Biosíntesis de lípidos en el estudio de blancos terapéuticos para el tratamiento de infecciones fúngicas
Los hongos causan micosis en los humanos, desde infecciones superficiales hasta sistémicas. Se estima que cerca de 300 billones de personas alrededor del mundo padecen de alguna de estas infecciones y cerca de 25 millones está en riesgo de morir o de perder la visión. En el 2022 la OMS (organización...
- Autores:
-
Castaño Aguirre, María Camila
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/64328
- Acceso en línea:
- http://hdl.handle.net/1992/64328
- Palabra clave:
- Lípidos
Infecciones Fúngicas
Rutas metabolicas
Hongos
Fosfolípidos
Esfingolípidos
Ácidos grasos
Microbiología
- Rights
- openAccess
- License
- Atribución-CompartirIgual 4.0 Internacional
id |
UNIANDES2_64cc207fcdacc1f85eebee74eb4084f6 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/64328 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.none.fl_str_mv |
Biosíntesis de lípidos en el estudio de blancos terapéuticos para el tratamiento de infecciones fúngicas |
title |
Biosíntesis de lípidos en el estudio de blancos terapéuticos para el tratamiento de infecciones fúngicas |
spellingShingle |
Biosíntesis de lípidos en el estudio de blancos terapéuticos para el tratamiento de infecciones fúngicas Lípidos Infecciones Fúngicas Rutas metabolicas Hongos Fosfolípidos Esfingolípidos Ácidos grasos Microbiología |
title_short |
Biosíntesis de lípidos en el estudio de blancos terapéuticos para el tratamiento de infecciones fúngicas |
title_full |
Biosíntesis de lípidos en el estudio de blancos terapéuticos para el tratamiento de infecciones fúngicas |
title_fullStr |
Biosíntesis de lípidos en el estudio de blancos terapéuticos para el tratamiento de infecciones fúngicas |
title_full_unstemmed |
Biosíntesis de lípidos en el estudio de blancos terapéuticos para el tratamiento de infecciones fúngicas |
title_sort |
Biosíntesis de lípidos en el estudio de blancos terapéuticos para el tratamiento de infecciones fúngicas |
dc.creator.fl_str_mv |
Castaño Aguirre, María Camila |
dc.contributor.advisor.none.fl_str_mv |
Celis Ramírez, Adriana Marcela |
dc.contributor.author.none.fl_str_mv |
Castaño Aguirre, María Camila |
dc.contributor.researchgroup.es_CO.fl_str_mv |
Grupo de investigación Celular y Molecular de Microorganismos Patógenos (CeMoP) |
dc.subject.keyword.none.fl_str_mv |
Lípidos Infecciones Fúngicas Rutas metabolicas Hongos Fosfolípidos Esfingolípidos Ácidos grasos |
topic |
Lípidos Infecciones Fúngicas Rutas metabolicas Hongos Fosfolípidos Esfingolípidos Ácidos grasos Microbiología |
dc.subject.themes.es_CO.fl_str_mv |
Microbiología |
description |
Los hongos causan micosis en los humanos, desde infecciones superficiales hasta sistémicas. Se estima que cerca de 300 billones de personas alrededor del mundo padecen de alguna de estas infecciones y cerca de 25 millones está en riesgo de morir o de perder la visión. En el 2022 la OMS (organización Mundial de la Salud) publicó el listado de hongos prioritarios para la salud, en un esfuerzo de reconocer su importancia e impacto en la salud pública. La resistencia a antimicrobianos es un problema en aumento y no es ajeno a los antifúngicos. Los lípidos por la diversidad de funciones que cumplen en el funcionamiento celular han sido objeto en los últimos años de investigación como potenciales candidatos terapéuticos para el tratamiento de infecciones por hongos. El objetivo de esta revisión es identificar los lípidos que podrían ser nuevos blancos terapéuticos como alternativas que contribuyan en un positivo desenlace clínico de los pacientes que padecen estas infecciones. Para lo cual se llevó a cabo una revisión de información acerca de las rutas de síntesis de lípidos y su relación como factores de virulencia en hongos con el fin de evidenciar su aplicabilidad como blancos terapéuticos. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-01-30T14:41:35Z |
dc.date.available.none.fl_str_mv |
2023-01-30T14:41:35Z |
dc.date.issued.none.fl_str_mv |
2023-01-20 |
dc.type.es_CO.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.es_CO.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/64328 |
dc.identifier.instname.es_CO.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.es_CO.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.es_CO.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/64328 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
spa |
language |
spa |
dc.relation.references.es_CO.fl_str_mv |
Akpinar-Bayizit, A. (2014). Fungal Lipids: The Biochemistry of Lipid Accumulation. International Journal of Chemical Engineering and Applications, 5(5), 409-414. https://doi.org/10.7763/IJCEA.2014.V5.419 Bagam, P., Singh, D. P., Inda, M. E., & Batra, S. (2017). Unraveling the role of membrane microdomains during microbial infections. Cell Biology and Toxicology, 33(5), 429-455. https://doi.org/10.1007/s10565-017-9386-9 Bittman, R. (2013). Glycerolipids: Chemistry. En G. C. K. Roberts (Ed.), Encyclopedia of Biophysics (pp. 907-914). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-16712-6_527 Blanco, A., & Blanco, G. (2022). Lipids. En Medical Biochemistry (pp. 105-129). Elsevier. https://doi.org/10.1016/B978-0-323-91599-1.00003-1 Boudière, L., Michaud, M., Petroutsos, D., Rébeillé, F., Falconet, D., Bastien, O., Roy, S., Finazzi, G., Rolland, N., Jouhet, J., Block, M. A., & Maréchal, E. (2014). Glycerolipids in photosynthesis: Composition, synthesis and trafficking. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1837(4), 470-480. https://doi.org/10.1016/j.bbabio.2013.09.007 Carrillo-Muñoz, A. J., Giusiano, G., Ezkurra, P. A., & Quindós, G. (2006). Antifungal agents: Mode of action in yeast cells. 19, 10. Carman, G. M., & Han, G.