Exploration and proposal of time dependent features for use in supervised machine learning and star classification in the GAIA south ecliptic pole field
Supervised learning methods bear tools such that jobs like classification and analysis become much more efficient. In general, these technological tools have a large pool of possible uses among various fields. In particular, in the field of astronomy these tools have clear uses on star classificatio...
- Autores:
-
León Figueroa, Benjamín
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2020
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/51268
- Acceso en línea:
- http://hdl.handle.net/1992/51268
- Palabra clave:
- Estrellas
Astronomía
Aprendizaje automático (Inteligencia artificial)
Física
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
UNIANDES2_67174fad355a2f20021fbfe854ab13b2 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/51268 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Exploration and proposal of time dependent features for use in supervised machine learning and star classification in the GAIA south ecliptic pole field |
title |
Exploration and proposal of time dependent features for use in supervised machine learning and star classification in the GAIA south ecliptic pole field |
spellingShingle |
Exploration and proposal of time dependent features for use in supervised machine learning and star classification in the GAIA south ecliptic pole field Estrellas Astronomía Aprendizaje automático (Inteligencia artificial) Física |
title_short |
Exploration and proposal of time dependent features for use in supervised machine learning and star classification in the GAIA south ecliptic pole field |
title_full |
Exploration and proposal of time dependent features for use in supervised machine learning and star classification in the GAIA south ecliptic pole field |
title_fullStr |
Exploration and proposal of time dependent features for use in supervised machine learning and star classification in the GAIA south ecliptic pole field |
title_full_unstemmed |
Exploration and proposal of time dependent features for use in supervised machine learning and star classification in the GAIA south ecliptic pole field |
title_sort |
Exploration and proposal of time dependent features for use in supervised machine learning and star classification in the GAIA south ecliptic pole field |
dc.creator.fl_str_mv |
León Figueroa, Benjamín |
dc.contributor.advisor.none.fl_str_mv |
García Varela, José Alejandro |
dc.contributor.author.none.fl_str_mv |
León Figueroa, Benjamín |
dc.contributor.jury.none.fl_str_mv |
Sabogal Martínez, Beatriz Eugenia |
dc.subject.armarc.none.fl_str_mv |
Estrellas Astronomía Aprendizaje automático (Inteligencia artificial) |
topic |
Estrellas Astronomía Aprendizaje automático (Inteligencia artificial) Física |
dc.subject.themes.none.fl_str_mv |
Física |
description |
Supervised learning methods bear tools such that jobs like classification and analysis become much more efficient. In general, these technological tools have a large pool of possible uses among various fields. In particular, in the field of astronomy these tools have clear uses on star classification. In relation to this, 15 new statistical features were proposed in an attempt to obtain information from light curves in the Large Magellanic Cloud. Moreover, random forest, k-neighbours, decision trees and support vector machines classifiers were trained with a series of widely used features and proposed features in order to classify the set of stars described by previous works. After selecting and optimizing the appropriate model, we obtain an F1 score of 0.8130 en relation to the results in the literature using a random forest classifier. About this, the classifier was trained with a default number of 1000 light curves per star class with... |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-08-10T18:17:56Z |
dc.date.available.none.fl_str_mv |
2021-08-10T18:17:56Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/51268 |
dc.identifier.pdf.none.fl_str_mv |
23681.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/51268 |
identifier_str_mv |
23681.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
89 hojas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Física |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Física |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/c7ebd771-e299-4d98-8328-a9de98832a52/download https://repositorio.uniandes.edu.co/bitstreams/de85d97f-f8bd-4da1-8d70-7be6fd6eb0fc/download https://repositorio.uniandes.edu.co/bitstreams/d70ef38b-26fb-43ca-9598-bc4da2626def/download |
bitstream.checksum.fl_str_mv |
d16318f86f9027f9dc55bec0d7437f72 cb59ac75cd0f53e46cb2a066242c5916 9eb4eda275d76fe768c3c2986718dd33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1828159247102246912 |
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2García Varela, José Alejandrovirtual::3755-1León Figueroa, Benjamín6c9d0fa9-35c8-4a5f-b43f-86cecbbadf7b500Sabogal Martínez, Beatriz Eugenia2021-08-10T18:17:56Z2021-08-10T18:17:56Z2020http://hdl.handle.net/1992/5126823681.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Supervised learning methods bear tools such that jobs like classification and analysis become much more efficient. In general, these technological tools have a large pool of possible uses among various fields. In particular, in the field of astronomy these tools have clear uses on star classification. In relation to this, 15 new statistical features were proposed in an attempt to obtain information from light curves in the Large Magellanic Cloud. Moreover, random forest, k-neighbours, decision trees and support vector machines classifiers were trained with a series of widely used features and proposed features in order to classify the set of stars described by previous works. After selecting and optimizing the appropriate model, we obtain an F1 score of 0.8130 en relation to the results in the literature using a random forest classifier. About this, the classifier was trained with a default number of 1000 light curves per star class with...Los métodos de aprendizaje supervisado cuentan con herramientas para que trabajos como clasificación y análisis sean mucho más eficientes. En general, estas herramientas computacionales tienen una variedad de uso indescriptible. En particular, en la rama de astronomía estas herramientas se pueden utilizar claramente para clasificación de estrellas. En relación a esto, se propusieron 15 nuevos característicos que intentan obtener información de las curvas de luz de estrellas en la nube mayor de Magallanes. Así, se utilizaron los clasificadores bosques aleatorios, árboles de decisión, máquinas de soporte vectorial y k-vecinos más cercanos entrenados con una serie de estadísticos o \textit{features} tanto propuestas como utilizadas ampliamente en la literatura para clasificar el conjunto de estrellas variables descritas en otros trabajos previos. Después de elegir y optimizar el modelo apropiado se consigue un valor de F1 de 0.8130 en relación a los resultados de la literatura utilizando el clasificador de bosques aleatorios...FísicoPregrado89 hojasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaExploration and proposal of time dependent features for use in supervised machine learning and star classification in the GAIA south ecliptic pole fieldTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPEstrellasAstronomíaAprendizaje automático (Inteligencia artificial)Física201632974Publication88a1271b-7c5b-4cba-a02a-87878aba01e4virtual::3755-188a1271b-7c5b-4cba-a02a-87878aba01e4virtual::3755-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000382418virtual::3755-1THUMBNAIL23681.pdf.jpg23681.pdf.jpgIM Thumbnailimage/jpeg7773https://repositorio.uniandes.edu.co/bitstreams/c7ebd771-e299-4d98-8328-a9de98832a52/downloadd16318f86f9027f9dc55bec0d7437f72MD55ORIGINAL23681.pdfapplication/pdf7059604https://repositorio.uniandes.edu.co/bitstreams/de85d97f-f8bd-4da1-8d70-7be6fd6eb0fc/downloadcb59ac75cd0f53e46cb2a066242c5916MD51TEXT23681.pdf.txt23681.pdf.txtExtracted texttext/plain114948https://repositorio.uniandes.edu.co/bitstreams/d70ef38b-26fb-43ca-9598-bc4da2626def/download9eb4eda275d76fe768c3c2986718dd33MD541992/51268oai:repositorio.uniandes.edu.co:1992/512682024-03-13 12:30:58.726http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |