Síntesis y solvatofluorocromismo de pigmentos basados en cumarinas conjugadas con pirazolo[1,5-a]pirimidinas y pirazolinas: un enfoque en la quimiodetección de iones
El trabajo de investigación titulado “Síntesis y solvatofluorocromismo de pigmentos basados en cumarinas conjugadas con pirazolo[1,5-a]pirimidinas y pirazolinas: un enfoque en la quimiodetección de iones” y que se desarrolló en el Grupo de Investigación de Compuestos Biorgánicos (GICOBIORG) de la Un...
- Autores:
-
Bravo Piñeros, Néstor Fabian
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/75989
- Acceso en línea:
- https://hdl.handle.net/1992/75989
- Palabra clave:
- Sensor molecular
Cumarina
Pirazolo[1,5-a]pirimidinas
Pirazolina
Solvatofluorocromismo
Quimiodetección
Fluorescencia
Cobre
Niquel
Cianuro
Sulfito
Bisulfito
Química
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
UNIANDES2_649b8f82209fe7be201a7d752467029f |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/75989 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Síntesis y solvatofluorocromismo de pigmentos basados en cumarinas conjugadas con pirazolo[1,5-a]pirimidinas y pirazolinas: un enfoque en la quimiodetección de iones |
title |
Síntesis y solvatofluorocromismo de pigmentos basados en cumarinas conjugadas con pirazolo[1,5-a]pirimidinas y pirazolinas: un enfoque en la quimiodetección de iones |
spellingShingle |
Síntesis y solvatofluorocromismo de pigmentos basados en cumarinas conjugadas con pirazolo[1,5-a]pirimidinas y pirazolinas: un enfoque en la quimiodetección de iones Sensor molecular Cumarina Pirazolo[1,5-a]pirimidinas Pirazolina Solvatofluorocromismo Quimiodetección Fluorescencia Cobre Niquel Cianuro Sulfito Bisulfito Química |
title_short |
Síntesis y solvatofluorocromismo de pigmentos basados en cumarinas conjugadas con pirazolo[1,5-a]pirimidinas y pirazolinas: un enfoque en la quimiodetección de iones |
title_full |
Síntesis y solvatofluorocromismo de pigmentos basados en cumarinas conjugadas con pirazolo[1,5-a]pirimidinas y pirazolinas: un enfoque en la quimiodetección de iones |
title_fullStr |
Síntesis y solvatofluorocromismo de pigmentos basados en cumarinas conjugadas con pirazolo[1,5-a]pirimidinas y pirazolinas: un enfoque en la quimiodetección de iones |
title_full_unstemmed |
Síntesis y solvatofluorocromismo de pigmentos basados en cumarinas conjugadas con pirazolo[1,5-a]pirimidinas y pirazolinas: un enfoque en la quimiodetección de iones |
title_sort |
Síntesis y solvatofluorocromismo de pigmentos basados en cumarinas conjugadas con pirazolo[1,5-a]pirimidinas y pirazolinas: un enfoque en la quimiodetección de iones |
dc.creator.fl_str_mv |
Bravo Piñeros, Néstor Fabian |
dc.contributor.advisor.none.fl_str_mv |
Portilla Salinas, Jaime Antonio |
dc.contributor.author.none.fl_str_mv |
Bravo Piñeros, Néstor Fabian |
dc.contributor.jury.none.fl_str_mv |
Marchal Ingrain, Antonio Ortiz Gonzales, Alejandro Rivas Hernández, Ricardo Eusebio |
dc.contributor.researchgroup.none.fl_str_mv |
Facultad de Ciencias |
dc.subject.keyword.none.fl_str_mv |
Sensor molecular Cumarina Pirazolo[1,5-a]pirimidinas Pirazolina Solvatofluorocromismo Quimiodetección Fluorescencia Cobre Niquel Cianuro Sulfito Bisulfito |
topic |
Sensor molecular Cumarina Pirazolo[1,5-a]pirimidinas Pirazolina Solvatofluorocromismo Quimiodetección Fluorescencia Cobre Niquel Cianuro Sulfito Bisulfito Química |
dc.subject.themes.spa.fl_str_mv |
Química |
description |