-S. (2011). Regulation of Phospholipid Synthesis in the Yeast Saccharomyces cerevisiae. Annual Review of Biochemistry, 80(1), 859-883. https://doi.org/10.1146/annurev-biochem-060409-092229 Cassilly, C., & Reynolds, T. (2018). PS, It¿s Complicated: The Roles of Phosphatidylserine and Phosphatidylethanolamine in the Pathogenesis of Candida albicans and Other Microbial Pathogens. Journal of Fungi, 4(1), 28. https://doi.org/10.3390/jof4010028 Chen, M., Xu, Y., Hong, N., Yang, Y., Lei, W., Du, L., Zhao, J., Lei, X., Xiong, L., Cai, L., Xu, H., Pan, W., & Liao, W. (2018). Epidemiology of fungal infections in China. Frontiers of Medicine, 12(1), 58-75. https://doi.org/10.1007/s11684-017-0601-0 Chen, S. C. A., Muller, M., Zhou, J. Z., Wright, L. C., & Sorrell, T. C. (1997). Phospholipase Activity in Cryptococcus neoformans: A New Virulence Factor? Journal of Infectious Diseases, 175(2), 414-420. https://doi.org/10.1093/infdis/175.2.414 Chen, Y.-L., Montedonico, A. E., Kauffman, S., Dunlap, J. R., Menn, F.-M., & Reynolds, T. B. (2010). Phosphatidylserine synthase and phosphatidylserine decarboxylase are essential for cell wall integrity and virulence in Candida albicans. Molecular Microbiology, 75(5), 1112-1132. https://doi.org/10.1111/j.1365-2958.2009.07018.x D¿Angelo, G., Capasso, S., Sticco, L., & Russo, D. (2013). Glycosphingolipids: Synthesis and functions. The FEBS Journal, 280(24), 6338-6353. https://doi.org/10.1111/febs.12559 de Carvalho, C., & Caramujo, M. (2018). The Various Roles of Fatty Acids. Molecules, 23(10), 2583. https://doi.org/10.3390/molecules23102583 Del Poeta, M., Nimrichter, L., Rodrigues, M. L., & Luberto, C. (2014). Synthesis and Biological Properties of Fungal Glucosylceramide. PLoS Pathogens, 10(1), e1003832. https://doi.org/10.1371/journal.ppat.1003832 Donato, P., Dugo, P., & Mondello, L. (2017). Separation of lipids. En Liquid Chromatography (pp. 201-243). Elsevier. https://doi.org/10.1016/B978-0-12-805392-8.00008-6 Dufourc, E. J. (2008). Sterols and membrane dynamics. Journal of Chemical Biology, 1(1-4), 63-77. https://doi.org/10.1007/s12154-008-0010-6 Dupont, S., Lemetais, G., Ferreira, T., Cayot, P., Gervais, P., & Beney, L. (2012). ERGOSTEROL BIOSYNTHESIS: A FUNGAL PATHWAY FOR LIFE ON LAND? Evolution, 66(9), 2961-2968. https://doi.org/10.1111/j.1558-5646.2012.01667.x Eoin Fahy, Cotter, D., Sud, M., & Subramaniam, S. (2011). Lipid classification, structures and tools. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1811(11), 637-647. https://doi.org/10.1016/j.bbalip.2011.06.009 Fahy, E., Cotter, D., Sud, M., & Subramaniam, S. (2011). Lipid classification, structures and tools. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1811(11), 637-647. https://doi.org/10.1016/j.bbalip.2011.06.009 Fahy, E., Subramaniam, S., Brown, H. A., Glass, C. K., Merrill, A. H., Murphy, R. C., Raetz, C. R. H., Russell, D. W., Seyama, Y., Shaw, W., Shimizu, T., Spener, F., van Meer, G., VanNieuwenhze, M. S., White, S. H., Witztum, J. L., & Dennis, E. A. (2005). A comprehensive classification system for lipids. Journal of Lipid Research, 46(5), 839-861. https://doi.org/10.1194/jlr.E400004-JLR200 Farnoud, A. M., Toledo, A. M., Konopka, J. B., Del Poeta, M., & London, E. (2015). Raft-Like Membrane Domains in Pathogenic Microorganisms. Current topics in membranes, 75, 233-268. https://doi.org/10.1016/bs.ctm.2015.03.005 Fernandes, C. M., Goldman, G. H., & Del Poeta, M. (2018). Biological Roles Played by Sphingolipids in Dimorphic and Filamentous Fungi. MBio, 9(3), e00642-18. https://doi.org/10.1128/mBio.00642-18 Fontaine, T. (2017). Sphingolipids from the human fungal pathogen Aspergillus fumigatus. Biochimie, 141, 9-15. https://doi.org/10.1016/j.biochi.2017.06.012 Fraga, M. E., Santana, D. M. N., Gatti, M. J., Direito, G. M., Cavaglieri, L. R., & Rosa, C. A. R. (2008). Characterization of Aspergillus species based on fatty acid profiles. Memórias Do Instituto Oswaldo Cruz, 103(6), 540-544. https://doi.org/10.1590/S0074-02762008000600005 Futerman, A. H. (2021). Sphingolipids. En Biochemistry of Lipids, Lipoproteins and Membranes (pp. 281-316). Elsevier. https://doi.org/10.1016/B978-0-12-824048-9.00009-2 Garber, G. (2001). An Overview of Fungal Infections: Drugs, 61(Supplement 1), 1-12. https://doi.org/10.2165/00003495-200161001-00001 Gnat, S., Lagowski, D., Nowakiewicz, A., & Dylag, M. (2021). A global view on fungal infections in humans and animals: Opportunistic infections and microsporidioses. Journal of Applied Microbiology, 131(5), 2095-2113. https://doi.org/10.1111/jam.15032 Guimarães, A., & Venâncio, A. (2022). The Potential of Fatty Acids and Their Derivatives as Antifungal Agents: A Review. Toxins, 14(3), 188. https://doi.org/10.3390/toxins14030188 Hay, R. J. (2006). Fungal infections. Clinics in Dermatology, 24(3), 201-212. https://doi.org/10.1016/j.clindermatol.2005.11.011 Hay, R. J. (2014). Fungal Infections. En Manson's Tropical Infectious Diseases (pp. 441-458.e2). Elsevier. https://doi.org/10.1016/B978-0-7020-5101-2.00039-X Hein, E.-M., & Hayen, H. (2012). Comparative Lipidomic Profiling of S. cerevisiae and Four Other Hemiascomycetous Yeasts. Metabolites, 2(1), 254-267. https://doi.org/10.3390/metabo2010254 Heitman, J. (2011). Microbial pathogens in the fungal kingdom. Fungal Biology Reviews, 25(1), 48-60. https://doi.org/10.1016/j.fbr.2011.01.003 Heung, L. J., Luberto, C., & Del Poeta, M. (2006). Role of Sphingolipids in Microbial Pathogenesis. Infection and Immunity, 74(1), 28-39. https://doi.org/10.1128/IAI.74.1.28-39.2006 Jala, R. C. R., Vudhgiri, S., & Kumar, C. G. (2022). A comprehensive review on natural occurrence, synthesis and biological activities of glycolipids. Carbohydrate Research, 516, 108556. https://doi.org/10.1016/j.carres.2022.108556 Janbon, G., Quintin, J., Lanternier, F., & d'Enfert, C. (2019). Studying fungal pathogens of humans and fungal infections: Fungal diversity and diversity of approaches. Genes & Immunity, 20(5), 403-414. https://doi.org/10.1038/s41435-019-0071-2 Jiang, C., Ge, J., He, B., & Zeng, B. (2021). Glycosphingolipids in Filamentous Fungi: Biological Roles and Potential Applications in Cosmetics and Health Foods. Frontiers in Microbiology, 12, 690211. https://doi.org/10.3389/fmicb.2021.690211 Kim, J.-Y. (2016). Human fungal pathogens: Why should we learn? Journal of Microbiology, 54(3), 145-148. https://doi.org/10.1007/s12275-016-0647-8 Klose, C., Ejsing, C. S., García-Sáez, A. J., Kaiser, H.-J., Sampaio, J. L., Surma, M. A., Shevchenko, A., Schwille, P., & Simons, K. (2010). Yeast Lipids Can Phase-separate into Micrometer-scale Membrane Domains. The Journal of Biological Chemistry, 285(39), 30224-30232. https://doi.org/10.1074/jbc.M110.123554 Klug, L., & Daum, G. (2014). Yeast lipid metabolism at a glance. FEMS Yeast Research, 14(3), 369-388. https://doi.org/10.1111/1567-1364.12141 Loginov, D., & ¿ebela, M. (2016). Proteomics of survival structures of fungal pathogens. New Biotechnology, 33(5), 655-665. https://doi.org/10.1016/j.nbt.2015.12.011 López-Martínez, R. (1996). Los mecanismos patogénicos y de protección en las micosis*.pdf. Luberto, C., Toffaletti, D. L., Wills, E. A., Tucker, S. C., Casadevall, A., Perfect, J. R., Hannun, Y. A., & Del Poeta, M. (2001). Roles for inositol-phosphoryl ceramide synthase 1 (IPC1) in pathogenesis of C. neoformans. Genes & Development, 15(2), 201-212. Mattner, J. (2017). The role of lipids in host microbe interactions. Frontiers in Bioscience, 22(9), 1581-1598. https://doi.org/10.2741/4559 Mbuyane, L. L., Bauer, F. F., & Divol, B. (2021). The metabolism of lipids in yeasts and applications in oenology. Food Research International, 141, 110142. https://doi.org/10.1016/j.foodres.2021.110142 Merrill, A. H., Sullards, M. C., Wang, E., Voss, K. A., & Riley, R. T. (2001). Sphingolipid metabolism: Roles in signal transduction and disruption by fumonisins. Environmental Health Perspectives, 109(Suppl 2), 283-289. Mor, V., Rella, A., Farnoud, A. M., Singh, A., Munshi, M., Bryan, A., Naseem, S., Konopka, J. B., Ojima, I., Bullesbach, E., Ashbaugh, A., Linke, M. J., Cushion, M., Collins, M., Ananthula, H. K., Sallans, L., Desai, P. B., Wiederhold, N. P., Fothergill, A. W., ¿ Del Poeta, M. (2015). Identification of a New Class of Antifungals Targeting the Synthesis of Fungal Sphingolipids. mBio, 6(3), e00647-15. https://doi.org/10.1128/mBio.00647-15 Murphy, R. C., Leiker, T. J., & Barkley, R. M. (2011). Glycerolipid and Cholesterol Ester Analyses in Biological Samples by Mass Spectrometry. Biochimica et biophysica acta, 1811(11), 776-783. https://doi.org/10.1016/j.bbalip.2011.06.019 Normile, T. G., McEvoy, K., & Del Poeta, M. (2020). Steryl Glycosides in Fungal Pathogenesis: An Understudied Immunomodulatory Adjuvant. Journal of Fungi, 6(1), 25. https://doi.org/10.3390/jof6010025 One Health: Fungal Pathogens of Humans, Animals, and Plants. (2017). Pan, J., Hu, C., & Yu, J.-H. (2018). Lipid Biosynthesis as an Antifungal Target. Journal of Fungi, 4(2), 50. https://doi.org/10.3390/jof4020050 Qiu, M., Wang, Y., Sun, L., Deng, Q., & Zhao, J. (2021). Fatty Acids and Oxylipins as Antifungal and Anti-Mycotoxin Agents in Food: A Review. Toxins, 13(12), 852. https://doi.org/10.3390/toxins13120852 Reddy, G. K. K., Padmavathi, A. R., & Nancharaiah, Y. V. (2022). Fungal infections: Pathogenesis, antifungals and alternate treatment approaches. Current Research in Microbial Sciences, 3, 100137. https://doi.org/10.1016/j.crmicr.2022.100137 Rella, A., Farnoud, A. M., & Del Poeta, M. (2016). Plasma membrane lipids and their role in fungal virulence. Progress in Lipid Research, 61, 63-72. https://doi.org/10.1016/j.plipres.2015.11.003 Rella, A., Mor, V., Farnoud, A. M., Singh, A., Shamseddine, A. A., Ivanova, E., Carpino, N., Montagna, M. T., Luberto, C., & Del Poeta, M. (2015). Role of Sterylglucosidase 1 (Sgl1) on the pathogenicity of Cryptococcus neoformans: Potential applications for vaccine development. Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.00836 Reverberi, M. (2019). Fungal lipids biosynthesis and signalling during plant-pathogen interaction. Frontiers in Bioscience, 24(1), 172-185. https://doi.org/10.2741/4712 Rhome, R., & Del Poeta, M. (2009). Lipid Signaling in Pathogenic Fungi. Annual Review of Microbiology, 63(1), 119-131. https://doi.org/10.1146/annurev.micro.091208.073431 Riedel, S., Hobden, J. A., Miller, S., Morse, S. A., Mietzner, T. A., Detrick, B., Mitchell, T. G., Sakanari, J. A., Hotez, P., & Mejia, R. (2019). Medical Mycology. En Jawetz, Melnick, & Adelberg's Medical Microbiology, 28e (Vol. 1 Book, Section). McGraw-Hill Education. accessmedicine.mhmedical.com/content.aspx?aid=1163284713 Rittershaus, P. C. (2006). Glucosylceramide synthase is an essential regulator of pathogenicity of Cryptococcus neoformans. Journal of Clinical Investigation, 116(6), 1651-1659. https://doi.org/10.1172/JCI27890 Róg, T., Vattulainen, I., & Karttunen, M. (2005). MODELING GLYCOLIPIDS: TAKE ONE. 10(4), 6. Rollin-Pinheiro, R., Singh, A., Barreto-Bergter, E., & Del Poeta, M. (2016). Sphingolipids as targets for treatment of fungal infections. Future Medicinal Chemistry, 8(12), 1469-1484. https://doi.org/10.4155/fmc-2016-0053 Rustan, A. C., & Drevon, C. A. (2005). Fatty Acids: Structures and Properties. En John Wiley & Sons, Ltd (Ed.), ELS (1a ed.). Wiley. https://doi.org/10.1038/npg.els.0003894 Ryan, K. J., & Ray, C. G. (2017). Patogenia y diagnóstico de las infecciones micóticas. En Sherris. Microbiología médica, 6e (Vol. 1 Book, Section). McGraw-Hill Education. accessmedicina.mhmedical.com/content.aspx?aid=1143537669 Scorzoni, L., de Paula e Silva, A. C. A., Marcos, C. M., Assato, P. A., de Melo, W. C. M. A., de Oliveira, H. C., Costa-Orlandi, C. B., Mendes-Giannini, M. J. S., & Fusco-Almeida, A. M. (2017). Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis. Frontiers in Microbiology, 8. https://www.frontiersin.org/articles/10.3389/fmicb.2017.00036 Seabra, C. L., Pinto, R. M., Nunes, C., & Reis, S. (2023). Lipids as antimicrobials. En Bioactive Lipids (pp. 209-230). Elsevier. https://doi.org/10.1016/B978-0-12-824043-4.00004-X Shea, J. M., & Del Poeta, M. (2006). Lipid signaling in pathogenic fungi. Current Opinion in Microbiology, 9(4), 352-358. https://doi.org/10.1016/j.mib.2006.06.003 Shea, J. M., Henry, J. L., & Del Poeta, M. (2006). Lipid metabolism in Cryptococcus neoformans. FEMS Yeast Research, 6(4), 469-479. https://doi.org/10.1111/j.1567-1364.2006.00080.x Singh, A., & Del Poeta, M. (2011). Lipid signalling in pathogenic fungi. Cellular microbiology, 13(2), 177-185. https://doi.org/10.1111/j.1462-5822.2010.01550.x Singh, A., MacKenzie, A., Girnun, G., & Del Poeta, M. (2017). Analysis of sphingolipids, sterols, and phospholipids in human pathogenic Cryptococcus strains. Journal of Lipid Research, 58(10), 2017-2036. https://doi.org/10.1194/jlr.M078600 Singh, A., Wang, H., Silva, L. C., Na, C., Prieto, M., Futerman, A. H., Luberto, C., & Del Poeta, M. (2012). Methylation of glycosylated sphingolipid modulates membrane lipid topography and pathogenicity of Cryptococcus neoformans: Membrane lipid topography and fungal pathogenicity. Cellular Microbiology, 14(4), 500-516. https://doi.org/10.1111/j.1462-5822.2011.01735.x Siscar-Lewin, S., Hube, B., & Brunke, S. (2022). Emergence and evolution of virulence in human pathogenic fungi. Trends in Microbiology, 30(7), 693-704. https://doi.org/10.1016/j.tim.2021.12.013 Souza, T. N., Valdez, A. F., Rizzo, J., Zamith-Miranda, D., Guimarães, A. J., Nosanchuk, J. D., & Nimrichter, L. (2021). Host cell membrane microdomains and fungal infection. Cellular Microbiology, 23(12), e13385. https://doi.org/10.1111/cmi.13385 Stahl, P. D., & Klug, M. J. (1996). Characterization and differentiation of filamentous fungi based on Fatty Acid composition. Applied and Environmental Microbiology, 62(11), 4136-4146. https://doi.org/10.1128/aem.62.11.4136-4146.1996 Sterin-Speziale, N., & Leocata Nieto, F. (2007). Los esfingolípidos en la muerte y proliferación celular.pdf. Storck, E. M., Özbalci, C., & Eggert, U. S. (2018). Lipid Cell Biology: A Focus on Lipids in Cell Division. Annual Review of Biochemistry, 87(1), 839-869. https://doi.org/10.1146/annurev-biochem-062917-012448 Sun, S., Hoy, M. J., & Heitman, J. (2020). Fungal pathogens. Current Biology, 30(19), R1163-R1169. https://doi.org/10.1016/j.cub.2020.07.032 Tam, E. W. T., Tsang, C.-C., Lau, S. K. P., & Woo, P. C. Y. (2015). Polyketides, Toxins and Pigments in Penicillium marneffei. Toxins, 7(11), 4421-4436. https://doi.org/10.3390/toxins7114421 Torres García, J. (2015). FOSFOLÍPIDOS: PROPIEDADES Y EFECTOS SOBRE LA SALUD. NUTRICION HOSPITALARIA, 1, 76-83. https://doi.org/10.3305/nh.2015.31.1.7961 Valenzuela B, R., Tapia O, G., González E, M., & Valenzuela B, A. (2011). ÁCIDOS GRASOS OMEGA-3 (EPA Y DHA) Y SU APLICACIÓN EN DIVERSAS SITUACIONES CLÍNICAS. Revista chilena de nutrición, 38(3), 356-367. https://doi.org/10.4067/S0717-75182011000300011 Van Daele, R., Spriet, I., Wauters, J., Maertens, J., Mercier, T., Van Hecke, S., & Brüggemann, R. (2019). Antifungal drugs: What brings the future? Medical Mycology, 57(Supplement_3), S328-S343. https://doi.org/10.1093/mmy/myz012 Vieira, F. S., Corrêa, G., Einicker-Lamas, M., & Coutinho-Silva, R. (2010). Host-cell lipid rafts: A safe door for micro"organisms? Biology of the Cell, 102(7), 391-407. https://doi.org/10.1042/BC20090138 Volkman, J. (2003). Sterols in microorganisms. Applied Microbiology and Biotechnology, 60(5), 495-506. https://doi.org/10.1007/s00253-002-1172-8 Wang, J., Wang, H., Zhang, C., Wu, T., Ma, Z., & Chen, Y. (2019). Phospholipid homeostasis plays an important role in fungal development, fungicide resistance and virulence in Fusarium graminearum. Phytopathology Research, 1(1), 16. https://doi.org/10.1186/s42483-019-0023-9 Woodside, J. V., & Kromhout, D. (2005). Fatty acids and CHD. Proceedings of the Nutrition Society, 64(4), 554-564. https://doi.org/10.1079/PNS2005465 World Health Organization. (2022). WHO fungal priority pathogens list to guide research, development and public health action. World Health Organization. https://apps.who.int/iris/handle/10665/363682 Xu, J. (2016). Fungal DNA barcoding. Genome, 59(11), 913-932. https://doi.org/10.1139/gen-2016-0046 Yamada, T., Taguchi, K., & Bamba, T. (2017). Separation of Lipids. En Supercritical Fluid Chromatography (pp. 419-438). Elsevier. https://doi.org/10.1016/B978-0-12-809207-1.00014-8 Zamith-Miranda, D., Heyman, H. M., Burnet, M. C., Couvillion, S. P., Zheng, X., Munoz, N., Nelson, W. C., Kyle, J. E., Zink, E. M., Weitz, K. K., Bloodsworth, K. J., Clair, G., Zucker, J. D., Teuton, J. R., Payne, S. H., Kim, Y.-M., Gil, M. R., Baker, E. S., Bredeweg, E. L., ... Nakayasu, E. S. (2021). A Histoplasma capsulatum Lipid Metabolic Map Identifies Antifungal Targets. 12(6), 16. |
dc.rights.license.spa.fl_str_mv |
Atribución-CompartirIgual 4.0 Internacional |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
22 páginas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Microbiología |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Ciencias Biológicas |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/7f74b6ae-a9ee-4ed9-bf1b-4a9750de0417/download https://repositorio.uniandes.edu.co/bitstreams/bd88699f-facf-4e77-9487-8837b8a1d104/download https://repositorio.uniandes.edu.co/bitstreams/7397e597-5012-4e7f-8ae1-223e080bacab/download https://repositorio.uniandes.edu.co/bitstreams/84c44ca1-af5e-45c1-bdf8-f02daf690fab/download https://repositorio.uniandes.edu.co/bitstreams/b1f59c15-0b17-4e26-ab38-e8b83c5fb92d/download https://repositorio.uniandes.edu.co/bitstreams/5c0445a4-63ac-41eb-a2d4-c2cb65d3b215/download https://repositorio.uniandes.edu.co/bitstreams/c310d7ea-0d9e-4a2f-884c-9274aa4967bc/download https://repositorio.uniandes.edu.co/bitstreams/3a59e20e-0799-4834-803c-a61fcda43de8/download |
