Biosíntesis de lípidos en el estudio de blancos terapéuticos para el tratamiento de infecciones fúngicas

Los hongos causan micosis en los humanos, desde infecciones superficiales hasta sistémicas. Se estima que cerca de 300 billones de personas alrededor del mundo padecen de alguna de estas infecciones y cerca de 25 millones está en riesgo de morir o de perder la visión. En el 2022 la OMS (organización...

Full description

Autores:
Castaño Aguirre, María Camila
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/64328
Acceso en línea:
http://hdl.handle.net/1992/64328
Palabra clave:
Lípidos
Infecciones Fúngicas
Rutas metabolicas
Hongos
Fosfolípidos
Esfingolípidos
Ácidos grasos
Microbiología
Rights
openAccess
License
Atribución-CompartirIgual 4.0 Internacional
id UNIANDES2_64cc207fcdacc1f85eebee74eb4084f6
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/64328
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Biosíntesis de lípidos en el estudio de blancos terapéuticos para el tratamiento de infecciones fúngicas
title Biosíntesis de lípidos en el estudio de blancos terapéuticos para el tratamiento de infecciones fúngicas
spellingShingle Biosíntesis de lípidos en el estudio de blancos terapéuticos para el tratamiento de infecciones fúngicas
Lípidos
Infecciones Fúngicas
Rutas metabolicas
Hongos
Fosfolípidos
Esfingolípidos
Ácidos grasos
Microbiología
title_short Biosíntesis de lípidos en el estudio de blancos terapéuticos para el tratamiento de infecciones fúngicas
title_full Biosíntesis de lípidos en el estudio de blancos terapéuticos para el tratamiento de infecciones fúngicas
title_fullStr Biosíntesis de lípidos en el estudio de blancos terapéuticos para el tratamiento de infecciones fúngicas
title_full_unstemmed Biosíntesis de lípidos en el estudio de blancos terapéuticos para el tratamiento de infecciones fúngicas
title_sort Biosíntesis de lípidos en el estudio de blancos terapéuticos para el tratamiento de infecciones fúngicas
dc.creator.fl_str_mv Castaño Aguirre, María Camila
dc.contributor.advisor.none.fl_str_mv Celis Ramírez, Adriana Marcela
dc.contributor.author.none.fl_str_mv Castaño Aguirre, María Camila
dc.contributor.researchgroup.es_CO.fl_str_mv Grupo de investigación Celular y Molecular de Microorganismos Patógenos (CeMoP)
dc.subject.keyword.none.fl_str_mv Lípidos
Infecciones Fúngicas
Rutas metabolicas
Hongos
Fosfolípidos
Esfingolípidos
Ácidos grasos
topic Lípidos
Infecciones Fúngicas
Rutas metabolicas
Hongos
Fosfolípidos
Esfingolípidos
Ácidos grasos
Microbiología
dc.subject.themes.es_CO.fl_str_mv Microbiología
description Los hongos causan micosis en los humanos, desde infecciones superficiales hasta sistémicas. Se estima que cerca de 300 billones de personas alrededor del mundo padecen de alguna de estas infecciones y cerca de 25 millones está en riesgo de morir o de perder la visión. En el 2022 la OMS (organización Mundial de la Salud) publicó el listado de hongos prioritarios para la salud, en un esfuerzo de reconocer su importancia e impacto en la salud pública. La resistencia a antimicrobianos es un problema en aumento y no es ajeno a los antifúngicos. Los lípidos por la diversidad de funciones que cumplen en el funcionamiento celular han sido objeto en los últimos años de investigación como potenciales candidatos terapéuticos para el tratamiento de infecciones por hongos. El objetivo de esta revisión es identificar los lípidos que podrían ser nuevos blancos terapéuticos como alternativas que contribuyan en un positivo desenlace clínico de los pacientes que padecen estas infecciones. Para lo cual se llevó a cabo una revisión de información acerca de las rutas de síntesis de lípidos y su relación como factores de virulencia en hongos con el fin de evidenciar su aplicabilidad como blancos terapéuticos.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-01-30T14:41:35Z
dc.date.available.none.fl_str_mv 2023-01-30T14:41:35Z
dc.date.issued.none.fl_str_mv 2023-01-20
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/64328
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/64328
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv spa
language spa
dc.relation.references.es_CO.fl_str_mv Akpinar-Bayizit, A. (2014). Fungal Lipids: The Biochemistry of Lipid Accumulation. International Journal of Chemical Engineering and Applications, 5(5), 409-414. https://doi.org/10.7763/IJCEA.2014.V5.419
Bagam, P., Singh, D. P., Inda, M. E., & Batra, S. (2017). Unraveling the role of membrane microdomains during microbial infections. Cell Biology and Toxicology, 33(5), 429-455. https://doi.org/10.1007/s10565-017-9386-9
Bittman, R. (2013). Glycerolipids: Chemistry. En G. C. K. Roberts (Ed.), Encyclopedia of Biophysics (pp. 907-914). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-16712-6_527
Blanco, A., & Blanco, G. (2022). Lipids. En Medical Biochemistry (pp. 105-129). Elsevier. https://doi.org/10.1016/B978-0-323-91599-1.00003-1
Boudière, L., Michaud, M., Petroutsos, D., Rébeillé, F., Falconet, D., Bastien, O., Roy, S., Finazzi, G., Rolland, N., Jouhet, J., Block, M. A., & Maréchal, E. (2014). Glycerolipids in photosynthesis: Composition, synthesis and trafficking. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1837(4), 470-480. https://doi.org/10.1016/j.bbabio.2013.09.007
Carrillo-Muñoz, A. J., Giusiano, G., Ezkurra, P. A., & Quindós, G. (2006). Antifungal agents: Mode of action in yeast cells. 19, 10.