El trabajo de investigación titulado “Síntesis y solvatofluorocromismo de pigmentos basados en cumarinas conjugadas con pirazolo[1,5-a]pirimidinas y pirazolinas: un enfoque en la quimiodetección de iones” y que se desarrolló en el Grupo de Investigación de Compuestos Biorgánicos (GICOBIORG) de la Universidad de Los Andes, bajo la dirección del profesor Dr. Jaime Antonio Portilla Salinas, se centra en el diseño y desarrollo de nuevos compuestos fluorescentes capaces de detectar cationes y aniones. El enfoque de diseño utiliza mecanismos fotofísicos basados en las propiedades electrónicas y de solvatofluorocromismo para los pigmentos sintetizados, los cuales son una serie de compuestos híbridos de cumarina con pirazolo[1,5-a]pirimidina y pirazolina que poseen propiedades fotofísicas modulables según el medio en el que actúan (i.e., disolvente, iones, etc.) y diverso sitio de reconocimiento. El objetivo de investigación principal es explorar cómo los compuestos híbridos obtenidos responden a cambios en el entorno, con especial énfasis en su capacidad para detectar especies químicas como el cobre (Cu²⁺), níquel (Ni²⁺), cianuro (CN⁻), sulfito (SO₃2⁻) y bisulfito (HSO₃⁻). Así, mediante mediciones espectroscópicas, se identificaron las propiedades de absorción, emisión y enlazamiento de los pigmentos, destacando su utilidad como sensores químicos o sondas moleculares. Los experimentos de absorción y emisión revelaron que estos compuestos presentan desplazamientos de Stokes significativos, dependientes de la polaridad y polarizabilidad del solvente, lo que indica una reorganización estructural en sus estados excitados; asimismo, se pudieron establecer los sitios de unión de las sondas con los analitos de interés mediante RMN, algo crucial para los mecanismos de detección. Los resultados obtenidos de la investigación desarrollada en este trabajo de investigación doctoral no solo demuestran la sensibilidad de los pigmentos desarrollados hacia diversos analitos, sino que también amplian las perspectivas en el diseño de sensores fluorescentes más eficientes, con aplicaciones potenciales en campos como el monitoreo ambiental y la industria química. Este trabajo contribuye al desarrollo de herramientas útiles para la detección rápida y precisa de contaminantes, lo que lo convierte en un aporte significativo en la química de materiales y sensores, además que ofrece una formación de amplio alcance e integral al investigador principal, desde la química sintética hasta la analítica. |
publishDate |
2024 |
dc.date.issued.none.fl_str_mv |
2024-10-28 |
dc.date.accessioned.none.fl_str_mv |
2025-02-03T14:32:51Z |
dc.date.available.none.fl_str_mv |
2025-02-03T14:32:51Z |
dc.type.none.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/75989 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/75989 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
Sinhamahapatra, A.; Sutradhar, N.; Pahari, S.; Bajaj, H. C.; Panda, A. B. Mesoporous Zirconium Phosphate: An Efficient Catalyst for the Synthesis of Coumarin Derivatives through Pechmann Condensation Reaction. Appl Catal A Gen 2011, 394 (1–2), 93–100. https://doi.org/10.1016/j.apcata.2010.12.027. Rosen, T. Preparation OfCinnamic Acids and Related Aromatic Derivatives 1.12.3.2 Aliphatic Aldehydes and Ketones 1.12.3.3 Preparation Of Coumarins 1. Borges, F.; Roleira, F.; Milhazes, N.; Santana, L.; Uriarte, E. Simple Coumarins and Analogues in Medicinal Chemistry: Occurrence, Synthesis and Biological Activity. Curr Med Chem 2005, 12 (8), 887–916. https://doi.org/10.2174/0929867053507315. Belavagi, N. S.; Deshapande, N.; Sunagar, M. G.; Khazi, I. A. M. A Practical One-Pot Synthesis of Coumarins in Aqueous Sodium Bicarbonate via Intramolecular Wittig Reaction at Room Temperature. RSC Adv 2014, 4 (75), 39667–39671. https://doi.org/10.1039/c4ra06996j. Hwang, I. T.; Lee, S. A.; Hwang, J. S.; Lee, K. I. A Facile Synthesis of Highly Functionalized 4-Arylcoumarins via Kostanecki Reactions Mediated by DBU. Molecules 2011, 16 (8), 6313–6321. https://doi.org/10.3390/molecules16086313. Cao, D.; Liu, Z.; Verwilst, P.; Koo, S.; Jangjili, P.; Kim, J. S.; Lin, W. Coumarin-Based Small-Molecule Fluorescent Chemosensors. Chem Rev 2019, 119 (18), 10403–10519. https://doi.org/10.1021/acs.chemrev.9b00145. Sharma, R. K.; Katiyar, D. Recent Advances in Transition-Metal-Catalyzed Synthesis of Coumarins. Synthesis (Germany). Georg Thieme Verlag August 1, 2016, pp 2303–2322. https://doi.org/10.1055/s-0035-1560450. Dalpozzo, R.; Mancuso, R. Copper-Catalyzed Synthesis of Coumarins. A Mini-Review. Catalysts 2021, 11 (11). https://doi.org/10.3390/catal11111382. Liu, M.; Jiang, Q.; Lu, Z.; Huang, Y.; Tan, Y.; Jiang, Q. A Coumarin-Based Fluorescent Turn-on Probe for Detection of Biothiols in Vitro. Luminescence 2015, 30 (8), 1395–1402. https://doi.org/10.1002/bio.2912. Jung, H. S.; Ko, K. C.; Lee, J. H.; Kim, S. H.; Bhuniya, S.; Lee, J. Y.; Kim, Y.; Kim, S. J.; Kim, J. S. Rationally Designed Fluorescence Turn-on Sensors: A New Design Strategy Based on Orbital Control. Inorg Chem 2010, 49 (18), 8552–8557. https://doi.org/10.1021/ic101165k. Eicher, Theophil.; Hauptmann, Siegfried.; Speicher, Andreas. The Chemistry of Heterocycles : Structure, Reactions, Syntheses, and Applications; Wiley-VCH Verlag GmbH & Co., KGaA, 2004. Vekariya, R. H.; Patel, H. D. Recent Advances in the Synthesis of Coumarin Derivatives via Knoevenagel Condensation: A Review. Synthetic Communications. Taylor and Francis Inc. October 2, 2014, pp 2756–2788. https://doi.org/10.1080/00397911.2014.926374. Lee, S.; Sivakumar, K.; Shin, W. S.; Xie, F.; Wang, Q. Synthesis and Anti-Angiogenesis Activity of Coumarin Derivatives. Bioorg Med Chem Lett 2006, 16 (17), 4596–4599. https://doi.org/10.1016/j.bmcl.2006.06.007. Mohamed, H. M.; Abd El-Wahab, A. H. F.; Ahmed, K. A.; El-Agrody, A. M.; Bedair, A. H.; Eid, F. A.; Khafagy, M. M. Synthesis, Reactions and Antimicrobial Activities of 8-Ethoxycoumarin Derivatives. Molecules 2012, 17 (1), 971–988. https://doi.org/10.3390/molecules17010971. Medina, F. G.; Marrero, J. G.; Macías-Alonso, M.; González, M. C.; Córdova-Guerrero, I.; Teissier García, A. G.; Osegueda-Robles, S. Coumarin Heterocyclic Derivatives: Chemical Synthesis and Biological Activity. Natural Product Reports. Royal Society of Chemistry October 1, 2015, pp 1472–1507. https://doi.org/10.1039/c4np00162a. Bochkov, A. Y.; Akchurin, I. O.; Traven, V. F. A New Facile Way for the Preparation of 3-Formylcoumarins. Heterocycl Comm 2017, 23 (2), 75–78. https://doi.org/10.1515/hc-2017-0038. Fringuelli, F.; Piermatti, O.; Pizzo, F. One-Pot Synthesis of 3-Carboxycoumarins via Consecutive Knoevenagel and Pinner Reactions in Water. Synthesis (Stuttg) 2003, No. 15, 2331–2334. https://doi.org/10.1055/s-2003-41061. Sarker, S. D.; Nahar, L. Progress in the Chemistry of Naturally Occurring Coumarins. Progress in the chemistry of organic natural products. January 1, 2017, pp 241–304. https://doi.org/10.1007/978-3-319-59542-9_3. Joule, J. A.; Mills, K. Heterocyclic Chemistry, Fifth Edition. Ortiz, M. C.; Portilla, J. Access to five-membered n-heteroaromatic compounds:current approach based on microwave-assisted synthesis. Targets in Heterocyclic Systems 2021, 25, 436–462. https://doi.org/10.17374/targets.2022.25.436. Castillo, J.-C.; Portilla, J. Recent advances in the synthesis of new pyrazole derivatives. https://doi.org/10.17374/targets.2019.22.194. Tandel, S. N.; Kasundra, D. V.; Patel, P. N. Design and Synthesis of Chalcone Mediated Novel Pyrazoline Scaffolds: Discovery of Benzothiophene Comprising Antimicrobial Inhibitors. Results Chem 2023, 101119. https://doi.org/10.1016/j.rechem.2023.101119. Ravindar, L.; Hasbullah, S. A.; Rakesh, K. P.; Hassan, N. I. Pyrazole and Pyrazoline Derivatives as Antimalarial Agents: A Key Review. European Journal of Pharmaceutical Sciences. Elsevier B.V. April 1, 2023. https://doi.org/10.1016/j.ejps.2022.106365. Feng, Y.; Huang, X.; Xu, H.; Liu, J.; Xie, P.; He, H.; Yin, S. A New Insight into the Sensing Mechanism of Thiazole-Substituted Pyrazoline Fluorescent Sensor for the Detection of Picric Acid. Chem Phys 2023, 575. https://doi.org/10.1016/j.chemphys.2023.112059. Santos, G. C.; Kappenberg, Y. G.; Rosa, J. M. L.; Ketzer, A.; Tisoco, I.; Martins, M. A. P.; Zanatta, N.; Frizzo, C. P.; Iglesias, B. A.; Bonacorso, H. G. Hybrid Pyrazoline-Triazole Fluorescent Dyes: Synthesis, Photophysics, Electrochemical, and Antioxidative Activity. J Photochem Photobiol A Chem 2023, 444. https://doi.org/10.1016/j.jphotochem.2023.114900. Bozkurt, E.; Gul, H. I. A Novel Pyrazoline-Based Fluorometric “Turn-off” Sensing for Hg2+. Sens Actuators B Chem 2018, 255, 814–825. https://doi.org/10.1016/j.snb.2017.08.062. Pyrazoles, pyrazolines, pyrazolidines, indazoles a n d condensed rings the chemistry of heterocyclic compounds. Hu, S.; Song, J.; Wu, G.; Cheng, C.; Gao, Q. A New Pyrazoline-Based Fluorescent Sensor for Al3+ in Aqueous Solution. Spectrochim Acta A Mol Biomol Spectrosc 2015, 136 (PB), 1188–1194. https://doi.org/10.1016/j.saa.2014.10.005. Uchacz, T.; Maroń, A. M.; Szlachcic, P.; Danel, A.; Pokladko-Kowar, M.; Gondek, E.; Kolek, P.; Zapotoczny, S.; Stadnicka, K. M. Photoinduced Charge Transfer in Push-Pull Pyrazoline-Based Chromophores – Relationship between Molecular Structure and Photophysical, Photovoltaic Properties. Spectrochim Acta A Mol Biomol Spectrosc 2023, 296. https://doi.org/10.1016/j.saa.2023.122643. Chibac, A. L.; Roman, G.; Cojocaru, C.; Sacarescu, G.; Simionescu, M.; Sacarescu, L. Pyrazoline Based Chloride Sensor for Body Fluids Screening. J Mol Liq 2019, 284, 139–146. https://doi.org/10.1016/j.molliq.2019.04.007. Zhang, X. H.; Wu, S. K.; Gao, Z. Q.; Lee, C. S.; Lee, S. T.; Kwong, H.-L. Pyrazoline Derivatives for Blue Color Emitter in Organic Electroluminescent Devices; 2000; Vol. 371. Stakhira, P.; Khomyak, S.; Cherpak, V.; Volyniuk, D.; Simokaitiene, J.; Tomkeviciene, A.; Kukhta, N. A.; Grazulevicius, J. V.; Kukhta, A. V.; Sun, X. W.; Demir, H. V.; Hotra, Z.; Voznyak, L. Blue Organic Light-Emitting Diodes Based on Pyrazoline Phenyl Derivative. Synth Met 2012, 162 (3–4), 352–355. https://doi.org/10.1016/j.synthmet.2011.12.017. Landge, S. M.; Tkatchouk, E.; Benítez, D.; Lanfranchi, D. A.; Elhabiri, M.; Goddard, W. A.; Aprahamian, I. Isomerization Mechanism in Hydrazone-Based Rotary Switches: Lateral Shift, Rotation, or Tautomerization? J Am Chem Soc 2011, 133 (25), 9812–9823. https://doi.org/10.1021/ja200699v. Varghese, B.; Al-Busafi, S. N.; Suliman, F. O.; Al-Kindy, S. M. Z. Unveiling a Versatile Heterocycle: Pyrazoline-a Review. RSC Advances. Royal Society of Chemistry 2017, pp 46999–47016. https://doi.org/10.1039/c7ra08939b. Insuasty- Obando, B. Las Chalconas y Su Uso Como Precursores En La Síntesis de Compuestos Heterocíclicos Nitrogenados. Rev Acad Colomb Cienc Exactas Fis Nat 2016, 40 (155), 234. https://doi.org/10.18257/raccefyn.309. Haider, K.; Shafeeque, M.; Yahya, S.; Yar, M. S. A Comprehensive Review on Pyrazoline Based Heterocyclic Hybrids as Potent Anticancer Agents. European Journal of Medicinal Chemistry Reports. Elsevier Masson s.r.l. August 1, 2022. https://doi.org/10.1016/j.ejmcr.2022.100042. Rahmatzadeh, S. S.; Karami, B.; Khodabakhshi, S. A Modified and Practical Synthetic Route to Indazoles and Pyrazoles Using Tungstate Sulfuric Acid. Journal of the Chinese Chemical Society 2015, 62 (1), 