bitstream.checksum.fl_str_mv |
84a900c9dd4b2a10095a94649e1ce116 91cd0fd69d3c14b5442db6158e2f57ca 5564e966e28d45a7a84073619f7bdb9f 5aa5c691a1ffe97abd12c2966efcb8d6 2691eb98ef0bc7c181afcd0327ce12f8 4491fe1afb58beaaef41a73cf7ff2e27 8c74219bd0e3b130d76853500c21faf5 1aab7617c73617e9f849cc4dce6468c4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812134017203437568 |
spelling |
Atribución-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Celis Ramírez, Adriana Marcelavirtual::13740-1Castaño Aguirre, María Camilacd5562c7-5b6a-4d67-9255-610b6a5a4332600Grupo de investigación Celular y Molecular de Microorganismos Patógenos (CeMoP)2023-01-30T14:41:35Z2023-01-30T14:41:35Z2023-01-20http://hdl.handle.net/1992/64328instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Los hongos causan micosis en los humanos, desde infecciones superficiales hasta sistémicas. Se estima que cerca de 300 billones de personas alrededor del mundo padecen de alguna de estas infecciones y cerca de 25 millones está en riesgo de morir o de perder la visión. En el 2022 la OMS (organización Mundial de la Salud) publicó el listado de hongos prioritarios para la salud, en un esfuerzo de reconocer su importancia e impacto en la salud pública. La resistencia a antimicrobianos es un problema en aumento y no es ajeno a los antifúngicos. Los lípidos por la diversidad de funciones que cumplen en el funcionamiento celular han sido objeto en los últimos años de investigación como potenciales candidatos terapéuticos para el tratamiento de infecciones por hongos. El objetivo de esta revisión es identificar los lípidos que podrían ser nuevos blancos terapéuticos como alternativas que contribuyan en un positivo desenlace clínico de los pacientes que padecen estas infecciones. Para lo cual se llevó a cabo una revisión de información acerca de las rutas de síntesis de lípidos y su relación como factores de virulencia en hongos con el fin de evidenciar su aplicabilidad como blancos terapéuticos.MicrobiólogoPregrado22 páginasapplication/pdfspaUniversidad de los AndesMicrobiologíaFacultad de CienciasDepartamento de Ciencias BiológicasBiosíntesis de lípidos en el estudio de blancos terapéuticos para el tratamiento de infecciones fúngicasTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPLípidosInfecciones FúngicasRutas metabolicasHongosFosfolípidosEsfingolípidosÁcidos grasosMicrobiologíaAkpinar-Bayizit, A. (2014). Fungal Lipids: The Biochemistry of Lipid Accumulation. International Journal of Chemical Engineering and Applications, 5(5), 409-414. https://doi.org/10.7763/IJCEA.2014.V5.419Bagam, P., Singh, D. P., Inda, M. E., & Batra, S. (2017). Unraveling the role of membrane microdomains during microbial infections. Cell Biology and Toxicology, 33(5), 429-455. https://doi.org/10.1007/s10565-017-9386-9Bittman, R. (2013). Glycerolipids: Chemistry. En G. C. K. Roberts (Ed.), Encyclopedia of Biophysics (pp. 907-914). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-16712-6_527Blanco, A., & Blanco, G. (2022). Lipids. En Medical Biochemistry (pp. 105-129). Elsevier. https://doi.org/10.1016/B978-0-323-91599-1.00003-1Boudière, L., Michaud, M., Petroutsos, D., Rébeillé, F., Falconet, D., Bastien, O., Roy, S., Finazzi, G., Rolland, N., Jouhet, J., Block, M. A., & Maréchal, E. (2014). Glycerolipids in photosynthesis: Composition, synthesis and trafficking. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1837(4), 470-480. https://doi.org/10.1016/j.bbabio.2013.09.007Carrillo-Muñoz, A. J., Giusiano, G., Ezkurra, P. A., & Quindós, G. (2006). Antifungal agents: Mode of action in yeast cells. 19, 10.Carman, G. M., & Han, G.-S. (2011). Regulation of Phospholipid Synthesis in the Yeast Saccharomyces cerevisiae. Annual Review of Biochemistry, 80(1), 859-883. https://doi.org/10.1146/annurev-biochem-060409-092229Cassilly, C., & Reynolds, T. (2018). PS, It¿s Complicated: The Roles of Phosphatidylserine and Phosphatidylethanolamine in the Pathogenesis of Candida albicans and Other Microbial Pathogens. Journal of Fungi, 4(1), 28. https://doi.org/10.3390/jof4010028Chen, M., Xu, Y., Hong, N., Yang, Y., Lei, W., Du, L., Zhao, J., Lei, X., Xiong, L., Cai, L., Xu, H., Pan, W., & Liao, W. (2018). Epidemiology of fungal infections in China. Frontiers of Medicine, 12(1), 58-75. https://doi.org/10.1007/s11684-017-0601-0Chen, S. C. A., Muller, M., Zhou, J. Z., Wright, L. C., & Sorrell, T. C. (1997). Phospholipase Activity in Cryptococcus neoformans: A New Virulence Factor? Journal of Infectious Diseases, 175(2), 414-420. https://doi.org/10.1093/infdis/175.2.414Chen, Y.-L., Montedonico, A. E., Kauffman, S., Dunlap, J. R., Menn, F.-M., & Reynolds, T. B. (2010). Phosphatidylserine synthase and phosphatidylserine decarboxylase are essential for cell wall integrity and virulence in Candida albicans. Molecular Microbiology, 75(5), 1112-1132. https://doi.org/10.1111/j.1365-2958.2009.07018.xD¿Angelo, G., Capasso, S., Sticco, L., & Russo, D. (2013). Glycosphingolipids: Synthesis and functions. The FEBS Journal, 280(24), 6338-6353. https://doi.org/10.1111/febs.12559de Carvalho, C., & Caramujo, M. (2018). The Various Roles of Fatty Acids. Molecules, 23(10), 2583. https://doi.org/10.3390/molecules23102583Del Poeta, M., Nimrichter, L., Rodrigues, M. L., & Luberto, C. (2014). Synthesis and Biological Properties of Fungal Glucosylceramide. PLoS Pathogens, 10(1), e1003832. https://doi.org/10.1371/journal.ppat.1003832Donato, P., Dugo, P., & Mondello, L. (2017). Separation of lipids. En Liquid Chromatography (pp. 201-243). Elsevier. https://doi.org/10.1016/B978-0-12-805392-8.00008-6Dufourc, E. J. (2008). Sterols and membrane dynamics. Journal of Chemical Biology, 1(1-4), 63-77. https://doi.org/10.1007/s12154-008-0010-6Dupont, S., Lemetais, G., Ferreira, T., Cayot, P., Gervais, P., & Beney, L. (2012). ERGOSTEROL BIOSYNTHESIS: A FUNGAL PATHWAY FOR LIFE ON LAND? Evolution, 66(9), 2961-2968. https://doi.org/10.1111/j.1558-5646.2012.01667.xEoin Fahy, Cotter, D., Sud, M., & Subramaniam, S. (2011). Lipid classification, structures and tools. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1811(11), 637-647. https://doi.org/10.1016/j.bbalip.2011.06.009Fahy, E., Cotter, D., Sud, M., & Subramaniam, S. (2011). Lipid classification, structures and tools. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1811(11), 637-647. https://doi.org/10.1016/j.bbalip.2011.06.009Fahy, E., Subramaniam, S., Brown, H. A., Glass, C. K., Merrill, A. H., Murphy, R. C., Raetz, C. R. H., Russell, D. W., Seyama, Y., Shaw, W., Shimizu, T., Spener, F., van Meer, G., VanNieuwenhze, M. S., White, S. H., Witztum, J. L., & Dennis, E. A. (2005). A comprehensive classification system for lipids. Journal of Lipid Research, 46(5), 839-861. https://doi.org/10.1194/jlr.E400004-JLR200Farnoud, A. M., Toledo, A. M., Konopka, J. B., Del Poeta, M., & London, E. (2015). Raft-Like Membrane Domains in Pathogenic Microorganisms. Current topics in membranes, 75, 233-268. https://doi.org/10.1016/bs.ctm.2015.03.005Fernandes, C. M., Goldman, G. H., & Del Poeta, M. (2018). Biological Roles Played by Sphingolipids in Dimorphic and Filamentous Fungi. MBio, 9(3), e00642-18. https://doi.org/10.1128/mBio.00642-18Fontaine, T. (2017). Sphingolipids from the human fungal pathogen Aspergillus fumigatus. Biochimie, 141, 9-15. https://doi.org/10.1016/j.biochi.2017.06.012Fraga, M. E., Santana, D. M. N., Gatti, M. J., Direito, G. M., Cavaglieri, L. R., & Rosa, C. A. R. (2008). Characterization of Aspergillus species based on fatty acid profiles. Memórias Do Instituto Oswaldo Cruz, 103(6), 540-544. https://doi.org/10.1590/S0074-02762008000600005Futerman, A. H. (2021). Sphingolipids. En Biochemistry of Lipids, Lipoproteins and Membranes (pp. 281-316). Elsevier. https://doi.org/10.1016/B978-0-12-824048-9.00009-2Garber, G. (2001). An Overview of Fungal Infections: Drugs, 61(Supplement 1), 1-12. https://doi.org/10.2165/00003495-200161001-00001Gnat, S., Lagowski, D., Nowakiewicz, A., & Dylag, M. (2021). A global view on fungal infections in humans and animals: Opportunistic infections and microsporidioses. Journal of Applied Microbiology, 131(5), 2095-2113. https://doi.org/10.1111/jam.15032Guimarães, A., & Venâncio, A. (2022). The Potential of Fatty Acids and Their Derivatives as Antifungal Agents: A Review. Toxins, 14(3), 188. https://doi.org/10.3390/toxins14030188Hay, R. J. (2006). Fungal infections. Clinics in Dermatology, 24(3), 201-212. https://doi.org/10.1016/j.clindermatol.2005.11.011Hay, R. J. (2014). Fungal Infections. En Manson's Tropical Infectious Diseases (pp. 441-458.e2). Elsevier. https://doi.org/10.1016/B978-0-7020-5101-2.00039-XHein, E.-M., & Hayen, H. (2012). Comparative Lipidomic Profiling of S. cerevisiae and Four Other Hemiascomycetous Yeasts. Metabolites, 2(1), 254-267. https://doi.org/10.3390/metabo2010254Heitman, J. (2011). Microbial pathogens in the fungal kingdom. Fungal Biology Reviews, 25(1), 48-60. https://doi.org/10.1016/j.fbr.2011.01.003Heung, L. J., Luberto, C., & Del Poeta, M. (2006). Role of Sphingolipids in Microbial Pathogenesis. Infection and Immunity, 74(1), 28-39. https://doi.org/10.1128/IAI.74.1.28-39.2006Jala, R. C. R., Vudhgiri, S., & Kumar, C. G. (2022). A comprehensive review on natural occurrence, synthesis and biological activities of glycolipids. Carbohydrate Research, 516, 108556. https://doi.org/10.1016/j.carres.2022.108556Janbon, G., Quintin, J., Lanternier, F., & d'Enfert, C. (2019). Studying fungal pathogens of humans and fungal infections: Fungal diversity and diversity of approaches. Genes & Immunity, 20(5), 403-414. https://doi.org/10.1038/s41435-019-0071-2Jiang, C., Ge, J., He, B., & Zeng, B. (2021). Glycosphingolipids in Filamentous Fungi: Biological Roles and Potential Applications in Cosmetics and Health Foods. Frontiers in Microbiology, 12, 690211. https://doi.org/10.3389/fmicb.2021.690211Kim, J.-Y. (2016). Human fungal pathogens: Why should we learn? Journal of Microbiology, 54(3), 145-148. https://doi.org/10.1007/s12275-016-0647-8Klose, C., Ejsing, C. S., García-Sáez, A. J., Kaiser, H.-J., Sampaio, J. L., Surma, M. A., Shevchenko, A., Schwille, P., & Simons, K. (2010). Yeast Lipids Can Phase-separate into Micrometer-scale Membrane Domains. The Journal of Biological Chemistry, 285(39), 30224-30232. https://doi.org/10.1074/jbc.M110.123554Klug, L., & Daum, G. (2014). Yeast lipid metabolism at a glance. FEMS Yeast Research, 14(3), 369-388. https://doi.org/10.1111/1567-1364.12141Loginov, D., & ¿ebela, M. (2016). Proteomics of survival structures of fungal pathogens. New Biotechnology, 33(5), 655-665. https://doi.org/10.1016/j.nbt.2015.12.011López-Martínez, R. (1996). Los mecanismos patogénicos y de protección en las micosis*.pdf.Luberto, C., Toffaletti, D. L., Wills, E. A., Tucker, S. C., Casadevall, A., Perfect, J. R., Hannun, Y. A., & Del Poeta, M. (2001). Roles for inositol-phosphoryl ceramide synthase 1 (IPC1) in pathogenesis of C. neoformans. Genes & Development, 15(2), 201-212.Mattner, J. (2017). The role of lipids in host microbe interactions. Frontiers in Bioscience, 22(9), 1581-1598. https://doi.org/10.2741/4559Mbuyane, L. L., Bauer, F. F., & Divol, B. (2021). The metabolism of lipids in yeasts and applications in oenology. Food Research International, 141, 110142. https://doi.org/10.1016/j.foodres.2021.110142Merrill, A. H., Sullards, M. C., Wang, E., Voss, K. A., & Riley, R. T. (2001). Sphingolipid metabolism: Roles in signal transduction and disruption by fumonisins. Environmental Health Perspectives, 109(Suppl 2), 283-289.Mor, V., Rella, A., Farnoud, A. M., Singh, A., Munshi, M., Bryan, A., Naseem, S., Konopka, J. B., Ojima, I., Bullesbach, E., Ashbaugh, A., Linke, M. J., Cushion, M., Collins, M., Ananthula, H. K., Sallans, L., Desai, P. B., Wiederhold, N. P., Fothergill, A. W., ¿ Del Poeta, M. (2015). Identification of a New Class of Antifungals Targeting the Synthesis of Fungal Sphingolipids. mBio, 6(3), e00647-15. https://doi.org/10.1128/mBio.00647-15Murphy, R. C., Leiker, T. J., & Barkley, R. M. (2011). Glycerolipid and Cholesterol Ester Analyses in Biological Samples by Mass Spectrometry. Biochimica et biophysica acta, 1811(11), 776-783. https://doi.org/10.1016/j.bbalip.2011.06.019Normile, T. G., McEvoy, K., & Del Poeta, M. (2020). Steryl Glycosides in Fungal Pathogenesis: An Understudied Immunomodulatory Adjuvant. Journal of Fungi, 6(1), 25. https://doi.org/10.3390/jof6010025One Health: Fungal Pathogens of Humans, Animals, and Plants. (2017).Pan, J., Hu, C., & Yu, J.-H. (2018). Lipid Biosynthesis as an Antifungal Target. Journal of Fungi, 4(2), 50. https://doi.org/10.3390/jof4020050Qiu, M., Wang, Y., Sun, L., Deng, Q., & Zhao, J. (2021). Fatty Acids and Oxylipins as Antifungal and Anti-Mycotoxin Agents in Food: A Review. Toxins, 13(12), 852. https://doi.org/10.3390/toxins13120852Reddy, G. K. K., Padmavathi, A. R., & Nancharaiah, Y. V. (2022). Fungal infections: Pathogenesis, antifungals and alternate treatment approaches. Current Research in Microbial Sciences, 3, 100137. https://doi.org/10.1016/j.crmicr.2022.100137Rella, A., Farnoud, A. M., & Del Poeta, M. (2016). Plasma membrane lipids and their role in fungal virulence. Progress in Lipid Research, 61, 63-72. https://doi.org/10.1016/j.plipres.2015.11.003Rella, A., Mor, V., Farnoud, A. M., Singh, A., Shamseddine, A. A., Ivanova, E., Carpino, N., Montagna, M. T., Luberto, C., & Del Poeta, M. (2015). Role of Sterylglucosidase 1 (Sgl1) on the pathogenicity of Cryptococcus neoformans: Potential applications for vaccine development. Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.00836Reverberi, M. (2019). Fungal lipids biosynthesis and signalling during plant-pathogen interaction. Frontiers in Bioscience, 24(1), 172-185. https://doi.org/10.2741/4712Rhome, R., & Del Poeta, M. (2009). Lipid Signaling in Pathogenic Fungi. Annual Review of Microbiology, 63(1), 119-131. https://doi.org/10.1146/annurev.micro.091208.073431Riedel, S., Hobden, J. A., Miller, S., Morse, S. A., Mietzner, T. A., Detrick, B., Mitchell, T. G., Sakanari, J. A., Hotez, P., & Mejia, R. (2019). Medical Mycology. En Jawetz, Melnick, & Adelberg's Medical Microbiology, 28e (Vol. 1 Book, Section). McGraw-Hill Education. accessmedicine.mhmedical.com/content.aspx?aid=1163284713Rittershaus, P. C. (2006). Glucosylceramide synthase is an essential regulator of pathogenicity of Cryptococcus neoformans. Journal of Clinical Investigation, 116(6), 1651-1659. https://doi.org/10.1172/JCI27890Róg, T., Vattulainen, I., & Karttunen, M. (2005). MODELING GLYCOLIPIDS: TAKE ONE. 10(4), 6.Rollin-Pinheiro, R., Singh, A., Barreto-Bergter, E., & Del Poeta, M. (2016). Sphingolipids as targets for treatment of fungal infections. Future Medicinal Chemistry, 8(12), 1469-1484. https://doi.org/10.4155/fmc-2016-0053Rustan, A. C., & Drevon, C. A. (2005). Fatty Acids: Structures and Properties. En John Wiley & Sons, Ltd (Ed.), ELS (1a ed.). Wiley. https://doi.org/10.1038/npg.els.0003894Ryan, K. J., & Ray, C. G. (2017). Patogenia y diagnóstico de las infecciones micóticas. En Sherris. Microbiología médica, 6e (Vol. 1 Book, Section). McGraw-Hill Education. accessmedicina.mhmedical.com/content.aspx?aid=1143537669Scorzoni, L., de Paula e Silva, A. C. A., Marcos, C. M., Assato, P. A., de Melo, W. C. M. A., de Oliveira, H. C., Costa-Orlandi, C. B., Mendes-Giannini, M. J. S., & Fusco-Almeida, A. M. (2017). Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis. Frontiers in Microbiology, 8. https://www.frontiersin.org/articles/10.3389/fmicb.2017.00036Seabra, C. L., Pinto, R. M., Nunes, C., & Reis, S. (2023). Lipids as antimicrobials. En Bioactive Lipids (pp. 209-230). Elsevier. https://doi.org/10.1016/B978-0-12-824043-4.00004-XShea, J. M., & Del Poeta, M. (2006). Lipid signaling in pathogenic fungi. Current Opinion in Microbiology, 9(4), 352-358. https://doi.org/10.1016/j.mib.2006.06.003Shea, J. M., Henry, J. L., & Del Poeta, M. (2006). Lipid metabolism in Cryptococcus neoformans. FEMS Yeast Research, 6(4), 469-479. https://doi.org/10.1111/j.1567-1364.2006.00080.xSingh, A., & Del Poeta, M. (2011). Lipid signalling in pathogenic fungi. Cellular microbiology, 13(2), 177-185. https://doi.org/10.1111/j.1462-5822.2010.01550.xSingh, A., MacKenzie, A., Girnun, G., & Del Poeta, M. (2017). Analysis of sphingolipids, sterols, and phospholipids in human pathogenic Cryptococcus strains. Journal of Lipid Research, 58(10), 2017-2036. https://doi.org/10.1194/jlr.M078600Singh, A., Wang, H., Silva, L. C., Na, C., Prieto, M., Futerman, A. H., Luberto, C., & Del Poeta, M. (2012). Methylation of glycosylated sphingolipid modulates membrane lipid topography and pathogenicity of Cryptococcus neoformans: Membrane lipid topography and fungal pathogenicity. Cellular Microbiology, 14(4), 500-516. https://doi.org/10.1111/j.1462-5822.2011.01735.xSiscar-Lewin, S., Hube, B., & Brunke, S. (2022). Emergence and evolution of virulence in human pathogenic fungi. Trends in Microbiology, 30(7), 693-704. https://doi.org/10.1016/j.tim.2021.12.013Souza, T. N., Valdez, A. F., Rizzo, J., Zamith-Miranda, D., Guimarães, A. J., Nosanchuk, J. D., & Nimrichter, L. (2021). Host cell membrane microdomains and fungal infection. Cellular Microbiology, 23(12), e13385. https://doi.org/10.1111/cmi.13385Stahl, P. D., & Klug, M. J. (1996). Characterization and differentiation of filamentous fungi based on Fatty Acid composition. Applied and Environmental Microbiology, 62(11), 4136-4146. https://doi.org/10.1128/aem.62.11.4136-4146.1996Sterin-Speziale, N., & Leocata Nieto, F. (2007). Los esfingolípidos en la muerte y proliferación celular.pdf.Storck, E. M., Özbalci, C., & Eggert, U. S. (2018). Lipid Cell Biology: A Focus on Lipids in Cell Division. Annual Review of Biochemistry, 87(1), 839-869. https://doi.org/10.1146/annurev-biochem-062917-012448Sun, S., Hoy, M. J., & Heitman, J. (2020). Fungal pathogens. Current Biology, 30(19), R1163-R1169. https://doi.org/10.1016/j.cub.2020.07.032Tam, E. W. T., Tsang, C.-C., Lau, S. K. P., & Woo, P. C. Y. (2015). Polyketides, Toxins and Pigments in Penicillium marneffei. Toxins, 7(11), 4421-4436. https://doi.org/10.3390/toxins7114421Torres García, J. (2015). FOSFOLÍPIDOS: PROPIEDADES Y EFECTOS SOBRE LA SALUD. NUTRICION HOSPITALARIA, 1, 76-83. https://doi.org/10.3305/nh.2015.31.1.7961Valenzuela B, R., Tapia O, G., González E, M., & Valenzuela B, A. (2011). ÁCIDOS GRASOS OMEGA-3 (EPA Y DHA) Y SU APLICACIÓN EN DIVERSAS SITUACIONES CLÍNICAS. Revista chilena de nutrición, 38(3), 356-367. https://doi.org/10.4067/S0717-75182011000300011Van Daele, R., Spriet, I., Wauters, J., Maertens, J., Mercier, T., Van Hecke, S., & Brüggemann, R. (2019). Antifungal drugs: What brings the future? Medical Mycology, 57(Supplement_3), S328-S343. https://doi.org/10.1093/mmy/myz012Vieira, F. S., Corrêa, G., Einicker-Lamas, M., & Coutinho-Silva, R. (2010). Host-cell lipid rafts: A safe door for micro"organisms? Biology of the Cell, 102(7), 391-407. https://doi.org/10.1042/BC20090138Volkman, J. (2003). Sterols in microorganisms. Applied Microbiology and Biotechnology, 60(5), 495-506. https://doi.org/10.1007/s00253-002-1172-8Wang, J., Wang, H., Zhang, C., Wu, T., Ma, Z., & Chen, Y. (2019). Phospholipid homeostasis plays an important role in fungal development, fungicide resistance and virulence in Fusarium graminearum. Phytopathology Research, 1(1), 16. https://doi.org/10.1186/s42483-019-0023-9Woodside, J. V., & Kromhout, D. (2005). Fatty acids and CHD. Proceedings of the Nutrition Society, 64(4), 554-564. https://doi.org/10.1079/PNS2005465World Health Organization. (2022). WHO fungal priority pathogens list to guide research, development and public health action. World Health Organization. https://apps.who.int/iris/handle/10665/363682Xu, J. (2016). Fungal DNA barcoding. Genome, 59(11), 913-932. https://doi.org/10.1139/gen-2016-0046Yamada, T., Taguchi, K., & Bamba, T. (2017). Separation of Lipids. En Supercritical Fluid Chromatography (pp. 419-438). Elsevier. https://doi.org/10.1016/B978-0-12-809207-1.00014-8Zamith-Miranda, D., Heyman, H. M., Burnet, M. C., Couvillion, S. P., Zheng, X., Munoz, N., Nelson, W. C., Kyle, J. E., Zink, E. M., Weitz, K. K., Bloodsworth, K. J., Clair, G., Zucker, J. D., Teuton, J. R., Payne, S. H., Kim, Y.-M., Gil, M. R., Baker, E. S., Bredeweg, E. L., ... Nakayasu, E. S. (2021). A Histoplasma capsulatum Lipid Metabolic Map Identifies Antifungal Targets. 12(6), 16.201712507Publication0000-0003-3057-1966virtual::13740-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000178225virtual::13740-17ec7a7b4-b510-4816-b236-023aaa0754f0virtual::13740-17ec7a7b4-b510-4816-b236-023aaa0754f0virtual::13740-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81025https://repositorio.uniandes.edu.co/bitstreams/7f74b6ae-a9ee-4ed9-bf1b-4a9750de0417/download84a900c9dd4b2a10095a94649e1ce116MD52ORIGINALTesis bibliotéca Enero 2023.pdfTesis bibliotéca Enero 2023.pdfapplication/pdf2098667https://repositorio.uniandes.edu.co/bitstreams/bd88699f-facf-4e77-9487-8837b8a1d104/download91cd0fd69d3c14b5442db6158e2f57caMD54FORMATO DE AUTORIZACIÓN Y ENTREGA DE TESIS TRABAJO DE GRADO AL SISTEMA DE BIBLIOTECAS-1.pdfFORMATO DE AUTORIZACIÓN Y ENTREGA DE TESIS TRABAJO DE GRADO AL SISTEMA DE BIBLIOTECAS-1.pdfHIDEapplication/pdf414039https://repositorio.uniandes.edu.co/bitstreams/7397e597-5012-4e7f-8ae1-223e080bacab/download5564e966e28d45a7a84073619f7bdb9fMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/84c44ca1-af5e-45c1-bdf8-f02daf690fab/download5aa5c691a1ffe97abd12c2966efcb8d6MD53TEXTTesis bibliotéca Enero 2023.pdf.txtTesis bibliotéca Enero 2023.pdf.txtExtracted texttext/plain59639https://repositorio.uniandes.edu.co/bitstreams/b1f59c15-0b17-4e26-ab38-e8b83c5fb92d/download2691eb98ef0bc7c181afcd0327ce12f8MD56FORMATO DE AUTORIZACIÓN Y ENTREGA DE TESIS TRABAJO DE GRADO AL SISTEMA DE BIBLIOTECAS-1.pdf.txtFORMATO DE AUTORIZACIÓN Y ENTREGA DE TESIS TRABAJO DE GRADO AL SISTEMA DE BIBLIOTECAS-1.pdf.txtExtracted texttext/plain1163https://repositorio.uniandes.edu.co/bitstreams/5c0445a4-63ac-41eb-a2d4-c2cb65d3b215/download4491fe1afb58beaaef41a73cf7ff2e27MD58THUMBNAILTesis bibliotéca Enero 2023.pdf.jpgTesis bibliotéca Enero 2023.pdf.jpgIM Thumbnailimage/jpeg26135https://repositorio.uniandes.edu.co/bitstreams/c310d7ea-0d9e-4a2f-884c-9274aa4967bc/download8c74219bd0e3b130d76853500c21faf5MD57FORMATO DE AUTORIZACIÓN Y ENTREGA DE TESIS TRABAJO DE GRADO AL SISTEMA DE BIBLIOTECAS-1.pdf.jpgFORMATO DE AUTORIZACIÓN Y ENTREGA DE TESIS TRABAJO DE GRADO AL SISTEMA DE BIBLIOTECAS-1.pdf.jpgIM Thumbnailimage/jpeg15660https://repositorio.uniandes.edu.co/bitstreams/3a59e20e-0799-4834-803c-a61fcda43de8/download1aab7617c73617e9f849cc4dce6468c4MD591992/64328oai:repositorio.uniandes.edu.co:1992/643282024-03-13 15:00:54.704http://creativecommons.org/licenses/by-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg== |