Carman, G. M., & Han, G.-S. (2011). Regulation of Phospholipid Synthesis in the Yeast Saccharomyces cerevisiae. Annual Review of Biochemistry, 80(1), 859-883. https://doi.org/10.1146/annurev-biochem-060409-092229
Cassilly, C., & Reynolds, T. (2018). PS, It¿s Complicated: The Roles of Phosphatidylserine and Phosphatidylethanolamine in the Pathogenesis of Candida albicans and Other Microbial Pathogens. Journal of Fungi, 4(1), 28. https://doi.org/10.3390/jof4010028
Chen, M., Xu, Y., Hong, N., Yang, Y., Lei, W., Du, L., Zhao, J., Lei, X., Xiong, L., Cai, L., Xu, H., Pan, W., & Liao, W. (2018). Epidemiology of fungal infections in China. Frontiers of Medicine, 12(1), 58-75. https://doi.org/10.1007/s11684-017-0601-0
Chen, S. C. A., Muller, M., Zhou, J. Z., Wright, L. C., & Sorrell, T. C. (1997). Phospholipase Activity in Cryptococcus neoformans: A New Virulence Factor? Journal of Infectious Diseases, 175(2), 414-420. https://doi.org/10.1093/infdis/175.2.414
Chen, Y.-L., Montedonico, A. E., Kauffman, S., Dunlap, J. R., Menn, F.-M., & Reynolds, T. B. (2010). Phosphatidylserine synthase and phosphatidylserine decarboxylase are essential for cell wall integrity and virulence in Candida albicans. Molecular Microbiology, 75(5), 1112-1132. https://doi.org/10.1111/j.1365-2958.2009.07018.x
D¿Angelo, G., Capasso, S., Sticco, L., & Russo, D. (2013). Glycosphingolipids: Synthesis and functions. The FEBS Journal, 280(24), 6338-6353. https://doi.org/10.1111/febs.12559
de Carvalho, C., & Caramujo, M. (2018). The Various Roles of Fatty Acids. Molecules, 23(10), 2583. https://doi.org/10.3390/molecules23102583
Del Poeta, M., Nimrichter, L., Rodrigues, M. L., & Luberto, C. (2014). Synthesis and Biological Properties of Fungal Glucosylceramide. PLoS Pathogens, 10(1), e1003832. https://doi.org/10.1371/journal.ppat.1003832
Donato, P., Dugo, P., & Mondello, L. (2017). Separation of lipids. En Liquid Chromatography (pp. 201-243). Elsevier. https://doi.org/10.1016/B978-0-12-805392-8.00008-6
Dufourc, E. J. (2008). Sterols and membrane dynamics. Journal of Chemical Biology, 1(1-4), 63-77. https://doi.org/10.1007/s12154-008-0010-6
Dupont, S., Lemetais, G., Ferreira, T., Cayot, P., Gervais, P., & Beney, L. (2012). ERGOSTEROL BIOSYNTHESIS: A FUNGAL PATHWAY FOR LIFE ON LAND? Evolution, 66(9), 2961-2968. https://doi.org/10.1111/j.1558-5646.2012.01667.x
Eoin Fahy, Cotter, D., Sud, M., & Subramaniam, S. (2011). Lipid classification, structures and tools. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1811(11), 637-647. https://doi.org/10.1016/j.bbalip.2011.06.009
Fahy, E., Cotter, D., Sud, M., & Subramaniam, S. (2011). Lipid classification, structures and tools. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1811(11), 637-647. https://doi.org/10.1016/j.bbalip.2011.06.009
Fahy, E., Subramaniam, S., Brown, H. A., Glass, C. K., Merrill, A. H., Murphy, R. C., Raetz, C. R. H., Russell, D. W., Seyama, Y., Shaw, W., Shimizu, T., Spener, F., van Meer, G., VanNieuwenhze, M. S., White, S. H., Witztum, J. L., & Dennis, E. A. (2005). A comprehensive classification system for lipids. Journal of Lipid Research, 46(5), 839-861. https://doi.org/10.1194/jlr.E400004-JLR200
Farnoud, A. M., Toledo, A. M., Konopka, J. B., Del Poeta, M., & London, E. (2015). Raft-Like Membrane Domains in Pathogenic Microorganisms. Current topics in membranes, 75, 233-268. https://doi.org/10.1016/bs.ctm.2015.03.005
Fernandes, C. M., Goldman, G. H., & Del Poeta, M. (2018). Biological Roles Played by Sphingolipids in Dimorphic and Filamentous Fungi. MBio, 9(3), e00642-18. https://doi.org/10.1128/mBio.00642-18
Fontaine, T. (2017). Sphingolipids from the human fungal pathogen Aspergillus fumigatus. Biochimie, 141, 9-15. https://doi.org/10.1016/j.biochi.2017.06.012
Fraga, M. E., Santana, D. M. N., Gatti, M. J., Direito, G. M., Cavaglieri, L. R., & Rosa, C. A. R. (2008). Characterization of Aspergillus species based on fatty acid profiles. Memórias Do Instituto Oswaldo Cruz, 103(6), 540-544. https://doi.org/10.1590/S0074-02762008000600005
Futerman, A. H. (2021). Sphingolipids. En Biochemistry of Lipids, Lipoproteins and Membranes (pp. 281-316). Elsevier. https://doi.org/10.1016/B978-0-12-824048-9.00009-2
Garber, G. (2001). An Overview of Fungal Infections: Drugs, 61(Supplement 1), 1-12. https://doi.org/10.2165/00003495-200161001-00001
Gnat, S., Lagowski, D., Nowakiewicz, A., & Dylag, M. (2021). A global view on fungal infections in humans and animals: Opportunistic infections and microsporidioses. Journal of Applied Microbiology, 131(5), 2095-2113. https://doi.org/10.1111/jam.15032
Guimarães, A., & Venâncio, A. (2022). The Potential of Fatty Acids and Their Derivatives as Antifungal Agents: A Review. Toxins, 14(3), 188. https://doi.org/10.3390/toxins14030188
Hay, R. J. (2006). Fungal infections. Clinics in Dermatology, 24(3), 201-212. https://doi.org/10.1016/j.clindermatol.2005.11.011
Hay, R. J. (2014). Fungal Infections. En Manson's Tropical Infectious Diseases (pp. 441-458.e2). Elsevier. https://doi.org/10.1016/B978-0-7020-5101-2.00039-X
Hein, E.-M., & Hayen, H. (2012). Comparative Lipidomic Profiling of S. cerevisiae and Four Other Hemiascomycetous Yeasts. Metabolites, 2(1), 254-267. https://doi.org/10.3390/metabo2010254
Heitman, J. (2011). Microbial pathogens in the fungal kingdom. Fungal Biology Reviews, 25(1), 48-60. https://doi.org/10.1016/j.fbr.2011.01.003
Heung, L. J., Luberto, C., & Del Poeta, M. (2006). Role of Sphingolipids in Microbial Pathogenesis. Infection and Immunity, 74(1), 28-39. https://doi.org/10.1128/IAI.74.1.28-39.2006
Jala, R. C. R., Vudhgiri, S., & Kumar, C. G. (2022). A comprehensive review on natural occurrence, synthesis and biological activities of glycolipids. Carbohydrate Research, 516, 108556. https://doi.org/10.1016/j.carres.2022.108556
Janbon, G., Quintin, J., Lanternier, F., & d'Enfert, C. (2019). Studying fungal pathogens of humans and fungal infections: Fungal diversity and diversity of approaches. Genes & Immunity, 20(5), 403-414. https://doi.org/10.1038/s41435-019-0071-2
Jiang, C., Ge, J., He, B., & Zeng, B. (2021). Glycosphingolipids in Filamentous Fungi: Biological Roles and Potential Applications in Cosmetics and Health Foods. Frontiers in Microbiology, 12, 690211. https://doi.org/10.3389/fmicb.2021.690211
Kim, J.-Y. (2016). Human fungal pathogens: Why should we learn? Journal of Microbiology, 54(3), 145-148. https://doi.org/10.1007/s12275-016-0647-8
Klose, C., Ejsing, C. S., García-Sáez, A. J., Kaiser, H.-J., Sampaio, J. L., Surma, M. A., Shevchenko, A., Schwille, P., & Simons, K. (2010). Yeast Lipids Can Phase-separate into Micrometer-scale Membrane Domains. The Journal of Biological Chemistry, 285(39), 30224-30232. https://doi.org/10.1074/jbc.M110.123554
Klug, L., & Daum, G. (2014). Yeast lipid metabolism at a glance. FEMS Yeast Research, 14(3), 369-388. https://doi.org/10.1111/1567-1364.12141
Loginov, D., & ¿ebela, M. (2016). Proteomics of survival structures of fungal pathogens. New Biotechnology, 33(5), 655-665. https://doi.org/10.1016/j.nbt.2015.12.011
López-Martínez, R. (1996). Los mecanismos patogénicos y de protección en las micosis*.pdf.
Luberto, C., Toffaletti, D. L., Wills, E. A., Tucker, S. C., Casadevall, A., Perfect, J. R., Hannun, Y. A., & Del Poeta, M. (2001). Roles for inositol-phosphoryl ceramide synthase 1 (IPC1) in pathogenesis of C. neoformans. Genes & Development, 15(2), 201-212.
Mattner, J. (2017). The role of lipids in host microbe interactions. Frontiers in Bioscience, 22(9), 1581-1598. https://doi.org/10.2741/4559
Mbuyane, L. L., Bauer, F. F., & Divol, B. (2021). The metabolism of lipids in yeasts and applications in oenology. Food Research International, 141, 110142. https://doi.org/10.1016/j.foodres.2021.110142
Merrill, A. H., Sullards, M. C., Wang, E., Voss, K. A., & Riley, R. T. (2001). Sphingolipid metabolism: Roles in signal transduction and disruption by fumonisins. Environmental Health Perspectives, 109(Suppl 2), 283-289.
Mor, V., Rella, A., Farnoud, A. M., Singh, A., Munshi, M., Bryan, A., Naseem, S., Konopka, J. B., Ojima, I., Bullesbach, E., Ashbaugh, A., Linke, M. J., Cushion, M., Collins, M., Ananthula, H. K., Sallans, L., Desai, P. B., Wiederhold, N. P., Fothergill, A. W., ¿ Del Poeta, M. (2015). Identification of a New Class of Antifungals Targeting the Synthesis of Fungal Sphingolipids. mBio, 6(3), e00647-15. https://doi.org/10.1128/mBio.00647-15
Murphy, R. C., Leiker, T. J., & Barkley, R. M. (2011). Glycerolipid and Cholesterol Ester Analyses in Biological Samples by Mass Spectrometry. Biochimica et biophysica acta, 1811(11), 776-783. https://doi.org/10.1016/j.bbalip.2011.06.019
Normile, T. G., McEvoy, K., & Del Poeta, M. (2020). Steryl Glycosides in Fungal Pathogenesis: An Understudied Immunomodulatory Adjuvant. Journal of Fungi, 6(1), 25. https://doi.org/10.3390/jof6010025
One Health: Fungal Pathogens of Humans, Animals, and Plants. (2017).
Pan, J., Hu, C., & Yu, J.-H. (2018). Lipid Biosynthesis as an Antifungal Target. Journal of Fungi, 4(2), 50. https://doi.org/10.3390/jof4020050
Qiu, M., Wang, Y., Sun, L., Deng, Q., & Zhao, J. (2021). Fatty Acids and Oxylipins as Antifungal and Anti-Mycotoxin Agents in Food: A Review. Toxins, 13(12), 852. https://doi.org/10.3390/toxins13120852
Reddy, G. K. K., Padmavathi, A. R., & Nancharaiah, Y. V. (2022). Fungal infections: Pathogenesis, antifungals and alternate treatment approaches. Current Research in Microbial Sciences, 3, 100137. https://doi.org/10.1016/j.crmicr.2022.100137
Rella, A., Farnoud, A. M., & Del Poeta, M. (2016). Plasma membrane lipids and their role in fungal virulence. Progress in Lipid Research, 61, 63-72. https://doi.org/10.1016/j.plipres.2015.11.003
Rella, A., Mor, V., Farnoud, A. M., Singh, A., Shamseddine, A. A., Ivanova, E., Carpino, N., Montagna, M. T., Luberto, C., & Del Poeta, M. (2015). Role of Sterylglucosidase 1 (Sgl1) on the pathogenicity of Cryptococcus neoformans: Potential applications for vaccine development. Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.00836
Reverberi, M. (2019). Fungal lipids biosynthesis and signalling during plant-pathogen interaction. Frontiers in Bioscience, 24(1), 172-185. https://doi.org/10.2741/4712
Rhome, R., & Del Poeta, M. (2009). Lipid Signaling in Pathogenic Fungi. Annual Review of Microbiology, 63(1), 119-131. https://doi.org/10.1146/annurev.micro.091208.073431
Riedel, S., Hobden, J. A., Miller, S., Morse, S. A., Mietzner, T. A., Detrick, B., Mitchell, T. G., Sakanari, J. A., Hotez, P., & Mejia, R. (2019). Medical Mycology. En Jawetz, Melnick, & Adelberg's Medical Microbiology, 28e (Vol. 1 Book, Section). McGraw-Hill Education. accessmedicine.mhmedical.com/content.aspx?aid=1163284713
Rittershaus, P. C. (2006). Glucosylceramide synthase is an essential regulator of pathogenicity of Cryptococcus neoformans. Journal of Clinical Investigation, 116(6), 1651-1659. https://doi.org/10.1172/JCI27890
Róg, T., Vattulainen, I., & Karttunen, M. (2005). MODELING GLYCOLIPIDS: TAKE ONE. 10(4), 6.
Rollin-Pinheiro, R., Singh, A., Barreto-Bergter, E., & Del Poeta, M. (2016). Sphingolipids as targets for treatment of fungal infections. Future Medicinal Chemistry, 8(12), 1469-1484. https://doi.org/10.4155/fmc-2016-0053
Rustan, A. C., & Drevon, C. A. (2005). Fatty Acids: Structures and Properties. En John Wiley & Sons, Ltd (Ed.), ELS (1a ed.). Wiley. https://doi.org/10.1038/npg.els.0003894
Ryan, K. J., & Ray, C. G. (2017). Patogenia y diagnóstico de las infecciones micóticas. En Sherris. Microbiología médica, 6e (Vol. 1 Book, Section). McGraw-Hill Education. accessmedicina.mhmedical.com/content.aspx?aid=1143537669
Scorzoni, L., de Paula e Silva, A. C. A., Marcos, C. M., Assato, P. A., de Melo, W. C. M. A., de Oliveira, H. C., Costa-Orlandi, C. B., Mendes-Giannini, M. J. S., & Fusco-Almeida, A. M. (2017). Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis. Frontiers in Microbiology, 8. https://www.frontiersin.org/articles/10.3389/fmicb.2017.00036
Seabra, C. L., Pinto, R. M., Nunes, C., & Reis, S. (2023). Lipids as antimicrobials. En Bioactive Lipids (pp. 209-230). Elsevier. https://doi.org/10.1016/B978-0-12-824043-4.00004-X
Shea, J. M., & Del Poeta, M. (2006). Lipid signaling in pathogenic fungi. Current Opinion in Microbiology, 9(4), 352-358. https://doi.org/10.1016/j.mib.2006.06.003
Shea, J. M., Henry, J. L., & Del Poeta, M. (2006). Lipid metabolism in Cryptococcus neoformans. FEMS Yeast Research, 6(4), 469-479. https://doi.org/10.1111/j.1567-1364.2006.00080.x
Singh, A., & Del Poeta, M. (2011). Lipid signalling in pathogenic fungi. Cellular microbiology, 13(2), 177-185. https://doi.org/10.1111/j.1462-5822.2010.01550.x
Singh, A., MacKenzie, A., Girnun, G., & Del Poeta, M. (2017). Analysis of sphingolipids, sterols, and phospholipids in human pathogenic Cryptococcus strains. Journal of Lipid Research, 58(10), 2017-2036. https://doi.org/10.1194/jlr.M078600
Singh, A., Wang, H., Silva, L. C., Na, C., Prieto, M., Futerman, A. H., Luberto, C., & Del Poeta, M. (2012). Methylation of glycosylated sphingolipid modulates membrane lipid topography and pathogenicity of Cryptococcus neoformans: Membrane lipid topography and fungal pathogenicity. Cellular Microbiology, 14(4), 500-516. https://doi.org/10.1111/j.1462-5822.2011.01735.x
Siscar-Lewin, S., Hube, B., & Brunke, S. (2022). Emergence and evolution of virulence in human pathogenic fungi. Trends in Microbiology, 30(7), 693-704. https://doi.org/10.1016/j.tim.2021.12.013
Souza, T. N., Valdez, A. F., Rizzo, J., Zamith-Miranda, D., Guimarães, A. J., Nosanchuk, J. D., & Nimrichter, L. (2021). Host cell membrane microdomains and fungal infection. Cellular Microbiology, 23(12), e13385. https://doi.org/10.1111/cmi.13385
Stahl, P. D., & Klug, M. J. (1996). Characterization and differentiation of filamentous fungi based on Fatty Acid composition. Applied and Environmental Microbiology, 62(11), 4136-4146. https://doi.org/10.1128/aem.62.11.4136-4146.1996
Sterin-Speziale, N., & Leocata Nieto, F. (2007). Los esfingolípidos en la muerte y proliferación celular.pdf.
Storck, E. M., Özbalci, C., & Eggert, U. S. (2018). Lipid Cell Biology: A Focus on Lipids in Cell Division. Annual Review of Biochemistry, 87(1), 839-869. https://doi.org/10.1146/annurev-biochem-062917-012448
Sun, S., Hoy, M. J., & Heitman, J. (2020). Fungal pathogens. Current Biology, 30(19), R1163-R1169. https://doi.org/10.1016/j.cub.2020.07.032
Tam, E. W. T., Tsang, C.-C., Lau, S. K. P., & Woo, P. C. Y. (2015). Polyketides, Toxins and Pigments in Penicillium marneffei. Toxins, 7(11), 4421-4436. https://doi.org/10.3390/toxins7114421
Torres García, J. (2015). FOSFOLÍPIDOS: PROPIEDADES Y EFECTOS SOBRE LA SALUD. NUTRICION HOSPITALARIA, 1, 76-83. https://doi.org/10.3305/nh.2015.31.1.7961
Valenzuela B, R., Tapia O, G., González E, M., & Valenzuela B, A. (2011). ÁCIDOS GRASOS OMEGA-3 (EPA Y DHA) Y SU APLICACIÓN EN DIVERSAS SITUACIONES CLÍNICAS. Revista chilena de nutrición, 38(3), 356-367. https://doi.org/10.4067/S0717-75182011000300011
Van Daele, R., Spriet, I., Wauters, J., Maertens, J., Mercier, T., Van Hecke, S., & Brüggemann, R. (2019). Antifungal drugs: What brings the future? Medical Mycology, 57(Supplement_3), S328-S343. https://doi.org/10.1093/mmy/myz012
Vieira, F. S., Corrêa, G., Einicker-Lamas, M., & Coutinho-Silva, R. (2010). Host-cell lipid rafts: A safe door for micro"organisms? Biology of the Cell, 102(7), 391-407. https://doi.org/10.1042/BC20090138
Volkman, J. (2003). Sterols in microorganisms. Applied Microbiology and Biotechnology, 60(5), 495-506. https://doi.org/10.1007/s00253-002-1172-8
Wang, J., Wang, H., Zhang, C., Wu, T., Ma, Z., & Chen, Y. (2019). Phospholipid homeostasis plays an important role in fungal development, fungicide resistance and virulence in Fusarium graminearum. Phytopathology Research, 1(1), 16. https://doi.org/10.1186/s42483-019-0023-9
Woodside, J. V., & Kromhout, D. (2005). Fatty acids and CHD. Proceedings of the Nutrition Society, 64(4), 554-564. https://doi.org/10.1079/PNS2005465
World Health Organization. (2022). WHO fungal priority pathogens list to guide research, development and public health action. World Health Organization. https://apps.who.int/iris/handle/10665/363682
Xu, J. (2016). Fungal DNA barcoding. Genome, 59(11), 913-932. https://doi.org/10.1139/gen-2016-0046
Yamada, T., Taguchi, K., & Bamba, T. (2017). Separation of Lipids. En Supercritical Fluid Chromatography (pp. 419-438). Elsevier. https://doi.org/10.1016/B978-0-12-809207-1.00014-8
Zamith-Miranda, D., Heyman, H. M., Burnet, M. C., Couvillion, S. P., Zheng, X., Munoz, N., Nelson, W. C., Kyle, J. E., Zink, E. M., Weitz, K. K., Bloodsworth, K. J., Clair, G., Zucker, J. D., Teuton, J. R., Payne, S. H., Kim, Y.-M., Gil, M. R., Baker, E. S., Bredeweg, E. L., ... Nakayasu, E. S. (2021). A Histoplasma capsulatum Lipid Metabolic Map Identifies Antifungal Targets. 12(6), 16.
dc.rights.license.spa.fl_str_mv Atribución-CompartirIgual 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 22 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Microbiología
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Ciencias Biológicas
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/7f74b6ae-a9ee-4ed9-bf1b-4a9750de0417/download
https://repositorio.uniandes.edu.co/bitstreams/bd88699f-facf-4e77-9487-8837b8a1d104/download
https://repositorio.uniandes.edu.co/bitstreams/7397e597-5012-4e7f-8ae1-223e080bacab/download
https://repositorio.uniandes.edu.co/bitstreams/84c44ca1-af5e-45c1-bdf8-f02daf690fab/download
https://repositorio.uniandes.edu.co/bitstreams/b1f59c15-0b17-4e26-ab38-e8b83c5fb92d/download
https://repositorio.uniandes.edu.co/bitstreams/5c0445a4-63ac-41eb-a2d4-c2cb65d3b215/download
https://repositorio.uniandes.edu.co/bitstreams/c310d7ea-0d9e-4a2f-884c-9274aa4967bc/download
https://repositorio.uniandes.edu.co/bitstreams/3a59e20e-0799-4834-803c-a61fcda43de8/download
bitstream.checksum.fl_str_mv 84a900c9dd4b2a10095a94649e1ce116
91cd0fd69d3c14b5442db6158e2f57ca
5564e966e28d45a7a84073619f7bdb9f
5aa5c691a1ffe97abd12c2966efcb8d6
2691eb98ef0bc7c181afcd0327ce12f8
4491fe1afb58beaaef41a73cf7ff2e27
8c74219bd0e3b130d76853500c21faf5
1aab7617c73617e9f849cc4dce6468c4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134017203437568
spelling Atribución-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Celis Ramírez, Adriana Marcelavirtual::13740-1Castaño Aguirre, María Camilacd5562c7-5b6a-4d67-9255-610b6a5a4332600Grupo de investigación Celular y Molecular de Microorganismos Patógenos (CeMoP)2023-01-30T14:41:35Z2023-01-30T14:41:35Z2023-01-20http://hdl.handle.net/1992/64328instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Los hongos causan micosis en los humanos, desde infecciones superficiales hasta sistémicas. Se estima que cerca de 300 billones de personas alrededor del mundo padecen de alguna de estas infecciones y cerca de 25 millones está en riesgo de morir o de perder la visión. En el 2022 la OMS (organización Mundial de la Salud) publicó el listado de hongos prioritarios para la salud, en un esfuerzo de reconocer su importancia e impacto en la salud pública. La resistencia a antimicrobianos es un problema en aumento y no es ajeno a los antifúngicos. Los lípidos por la diversidad de funciones que cumplen en el funcionamiento celular han sido objeto en los últimos años de investigación como potenciales candidatos terapéuticos para el tratamiento de infecciones por hongos. El objetivo de esta revisión es identificar los lípidos que podrían ser nuevos blancos terapéuticos como alternativas que contribuyan en un positivo desenlace clínico de los pacientes que padecen estas infecciones. Para lo cual se llevó a cabo una revisión de información acerca de las rutas de síntesis de lípidos y su relación como factores de virulencia en hongos con el fin de evidenciar su aplicabilidad como blancos terapéuticos.MicrobiólogoPregrado22 páginasapplication/pdfspaUniversidad de los AndesMicrobiologíaFacultad de CienciasDepartamento de Ciencias BiológicasBiosíntesis de lípidos en el estudio de blancos terapéuticos para el tratamiento de infecciones fúngicasTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPLípidosInfecciones FúngicasRutas metabolicasHongosFosfolípidosEsfingolípidosÁcidos grasosMicrobiologíaAkpinar-Bayizit, A. (2014). Fungal Lipids: The Biochemistry of Lipid Accumulation. International Journal of Chemical Engineering and Applications, 5(5), 409-414. https://doi.org/10.7763/IJCEA.2014.V5.419Bagam, P., Singh, D. P., Inda, M. E., & Batra, S. (2017). Unraveling the role of membrane microdomains during microbial infections. Cell Biology and Toxicology, 33(5), 429-455. https://doi.org/10.1007/s10565-017-9386-9Bittman, R. (2013). Glycerolipids: Chemistry. En G. C. K. Roberts (Ed.), Encyclopedia of Biophysics (pp. 907-914). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-16712-6_527Blanco, A., & Blanco, G. (2022). Lipids. En Medical Biochemistry (pp. 105-129). Elsevier. https://doi.org/10.1016/B978-0-323-91599-1.00003-1Boudière, L., Michaud, M., Petroutsos, D., Rébeillé, F., Falconet, D., Bastien, O., Roy, S., Finazzi, G., Rolland, N., Jouhet, J., Block, M. A., & Maréchal, E. (2014). Glycerolipids in photosynthesis: Composition, synthesis and trafficking. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1837(4), 470-480. https://doi.org/10.1016/j.bbabio.2013.09.007Carrillo-Muñoz, A. J., Giusiano, G., Ezkurra, P. A., & Quindós, G. (2006). Antifungal agents: Mode of action in yeast cells. 19, 10.Carman, G. M., & Han, G.-S. (2011). Regulation of Phospholipid Synthesis in the Yeast Saccharomyces cerevisiae. Annual Review of Biochemistry, 80(1), 859-883. https://doi.org/10.1146/annurev-biochem-060409-092229Cassilly, C., & Reynolds, T. (2018). PS, It¿s Complicated: The Roles of Phosphatidylserine and Phosphatidylethanolamine in the Pathogenesis of Candida albicans and Other Microbial Pathogens. Journal of Fungi, 4(1), 28. https://doi.org/10.3390/jof4010028Chen, M., Xu, Y., Hong, N., Yang, Y., Lei, W., Du, L., Zhao, J., Lei, X., Xiong, L., Cai, L., Xu, H., Pan, W., & Liao, W. (2018). Epidemiology of fungal infections in China. Frontiers of Medicine, 12(1), 58-75. https://doi.org/10.1007/s11684-017-0601-0Chen, S. C. A., Muller, M., Zhou, J. Z., Wright, L. C., & Sorrell, T. C. (1997). Phospholipase Activity in Cryptococcus neoformans: A New Virulence Factor? Journal of Infectious Diseases, 175(2), 414-420. https://doi.org/10.1093/infdis/175.2.414Chen, Y.-L., Montedonico, A. E., Kauffman, S., Dunlap, J. R., Menn, F.-M., & Reynolds, T. B. (2010). Phosphatidylserine synthase and phosphatidylserine decarboxylase are essential for cell wall integrity and virulence in Candida albicans. Molecular Microbiology, 75(5), 1112-1132. https://doi.org/10.1111/j.1365-2958.2009.07018.xD¿Angelo, G., Capasso, S., Sticco, L., & Russo, D. (2013). Glycosphingolipids: Synthesis and functions. The FEBS Journal, 280(24), 6338-6353. https://doi.org/10.1111/febs.12559de Carvalho, C., & Caramujo, M. (2018). The Various Roles of Fatty Acids. Molecules, 23(10), 2583. https://doi.org/10.3390/molecules23102583Del Poeta, M., Nimrichter, L., Rodrigues, M. L., & Luberto, C. (2014). Synthesis and Biological Properties of Fungal Glucosylceramide. PLoS Pathogens, 10(1), e1003832. https://doi.org/10.1371/journal.ppat.1003832Donato, P., Dugo, P., & Mondello, L. (2017). Separation of lipids. En Liquid Chromatography (pp. 201-243). Elsevier. https://doi.org/10.1016/B978-0-12-805392-8.00008-6Dufourc, E. J. (2008). Sterols and membrane dynamics. Journal of Chemical Biology, 1(1-4), 63-77. https://doi.org/10.1007/s12154-008-0010-6Dupont, S., Lemetais, G., Ferreira, T., Cayot, P., Gervais, P., & Beney, L. (2012). ERGOSTEROL BIOSYNTHESIS: A FUNGAL PATHWAY FOR LIFE ON LAND? Evolution, 66(9), 2961-2968. https://doi.org/10.1111/j.1558-5646.2012.01667.xEoin Fahy, Cotter, D., Sud, M., & Subramaniam, S. (2011). Lipid classification, structures and tools. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1811(11), 637-647. https://doi.org/10.1016/j.bbalip.2011.06.009Fahy, E., Cotter, D., Sud, M., & Subramaniam, S. (2011). Lipid classification, structures and tools. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1811(11), 637-647. https://doi.org/10.1016/j.bbalip.2011.06.009Fahy, E., Subramaniam, S., Brown, H. A., Glass, C. K., Merrill, A. H., Murphy, R. C., Raetz, C. R. H., Russell, D. W., Seyama, Y., Shaw, W., Shimizu, T., Spener, F., van Meer, G., VanNieuwenhze, M. S., White, S. H., Witztum, J. L., & Dennis, E. A. (2005). A comprehensive classification system for lipids. Journal of Lipid Research, 46(5), 839-861. https://doi.org/10.1194/jlr.E400004-JLR200Farnoud, A. M., Toledo, A. M., Konopka, J. B., Del Poeta, M., & London, E. (2015). Raft-Like Membrane Domains in Pathogenic Microorganisms. Current topics in membranes, 75, 233-268. https://doi.org/10.1016/bs.ctm.2015.03.005Fernandes, C. M., Goldman, G. H., & Del Poeta, M. (2018). Biological Roles Played by Sphingolipids in Dimorphic and Filamentous Fungi. MBio, 9(3), e00642-18. https://doi.org/10.1128/mBio.00642-18Fontaine, T. (2017). Sphingolipids from the human fungal pathogen Aspergillus fumigatus. Biochimie, 141, 9-15. https://doi.org/10.1016/j.biochi.2017.06.012Fraga, M. E., Santana, D. M. N., Gatti, M. J., Direito, G. M., Cavaglieri, L. R., & Rosa, C. A. R. (2008). Characterization of Aspergillus species based on fatty acid profiles. Memórias Do Instituto Oswaldo Cruz, 103(6), 540-544. https://doi.org/10.1590/S0074-02762008000600005Futerman, A. H. (2021). Sphingolipids. En Biochemistry of Lipids, Lipoproteins and Membranes (pp. 281-316). Elsevier. https://doi.org/10.1016/B978-0-12-824048-9.00009-2Garber, G. (2001). An Overview of Fungal Infections: Drugs, 61(Supplement 1), 1-12. https://doi.org/10.2165/00003495-200161001-00001Gnat, S., Lagowski, D., Nowakiewicz, A., & Dylag, M. (2021). A global view on fungal infections in humans and animals: Opportunistic infections and microsporidioses. Journal of Applied Microbiology, 131(5), 2095-2113. https://doi.org/10.1111/jam.15032Guimarães, A., & Venâncio, A. (2022). The Potential of Fatty Acids and Their Derivatives as Antifungal Agents: A Review. Toxins, 14(3), 188. https://doi.org/10.3390/toxins14030188Hay, R. J. (2006). Fungal infections. Clinics in Dermatology, 24(3), 201-212. https://doi.org/10.1016/j.clindermatol.2005.11.011Hay, R. J. (2014). Fungal Infections. En Manson's Tropical Infectious Diseases (pp. 441-458.e2). Elsevier. https://doi.org/10.1016/B978-0-7020-5101-2.00039-XHein, E.-M., & Hayen, H. (2012). Comparative Lipidomic Profiling of S. cerevisiae and Four Other Hemiascomycetous Yeasts. Metabolites, 2(1), 254-267. https://doi.org/10.3390/metabo2010254Heitman, J. (2011). Microbial pathogens in the fungal kingdom. Fungal Biology Reviews, 25(1), 48-60. https://doi.org/10.1016/j.fbr.2011.01.003Heung, L. J., Luberto, C., & Del Poeta, M. (2006). Role of Sphingolipids in Microbial Pathogenesis. Infection and Immunity, 74(1), 28-39. https://doi.org/10.1128/IAI.74.1.28-39.2006Jala, R. C. R., Vudhgiri, S., & Kumar, C. G. (2022). A comprehensive review on natural occurrence, synthesis and biological activities of glycolipids. Carbohydrate Research, 516, 108556. https://doi.org/10.1016/j.carres.2022.108556Janbon, G., Quintin, J., Lanternier, F., & d'Enfert, C. (2019). Studying fungal pathogens of humans and fungal infections: Fungal diversity and diversity of approaches. Genes & Immunity, 20(5), 403-414. https://doi.org/10.1038/s41435-019-0071-2Jiang, C., Ge, J., He, B., & Zeng, B. (2021). Glycosphingolipids in Filamentous Fungi: Biological Roles and Potential Applications in Cosmetics and Health Foods. Frontiers in Microbiology, 12, 690211. https://doi.org/10.3389/fmicb.2021.690211Kim, J.-Y. (2016). Human fungal pathogens: Why should we learn? Journal of Microbiology, 54(3), 145-148. https://doi.org/10.1007/s12275-016-0647-8Klose, C., Ejsing, C. S., García-Sáez, A. J., Kaiser, H.-J., Sampaio, J. L., Surma, M. A., Shevchenko, A., Schwille, P., & Simons, K. (2010). Yeast Lipids Can Phase-separate into Micrometer-scale Membrane Domains. The Journal of Biological Chemistry, 285(39), 30224-30232. https://doi.org/10.1074/jbc.M110.123554Klug, L., & Daum, G. (2014). Yeast lipid metabolism at a glance. FEMS Yeast Research, 14(3), 369-388. https://doi.org/10.1111/1567-1364.12141Loginov, D., & ¿ebela, M. (2016). Proteomics of survival structures of fungal pathogens. New Biotechnology, 33(5), 655-665. https://doi.org/10.1016/j.nbt.2015.12.011López-Martínez, R. (1996). Los mecanismos patogénicos y de protección en las micosis*.pdf.Luberto, C., Toffaletti, D. L., Wills, E. A., Tucker, S. C., Casadevall, A., Perfect, J. R., Hannun, Y. A., & Del Poeta, M. (2001). Roles for inositol-phosphoryl ceramide synthase 1 (IPC1) in pathogenesis of C. neoformans. Genes & Development, 15(2), 201-212.Mattner, J. (2017). The role of lipids in host microbe interactions. Frontiers in Bioscience, 22(9), 1581-1598. https://doi.org/10.2741/4559Mbuyane, L. L., Bauer, F. F., & Divol, B. (2021). The metabolism of lipids in yeasts and applications in oenology. Food Research International, 141, 110142. https://doi.org/10.1016/j.foodres.2021.110142Merrill, A. H., Sullards, M. C., Wang, E., Voss, K. A., & Riley, R. T. (2001). Sphingolipid metabolism: Roles in signal transduction and disruption by fumonisins. Environmental Health Perspectives, 109(Suppl 2), 283-289.Mor, V., Rella, A., Farnoud, A. M., Singh, A., Munshi, M., Bryan, A., Naseem, S., Konopka, J. B., Ojima, I., Bullesbach, E., Ashbaugh, A., Linke, M. J., Cushion, M., Collins, M., Ananthula, H. K., Sallans, L., Desai, P. B., Wiederhold, N. P., Fothergill, A. W., ¿ Del Poeta, M. (2015). Identification of a New Class of Antifungals Targeting the Synthesis of Fungal Sphingolipids. mBio, 6(3), e00647-15. https://doi.org/10.1128/mBio.00647-15Murphy, R. C., Leiker, T. J., & Barkley, R. M. (2011). Glycerolipid and Cholesterol Ester Analyses in Biological Samples by Mass Spectrometry. Biochimica et biophysica acta, 1811(11), 776-783. https://doi.org/10.1016/j.bbalip.2011.06.019Normile, T. G., McEvoy, K., & Del Poeta, M. (2020). Steryl Glycosides in Fungal Pathogenesis: An Understudied Immunomodulatory Adjuvant. Journal of Fungi, 6(1), 25. https://doi.org/10.3390/jof6010025One Health: Fungal Pathogens of Humans, Animals, and Plants. (2017).Pan, J., Hu, C., & Yu, J.-H. (2018). Lipid Biosynthesis as an Antifungal Target. Journal of Fungi, 4(2), 50. https://doi.org/10.3390/jof4020050Qiu, M., Wang, Y., Sun, L., Deng, Q., & Zhao, J. (2021). Fatty Acids and Oxylipins as Antifungal and Anti-Mycotoxin Agents in Food: A Review. Toxins, 13(12), 852. https://doi.org/10.3390/toxins13120852Reddy, G. K. K., Padmavathi, A. R., & Nancharaiah, Y. V. (2022). Fungal infections: Pathogenesis, antifungals and alternate treatment approaches. Current Research in Microbial Sciences, 3, 100137. https://doi.org/10.1016/j.crmicr.2022.100137Rella, A., Farnoud, A. M., & Del Poeta, M. (2016). Plasma membrane lipids and their role in fungal virulence. Progress in Lipid Research, 61, 63-72. https://doi.org/10.1016/j.plipres.2015.11.003Rella, A., Mor, V., Farnoud, A. M., Singh, A., Shamseddine, A. A., Ivanova, E., Carpino, N., Montagna, M. T., Luberto, C., & Del Poeta, M. (2015). Role of Sterylglucosidase 1 (Sgl1) on the pathogenicity of Cryptococcus neoformans: Potential applications for vaccine development. Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.00836Reverberi, M. (2019). Fungal lipids biosynthesis and signalling during plant-pathogen interaction. Frontiers in Bioscience, 24(1), 172-185. https://doi.org/10.2741/4712Rhome, R., & Del Poeta, M. (2009). Lipid Signaling in Pathogenic Fungi. Annual Review of Microbiology, 63(1), 119-131. https://doi.org/10.1146/annurev.micro.091208.073431Riedel, S., Hobden, J. A., Miller, S., Morse, S. A., Mietzner, T. A., Detrick, B., Mitchell, T. G., Sakanari, J. A., Hotez, P., & Mejia, R. (2019). Medical Mycology. En Jawetz, Melnick, & Adelberg's Medical Microbiology, 28e (Vol. 1 Book, Section). McGraw-Hill Education. accessmedicine.mhmedical.com/content.aspx?aid=1163284713Rittershaus, P. C. (2006). Glucosylceramide synthase is an essential regulator of pathogenicity of Cryptococcus neoformans. Journal of Clinical Investigation, 116(6), 1651-1659. https://doi.org/10.1172/JCI27890Róg, T., Vattulainen, I., & Karttunen, M. (2005). MODELING GLYCOLIPIDS: TAKE ONE. 10(4), 6.Rollin-Pinheiro, R., Singh, A., Barreto-Bergter, E., & Del Poeta, M. (2016). Sphingolipids as targets for treatment of fungal infections. Future Medicinal Chemistry, 8(12), 1469-1484. https://doi.org/10.4155/fmc-2016-0053Rustan, A. C., & Drevon, C. A. (2005). Fatty Acids: Structures and Properties. En John Wiley & Sons, Ltd (Ed.), ELS (1a ed.). Wiley. https://doi.org/10.1038/npg.els.0003894Ryan, K. J., & Ray, C. G. (2017). Patogenia y diagnóstico de las infecciones micóticas. En Sherris. Microbiología médica, 6e (Vol. 1 Book, Section). McGraw-Hill Education. accessmedicina.mhmedical.com/content.aspx?aid=1143537669Scorzoni, L., de Paula e Silva, A. C. A., Marcos, C. M., Assato, P. A., de Melo, W. C. M. A., de Oliveira, H. C., Costa-Orlandi, C. B., Mendes-Giannini, M. J. S., & Fusco-Almeida, A. M. (2017). Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis. Frontiers in Microbiology, 8. https://www.frontiersin.org/articles/10.3389/fmicb.2017.00036Seabra, C. L., Pinto, R. M., Nunes, C., & Reis, S. (2023). Lipids as antimicrobials. En Bioactive Lipids (pp. 209-230). Elsevier. https://doi.org/10.1016/B978-0-12-824043-4.00004-XShea, J. M., & Del Poeta, M. (2006). Lipid signaling in pathogenic fungi. Current Opinion in Microbiology, 9(4), 352-358. https://doi.org/10.1016/j.mib.2006.06.003Shea, J. M., Henry, J. L., & Del Poeta, M. (2006). Lipid metabolism in Cryptococcus neoformans. FEMS Yeast Research, 6(4), 469-479. https://doi.org/10.1111/j.1567-1364.2006.00080.xSingh, A., & Del Poeta, M. (2011). Lipid signalling in pathogenic fungi. Cellular microbiology, 13(2), 177-185. https://doi.org/10.1111/j.1462-5822.2010.01550.xSingh, A., MacKenzie, A., Girnun, G., & Del Poeta, M. (2017). Analysis of sphingolipids, sterols, and phospholipids in human pathogenic Cryptococcus strains. Journal of Lipid Research, 58(10), 2017-2036. https://doi.org/10.1194/jlr.M078600Singh, A., Wang, H., Silva, L. C., Na, C., Prieto, M., Futerman, A. H., Luberto, C., & Del Poeta, M. (2012). Methylation of glycosylated sphingolipid modulates membrane lipid topography and pathogenicity of Cryptococcus neoformans: Membrane lipid topography and fungal pathogenicity. Cellular Microbiology, 14(4), 500-516. https://doi.org/10.1111/j.1462-5822.2011.01735.xSiscar-Lewin, S., Hube, B., & Brunke, S. (2022). Emergence and evolution of virulence in human pathogenic fungi. Trends in Microbiology, 30(7), 693-704. https://doi.org/10.1016/j.tim.2021.12.013Souza, T. N., Valdez, A. F., Rizzo, J., Zamith-Miranda, D., Guimarães, A. J., Nosanchuk, J. D., & Nimrichter, L. (2021). Host cell membrane microdomains and fungal infection. Cellular Microbiology, 23(12), e13385. https://doi.org/10.1111/cmi.13385Stahl, P. D., & Klug, M. J. (1996). Characterization and differentiation of filamentous fungi based on Fatty Acid composition. Applied and Environmental Microbiology, 62(11), 4136-4146. https://doi.org/10.1128/aem.62.11.4136-4146.1996Sterin-Speziale, N., & Leocata Nieto, F. (2007). Los esfingolípidos en la muerte y proliferación celular.pdf.Storck, E. M., Özbalci, C., & Eggert, U. S. (2018). Lipid Cell Biology: A Focus on Lipids in Cell Division. Annual Review of Biochemistry, 87(1), 839-869. https://doi.org/10.1146/annurev-biochem-062917-012448Sun, S., Hoy, M. J., & Heitman, J. (2020). Fungal pathogens. Current Biology, 30(19), R1163-R1169. https://doi.org/10.1016/j.cub.2020.07.032Tam, E. W. T., Tsang, C.-C., Lau, S. K. P., & Woo, P. C. Y. (2015). Polyketides, Toxins and Pigments in Penicillium marneffei. Toxins, 7(11), 4421-4436. https://doi.org/10.3390/toxins7114421Torres García, J. (2015). FOSFOLÍPIDOS: PROPIEDADES Y EFECTOS SOBRE LA SALUD. NUTRICION HOSPITALARIA, 1, 76-83. https://doi.org/10.3305/nh.2015.31.1.7961Valenzuela B, R., Tapia O, G., González E, M., & Valenzuela B, A. (2011). ÁCIDOS GRASOS OMEGA-3 (EPA Y DHA) Y SU APLICACIÓN EN DIVERSAS SITUACIONES CLÍNICAS. Revista chilena de nutrición, 38(3), 356-367. https://doi.org/10.4067/S0717-75182011000300011Van Daele, R., Spriet, I., Wauters, J., Maertens, J., Mercier, T., Van Hecke, S., & Brüggemann, R. (2019). Antifungal drugs: What brings the future? Medical Mycology, 57(Supplement_3), S328-S343. https://doi.org/10.1093/mmy/myz012Vieira, F. S., Corrêa, G., Einicker-Lamas, M., & Coutinho-Silva, R. (2010). Host-cell lipid rafts: A safe door for micro"organisms? Biology of the Cell, 102(7), 391-407. https://doi.org/10.1042/BC20090138Volkman, J. (2003). Sterols in microorganisms. Applied Microbiology and Biotechnology, 60(5), 495-506. https://doi.org/10.1007/s00253-002-1172-8Wang, J., Wang, H., Zhang, C., Wu, T., Ma, Z., & Chen, Y. (2019). Phospholipid homeostasis plays an important role in fungal development, fungicide resistance and virulence in Fusarium graminearum. Phytopathology Research, 1(1), 16. https://doi.org/10.1186/s42483-019-0023-9Woodside, J. V., & Kromhout, D. (2005). Fatty acids and CHD. Proceedings of the Nutrition Society, 64(4), 554-564. https://doi.org/10.1079/PNS2005465World Health Organization. (2022). WHO fungal priority pathogens list to guide research, development and public health action. World Health Organization. https://apps.who.int/iris/handle/10665/363682Xu, J. (2016). Fungal DNA barcoding. Genome, 59(11), 913-932. https://doi.org/10.1139/gen-2016-0046Yamada, T., Taguchi, K., & Bamba, T. (2017). Separation of Lipids. En Supercritical Fluid Chromatography (pp. 419-438). Elsevier. https://doi.org/10.1016/B978-0-12-809207-1.00014-8Zamith-Miranda, D., Heyman, H. M., Burnet, M. C., Couvillion, S. P., Zheng, X., Munoz, N., Nelson, W. C., Kyle, J. E., Zink, E. M., Weitz, K. K., Bloodsworth, K. J., Clair, G., Zucker, J. D., Teuton, J. R., Payne, S. H., Kim, Y.-M., Gil, M. R., Baker, E. S., Bredeweg, E. L., ... Nakayasu, E. S. (2021). A Histoplasma capsulatum Lipid Metabolic Map Identifies Antifungal Targets. 12(6), 16.201712507Publication0000-0003-3057-1966virtual::13740-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000178225virtual::13740-17ec7a7b4-b510-4816-b236-023aaa0754f0virtual::13740-17ec7a7b4-b510-4816-b236-023aaa0754f0virtual::13740-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81025https://repositorio.uniandes.edu.co/bitstreams/7f74b6ae-a9ee-4ed9-bf1b-4a9750de0417/download84a900c9dd4b2a10095a94649e1ce116MD52ORIGINALTesis bibliotéca Enero 2023.pdfTesis bibliotéca Enero 2023.pdfapplication/pdf2098667https://repositorio.uniandes.edu.co/bitstreams/bd88699f-facf-4e77-9487-8837b8a1d104/download91cd0fd69d3c14b5442db6158e2f57caMD54FORMATO DE AUTORIZACIÓN Y ENTREGA DE TESIS TRABAJO DE GRADO AL SISTEMA DE BIBLIOTECAS-1.pdfFORMATO DE AUTORIZACIÓN Y ENTREGA DE TESIS TRABAJO DE GRADO AL SISTEMA DE BIBLIOTECAS-1.pdfHIDEapplication/pdf414039https://repositorio.uniandes.edu.co/bitstreams/7397e597-5012-4e7f-8ae1-223e080bacab/download5564e966e28d45a7a84073619f7bdb9fMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/84c44ca1-af5e-45c1-bdf8-f02daf690fab/download5aa5c691a1ffe97abd12c2966efcb8d6MD53TEXTTesis bibliotéca Enero 2023.pdf.txtTesis bibliotéca Enero 2023.pdf.txtExtracted texttext/plain59639https://repositorio.uniandes.edu.co/bitstreams/b1f59c15-0b17-4e26-ab38-e8b83c5fb92d/download2691eb98ef0bc7c181afcd0327ce12f8MD56FORMATO DE AUTORIZACIÓN Y ENTREGA DE TESIS TRABAJO DE GRADO AL SISTEMA DE BIBLIOTECAS-1.pdf.txtFORMATO DE AUTORIZACIÓN Y ENTREGA DE TESIS TRABAJO DE GRADO AL SISTEMA DE BIBLIOTECAS-1.pdf.txtExtracted texttext/plain1163https://repositorio.uniandes.edu.co/bitstreams/5c0445a4-63ac-41eb-a2d4-c2cb65d3b215/download4491fe1afb58beaaef41a73cf7ff2e27MD58THUMBNAILTesis bibliotéca Enero 2023.pdf.jpgTesis bibliotéca Enero 2023.pdf.jpgIM Thumbnailimage/jpeg26135https://repositorio.uniandes.edu.co/bitstreams/c310d7ea-0d9e-4a2f-884c-9274aa4967bc/download8c74219bd0e3b130d76853500c21faf5MD57FORMATO DE AUTORIZACIÓN Y ENTREGA DE TESIS TRABAJO DE GRADO AL SISTEMA DE BIBLIOTECAS-1.pdf.jpgFORMATO DE AUTORIZACIÓN Y ENTREGA DE TESIS TRABAJO DE GRADO AL SISTEMA DE BIBLIOTECAS-1.pdf.jpgIM Thumbnailimage/jpeg15660https://repositorio.uniandes.edu.co/bitstreams/3a59e20e-0799-4834-803c-a61fcda43de8/download1aab7617c73617e9f849cc4dce6468c4MD591992/64328oai:repositorio.uniandes.edu.co:1992/643282024-03-13 15:00:54.704http://creativecommons.org/licenses/by-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==