Method to the generation of random numerical semigroups and observations about sums of uniformly random subsets of cyclic groups. We include experiments that motivated our results.MatemáticoPregrado47 páginasapplication/pdfengUniversidad de los AndesMatemáticasFacultad de CienciasDepartamento de Matemáticashttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Random numerical semigroups and sums of subsets of cyclic groupsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPNumerical semigroupsProbabilistic methodsMatemáticasA. Assi, M. D’Anna, and P. A. Garcı́a-Sánchez, Numerical semigroups and applications. Springer Nature, 2020, vol. 3.J. De Loera, C. O’Neill, and D. Wilburne, “Random numerical semigroups and a simplicial complex of irreducible semigroups,” The Electronic Journal of Combinatorics, P4–37, 2018.C. O’Neill, Numsgps-sage, https://github.com/coneill-math/numsgps-sage, 2013.M. Delgado, P. Garcıa-Sánchez, and J. Morais, “Numericalsgps,” A GAP package for numerical semigroups. Available via http://www. gap-system. org, 2015.M. Delgado, “Intpic,” a GAP package for drawing integers, Available via http://www. fc.up.pt/cmup/mdelgado/software, 2013.S. Morales, Randnumsgps, https://github.com/smoralesduarte/randnumsgps, 2023.N. Alon and J. H. Spencer, The Probabilistic Method. John Wiley & Sons, 2016.J. Park and H. Pham, “A proof of the Kahn–Kalai conjecture,” Journal of the American Mathematical Society, 2023.J. C. Rosales, P. A. Garcı́a-Sánchez, et al., Numerical semigroups. Springer, 2009.J. Grime. “How to order 43 mcnuggets - numberphile,” Youtube. (2012), [Online]. Avail- able: https://www.youtube.com/watch?v=vNTSugyS038&ab_channel=Numberphile.J. L. Ramı́rez-Alfonsı́n, “Complexity of the Frobenius problem,” Combinatorica, vol. 16, pp. 143–147, 1996.I. Aliev, M. Henk, and A. Hinrichs, “Expected Frobenius numbers,” Journal of Combi- natorial Theory, Series A, vol. 118, no. 2, pp. 525–531, 2011.R. Apéry, “Sur les branches superlinéaires des courbes algébriques,” CR Acad. Sci. Paris, vol. 222, no. 1198, p. 2000, 1946.E. S. Selmer, “On the linear Diophantine problem of Frobenius,” 1977.H. S. Wilf, “A circle-of-lights algorithm for the “money-changing problem”,” The American Mathematical Monthly, vol. 85, no. 7, pp. 562–565, 1978.M. Delgado, “Conjecture of Wilf: A survey,” Numerical Semigroups: IMNS 2018, pp. 39–62, 2020.V. I. Arnold, “Weak asymptotics for the numbers of solutions of Diophantine problems,” Functional Analysis and Its Applications, vol. 33, no. 4, pp. 292–293, 1999.P. Erdös and R. Graham, “On a linear Diophantine problem of Frobenius,” Acta Arithmetica, vol. 1, no. 21, pp. 399–408, 1972.I. M. Aliev and P. M. Gruber, “An optimal lower bound for the Frobenius problem,” Journal of Number Theory, vol. 123, no. 1, pp. 71–79, 2007.V. I. Arnold, Arnold’s problems. Springer, 2004.R. P. Stanley, Combinatorics and commutative algebra. Springer Science & Business Media, 2007, vol. 41.G. H. Hardy and E. M. Wright, An introduction to the theory of numbers. Oxford university press, 1979.W. Feller, An introduction to probability theory and its applications. John Wiley & Sons, 1971, vol. 1.201913369PublicationORIGINALautorizacion tesis (signed).pdfautorizacion tesis (signed).pdfHIDEapplication/pdf329398https://repositorio.uniandes.edu.co/bitstreams/7ee3293c-a300-44c3-9056-eb953c01fb6e/downloade2a24fe9ecc2316626612aa69fc863a2MD51Random numerical semigroups and sums of subsets of cyclic groups.pdfRandom numerical semigroups and sums of subsets of cyclic groups.pdfapplication/pdf275231https://repositorio.uniandes.edu.co/bitstreams/db0a3d2d-525a-46df-ba6a-befc0c2f0f28/download82a28756d18f4126551776ddc526564eMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/500494eb-b4bd-4e02-9097-a80877b6e577/downloadae9e573a68e7f92501b6913cc846c39fMD53TEXTautorizacion tesis (signed).pdf.txtautorizacion tesis (signed).pdf.txtExtracted texttext/plain2032https://repositorio.uniandes.edu.co/bitstreams/df2e2b7a-aef1-4e53-bbba-2870061df2ab/download6cbd006db2e4b40fe3eb41f2cc8604c8MD54Random numerical semigroups and sums of subsets of cyclic groups.pdf.txtRandom numerical semigroups and sums of subsets of cyclic groups.pdf.txtExtracted texttext/plain65704https://repositorio.uniandes.edu.co/bitstreams/903d7066-86fe-402a-a7f2-cc82c73a75c3/download3c9cc75f74a0f17e30ef4edcf033785aMD56THUMBNAILautorizacion tesis (signed).pdf.jpgautorizacion tesis (signed).pdf.jpgGenerated Thumbnailimage/jpeg11016https://repositorio.uniandes.edu.co/bitstreams/bfae791b-d51c-466e-8703-2b078e6198fa/download7739281520db87b5cfc840145cafcb87MD55Random numerical semigroups and sums of subsets of cyclic groups.pdf.jpgRandom numerical semigroups and sums of subsets of cyclic groups.pdf.jpgGenerated Thumbnailimage/jpeg6771https://repositorio.uniandes.edu.co/bitstreams/81e68f71-b522-489d-be7a-64a31e9c7a16/downloadf4eca0be28b802bbeaea4f6c9dd83986MD571992/73668oai:repositorio.uniandes.edu.co:1992/736682024-02-16 15:17:07.365https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K