17–20. https://doi.org/10.1002/jccs.201400251. Daneshfar, Z.; Rostami, A. Cellulose Sulfonic Acid as a Green, Efficient, and Reusable Catalyst for Nazarov Cyclization of Unactivated Dienones and Pyrazoline Synthesis. RSC Adv 2015, 5 (127), 104695–104707. https://doi.org/10.1039/c5ra19773b. Sureja, D. K.; Vadalia, K. R. Microwave Assisted, Solvent-Free Synthesis and in-Vitro Antimicrobial Screening of Some Novel Pyrazolo[3,4- d ]Pyrimidin-4(5 H )-One Derivatives. Beni Suef Univ J Basic Appl Sci 2017, 6 (1), 33–38. https://doi.org/10.1016/j.bjbas.2016.12.006. Almansa, C.; De Arriba, A. F.; Cavalcanti, F. L.; Gómez, L. A.; Miralles, A.; Merlos, M.; García-Rafanell, J.; Forn, J. Synthesis and SAR of a New Series of COX-2-Selective Inhibitors: Pyrazolo[1,5-α]Pyrimidines. J Med Chem 2001, 44 (3), 350–361. https://doi.org/10.1021/jm0009383. Hammouda, M. M.; Gaffer, H. E.; Elattar, K. M. Insights into the Medicinal Chemistry of Heterocycles Integrated with a Pyrazolo[1,5-a]Pyrimidine Scaffold. RSC Medicinal Chemistry. Royal Society of Chemistry September 8, 2022, pp 1150–1196. https://doi.org/10.1039/d2md00192f. Petroski, R. E.; Pomeroy, J. E.; Das, R.; Bowman, H.; Yang, W.; Chen, A. P.; Foster, A. C. Indiplon Is a High-Affinity Positive Allosteric Modulator with Selectivity for Α1 Subunit-Containing GABAA Receptors. Journal of Pharmacology and Experimental Therapeutics 2006, 317 (1), 369–377. https://doi.org/10.1124/jpet.105.096701. Terrett, N. K.; Bell, A. S.; Brown, D.; Ellis, P. Sildenafil (viagra~), a potent and selective inhibitor of type 5 cgmp phosphodiesterase with utility for the treatment of male erectile dysfunction; 1996; Vol. 6. Portilla, J. Recent Advances in the Chemistry of Pyrazolo[1,5-a]Pyrimidines. In Advances in Heterocyclic Chemistry; Elsevier Inc., 2024; pp 71–138. https://doi.org/10.1016/bs.aihch.2023.08.001. Castillo, J. C.; Rosero, H. A.; Portilla, J. Simple Access toward 3-Halo- and 3-Nitro-Pyrazolo[1,5-a] Pyrimidines through a One-Pot Sequence. RSC Adv 2017, 7 (45), 28483–28488. https://doi.org/10.1039/c7ra04336h. Castillo, J. C.; Tigreros, A.; Portilla, J. 3-Formylpyrazolo[1,5- a]Pyrimidines as Key Intermediates for the Preparation of Functional Fluorophores. Journal of Organic Chemistry 2018, 83 (18), 10887–10897. https://doi.org/10.1021/acs.joc.8b01571. Tigreros, A.; Rosero, H. A.; Castillo, J. C.; Portilla, J. Integrated Pyrazolo[1,5-a]Pyrimidine–Hemicyanine System as a Colorimetric and Fluorometric Chemosensor for Cyanide Recognition in Water. Talanta 2019, 196, 395–401. https://doi.org/10.1016/j.talanta.2018.12.100. Jiao, Y.; Zhou, L.; He, H.; Yin, J.; Duan, C. A New Fluorescent Chemosensor for Recognition of Hg2+ Ions Based on a Coumarin Derivative. Talanta 2017, 162, 403–407. https://doi.org/10.1016/j.talanta.2016.10.004. Shiraishi, Y.; Nakamura, M.; Hirai, T. Effects of Substituents on Fluorometric Detection of Cyanide Anions by Indolium-Coumarin Dyads. Physical Chemistry Chemical Physics 2015, 17 (38), 25027–25036. https://doi.org/10.1039/c5cp03877d. Goswami, S.; Sen, D.; Das, A. K.; Das, N. K.; Aich, K.; Fun, H. K.; Quah, C. K.; Maity, A. K.; Saha, P. A New Rhodamine-Coumarin Cu2+-Selective Colorimetric and “off-on” Fluorescence Probe for Effective Use in Chemistry and Bioimaging along with Its Bound X-Ray Crystal Structure. Sens Actuators B Chem 2013, 183, 518–525. https://doi.org/10.1016/j.snb.2013.04.005. Yan, L.; Li, R.; Shen, W.; Qi, Z. Multiple–Color AIE Coumarin–Based Schiff Bases and Potential Application in Yellow OLEDs. J Lumin 2018, 194, 151–155. https://doi.org/10.1016/j.jlumin.2017.10.032. Signore, G.; Nifosì, R.; Albertazzi, L.; Storti, B.; Bizzarri, R. Polarity-Sensitive Coumarins Tailored to Live Cell Imaging. J Am Chem Soc 2010, 132 (4), 1276–1288. https://doi.org/10.1021/ja9050444. Romero, E. L.; D’Vries, R. F.; Zuluaga, F.; Chaur, M. N. Multiple Dynamics of Hydrazone Based Compounds. J Braz Chem Soc 2015, 26 (6), 1265–1273. https://doi.org/10.5935/0103-5053.20150092. Burdette, S. C. Molecular Switches: Hydrazones Double down on Zinc. Nat Chem 2012, 4 (9), 695–696. https://doi.org/10.1038/nchem.1438. Traven, V. F.; Cheptsov, D. A.; Vershinina, G. V.; Solovjeva, N. P.; Chibisova, T. A.; Dolotov, S. M.; Ivanov, I. V. (7-Dialkylamino-3-Coumarinyl)Pyrazolines – New Effective Push-Pull Photogenerators of Acidity. J Photochem Photobiol A Chem 2018, 351, 8–15. https://doi.org/10.1016/j.jphotochem.2017.09.072. Chibac, A. L.; Roman, G.; Cojocaru, C.; Sacarescu, G.; Simionescu, M.; Sacarescu, L. Pyrazoline Based Chloride Sensor for Body Fluids Screening. J Mol Liq 2019, 284, 139–146. https://doi.org/10.1016/j.molliq.2019.04.007. Hu, S.; Zhang, S.; Hu, Y.; Tao, Q.; Wu, A. A New Selective Pyrazoline-Based Fluorescent Chemosensor for Cu 2+ in Aqueous Solution. Dyes and Pigments 2013, 96 (2), 509–515. https://doi.org/10.1016/j.dyepig.2012.09.019. Mani, K. S.; Rajamanikandan, R.; Murugesapandian, B.; Shankar, R.; Sivaraman, G.; Ilanchelian, M.; Rajendran, S. P. Coumarin Based Hydrazone as an ICT-Based Fluorescence Chemosensor for the Detection of Cu 2+ Ions and the Application in HeLa Cells. Spectrochim Acta A Mol Biomol Spectrosc 2019, 214, 170–176. https://doi.org/10.1016/j.saa.2019.02.020. Bozkurt, E.; Gul, H. I.; Mete, E. Solvent and Substituent Effect on the Photophysical Properties of Pyrazoline Derivatives: A Spectroscopic Study. J Photochem Photobiol A Chem 2018, 352, 35–42. https://doi.org/10.1016/j.jphotochem.2017.10.010. Wang, S. Q.; Gao, Y.; Wang, H. Y.; Zheng, X. X.; Shen, S. L.; Zhang, Y. R.; Zhao, B. X. Synthesis, X-Ray Crystal Structure and Optical Properties of Novel 1,3,5-Triarylpyrazoline Derivatives and the Fluorescent Sensor for Cu 2+. Spectrochim Acta A Mol Biomol Spectrosc 2013, 106, 110–117. https://doi.org/10.1016/j.saa.2012.12.062. Czarnik, A. W. Desperately Seeking Sensors. Chem Biol 1995, 2 (7), 423–428. https://doi.org/10.1016/1074-5521(95)90257-0. Castillo, J. C.; Tigreros, A.; Portilla, J. 3-Formylpyrazolo[1,5- a]Pyrimidines as Key Intermediates for the Preparation of Functional Fluorophores. Journal of Organic Chemistry 2018, 83 (18), 10887–10897. https://doi.org/10.1021/acs.joc.8b01571. Tigreros, A.; Macías, M.; Portilla, J. Photophysical and Crystallographic Study of Three Integrated Pyrazolo[1,5-a]Pyrimidine–Triphenylamine Systems. Dyes and Pigments 2021, 184. https://doi.org/10.1016/j.dyepig.2020.108730. Tigreros, A.; Aranzazu, S. L.; Bravo, N. F.; Zapata-Rivera, J.; Portilla, J. Pyrazolo[1,5-: A] Pyrimidines-Based Fluorophores: A Comprehensive Theoretical-Experimental Study. RSC Adv 2020, 10 (65), 39542–39552. https://doi.org/10.1039/d0ra07716j. Tigreros, A.; Aranzazu, S. L.; Ríos, M. C.; Portilla, J. Pyrazolo[1,5-a]Pyrimidine-Dioxaborinine Hybrid Dyes: Synthesis and Substituent Effect in the Photophysical Properties. European J Org Chem 2023, 26 (15). https://doi.org/10.1002/ejoc.202300089. Tigreros, A.; Zapata-Rivera, J.; Portilla, J. Pyrazolo[1,5-a]Pyrimidinium Salts for Cyanide Sensing: A Performance and Sustainability Study of the Probes. ACS Sustain Chem Eng 2021, 9 (36), 12058–12069. https://doi.org/10.1021/acssuschemeng.1c01689. Gu, Y. Q.; Shen, W. Y.; Zhou, Y.; Chen, S. F.; Mi, Y.; Long, B. F.; Young, D. J.; Hu, F. L. A Pyrazolopyrimidine Based Fluorescent Probe for the Detection of Cu2+ and Ni2+ and Its Application in Living Cells. Spectrochim Acta A Mol Biomol Spectrosc 2019, 209, 141–149. https://doi.org/10.1016/j.saa.2018.10.030. Tigreros, A.; Castillo, J. C.; Portilla, J. Cyanide Chemosensors Based on 3-Dicyanovinylpyrazolo[1,5-a]Pyrimidines: Effects of Peripheral 4-Anisyl Group Substitution on the Photophysical Properties. Talanta 2020, 215. https://doi.org/10.1016/j.talanta.2020.120905. Wu, Y. C.; Li, H. J.; Yang, H. Z. A Sensitive and Highly Selective Fluorescent Sensor for In3+. Org Biomol Chem 2010, 8 (15), 3394–3397. https://doi.org/10.1039/c0ob00002g. Tigreros, A.; Portilla, J. Modern Approaches on Material Science Pyrazolo [1,5-A] Pyrimidines an Interesting Scaffold for Optical Applications. https://doi.org/10.32474/MAMS.2021.04.000178. García-Olave, M.; Tigreros, A.; Iglesias, B. A.; Portilla, J. Synthesis and Photophysical Properties of Pyrazolo[1,5-a]Pyrimidines Containing D−π−A Architecture Similar to Prodan. J Mol Struct 2024, 1317. https://doi.org/10.1016/j.molstruc.2024.139142. Kaur, B.; Kaur, N.; Kumar, S. Colorimetric Metal Ion Sensors – A Comprehensive Review of the Years 2011–2016. Coordination Chemistry Reviews. Elsevier B.V. March 1, 2018, pp 13–69. https://doi.org/10.1016/j.ccr.2017.12.002. Lakowicz, J. R. Principles of Fluorescence Spectroscopy Third Edition. 2006. Sıdır, İ.; Kara, Y. E.; Sıdır, Y. G.; Berber, H.; Fausto, R. Reversal in Solvatochromism, Photochromism and Thermochromism in a New Bis-Azo Dye Based on Naphthalen-1-Amine. J Photochem Photobiol A Chem 2024, 446. https://doi.org/10.1016/j.jphotochem.2023.115138. Homocianu, M. Exploring Solvatochromism: A Comprehensive Analysis of Research Data. Microchemical Journal. Elsevier Inc. March 1, 2024. https://doi.org/10.1016/j.microc.2024.110166. Wu, J.; Liu, W.; Ge, J.; Zhang, H.; Wang, P. New Sensing Mechanisms for Design of Fluorescent Chemosensors Emerging in Recent Years. Chemical Society Reviews. July 2011, pp 3483–3495. https://doi.org/10.1039/c0cs00224k. The Principle of Time-Correlated Single Photon Counting. Time-Resolved Fluorescence Lifetime Measurements. Yeh, J. T.; Chen, W. C.; Liu, S. R.; Wu, S. P. A Coumarin-Based Sensitive and Selective Fluorescent Sensor for Copper(II) Ions. New Journal of Chemistry 2014, 38 (9), 4434–4439. https://doi.org/10.1039/c4nj00695j. Shortreed, M.; Kopelman, R.; Kuhn, M.; Hoyland, B. Electrochemical Detection Techniques in the Applied Biosciences; Analysis and Clinical Application; Oxford University Press, 1992; Vol. 13. Huang, Y. H.; Ge, Q. M.; Zhao, Y. Y.; Cong, H.; Zhao, J. L.; Tao, Z.; Luo, Q. Y. Recognition of Silver Cations by Multifarene[2,2] Chemosensors with Unexpected Fluorescence Response. Spectrochim Acta A Mol Biomol Spectrosc 2019, 218, 213–220. https://doi.org/10.1016/j.saa.2019.04.011. Kumar, M.; Kumar, A.; Faizi, M. S. H.; Kumar, S.; Singh, M. K.; Sahu, S. K.; Kishor, S.; John, R. P. A Selective ‘Turn-on’ Fluorescent Chemosensor for Detection of Al3+ in Aqueous Medium: Experimental and Theoretical Studies. Sens Actuators B Chem 2018, 260, 888–899. https://doi.org/10.1016/j.snb.2018.01.098. Fitzgerald, W. F.; Lamborg, C. H.; Hammerschmidt, C. R. Marine Biogeochemical Cycling of Mercury. Chemical Reviews. February 2007, pp 641–662. https://doi.org/10.1021/cr050353m. Walker, C. F.; Black, R. E. Zinc and the Risk for Infectious Disease. Annual Review of Nutrition. 2004, pp 255–275. https://doi.org/10.1146/annurev.nutr.23.011702.073054. Frederickson, C. J.; Koh, J. Y.; Bush, A. I. The Neurobiology of Zinc in Health and Disease. Nature Reviews Neuroscience. June 2005, pp 449–462. https://doi.org/10.1038/nrn1671. Cuerva, C.; Morais, N.; Campo, J. A.; Cano, M.; Lodeiro, C. Isoquinolinylpyrazoles and Pyridylisoxazoles as Luminescent Materials with Sensorial Ability towards Pollutant Toxic Metal Ions. Experimental and Computational Studies. J Lumin 2018, 198, 517–530. https://doi.org/10.1016/j.jlumin.2018.02.058. High, B.; Bruce, D.; Richter, M. M. Determining Copper Ions in Water Using Electrochemiluminescence; 2001; Vol. 449, 1-2, pages 17-22. Waggoner, D. J.; Bartnikas, T. B.; Gitlin, J. D. The Role of Copper in Neurodegenerative Disease; 1999, 4, 221-230. Zhang, X. B.; Peng, J.; He, C. L.; Shen, G. L.; Yu, R. Q. A Highly Selective Fluorescent Sensor for Cu2+ Based on 2-(2′-Hydroxyphenyl)Benzoxazole in a Poly(Vinyl Chloride) Matrix. Anal Chim Acta 2006, 567 (2), 189–195. https://doi.org/10.1016/j.aca.2006.03.025. Finkel, T.; Serrano, M.; Blasco, M. A. The Common Biology of Cancer and Ageing. Nature. Nature Publishing Group August 16, 2007, pp 767–774. https://doi.org/10.1038/nature05985. Barranguet, C.; Van Den Ende, F. P.; Rutgers, M.; Breure, A. M.; Greijdanus, M.; Sinke, J. J.; Admiraal, W. Copper-induced modifications of the trophic relations in riverine algal-bacterial biofilms; 2003; Vol. 22. Ragsdale, S. W. Nickel-Based Enzyme Systems. Journal of Biological Chemistry. July 10, 2009, pp 18571–18575. https://doi.org/10.1074/jbc.R900020200. Kasprzak, K. S.; Sunderman, F. W.; Salnikow, K. Nickel Carcinogenesis. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis. Elsevier December 10, 2003, pp 67–97. https://doi.org/10.1016/j.mrfmmm.2003.08.021. Goodman, J. E.; Prueitt, R. L.; Dodge, D. G.; Thakali, S. Carcinogenicity Assessment of Water-Soluble Nickel Compounds. Critical Reviews in Toxicology. 2009, pp 365–417. https://doi.org/10.1080/10408440902762777. Gupta, V. K.; Prasad, R.; Kumar, A. Dibenzocyclamnickel(II) as Ionophore in PVC-Matrix for Ni 2+-Selective Sensor. Sensors 2002, 2, 384–396. Devaramani, S.; Kumar, K. S.; Suma, B. P.; Pandurangappa, M. Rhodamine B Phenylhydrazide as a New Chemosensor for Sulfite Quantification: Application to Food Samples. In Materials Today: Proceedings; Elsevier Ltd, 2021; Vol. 49, pp 748–755. https://doi.org/10.1016/j.matpr.2021.05.227. Han, Y.; Huang, Y.; Lin, Q.; Tang, L.; Yang, G.; Xin, H.; Zhao, S.; Guan, R.; Wang, K. N.; Cao, D. Bifunctional Fluorescent Probe for the Recognition of Hydrazine and Bisulfite in Lipid Droplets. Sens Actuators B Chem 2023, 393. https://doi.org/10.1016/j.snb.2023.134181. Li, Y.; Shi, L.; Zhang, Y.; Sun, G.; Sun, L.; Su, J. A Simple Dihydrophenazine-Based Chemosensor for the Detection of Sulfite with Turn-on Fluorescence. Dyes and Pigments 2019, 160, 794–798. https://doi.org/10.1016/j.dyepig.2018.03.020. Li, H.; Yang, Y.; Wu, X.; Jia, R.; Zhao, P.; Wang, Y. A Novel Reactive Chemosensor for Sulfide Detection with High Selectivity and Sensitivity Based on 4-Cl Coumarin Derivatives. Dyes and Pigments 2021, 191. https://doi.org/10.1016/j.dyepig.2021.109373. Ou, Z.; Liu, S.; Liu, Y.; Chen, H.; Li, H. A Highly Sensitive Chemosensor for Rapid Recognition of Cu2+ and HSO3− in 100% Aqueous Solution. Spectrochim Acta A Mol Biomol Spectrosc 2021, 263. https://doi.org/10.1016/j.saa.2021.120215. Botz, M. M.; Mudder, T. I.; Akcil, A. U. Cyanide Treatment: Physical, Chemical, and Biological Processes. In Gold Ore Processing: Project Development and Operations; Elsevier, 2016; pp 619–645. https://doi.org/10.1016/B978-0-444-63658-4.00035-9. Lindsay, A. E.; Greenbaum, A. R.; O’Hare, D. Analytical Techniques for Cyanide in Blood and Published Blood Cyanide Concentrations from Healthy Subjects and Fire Victims. Analytica Chimica Acta. Elsevier May 31, 2004, pp 185–195. https://doi.org/10.1016/j.aca.2004.02.006. Baud, F. J. Cyanide: Critical Issues in Diagnosis and Treatment. In Human and Experimental Toxicology; 2007; Vol. 26, pp 191–201. https://doi.org/10.1177/0960327107070566. Ma, W.; Chen, R.; Hu, T.; Xing, S.; Zhou, G.; Qin, X.; Ren, H.; Zhang, Z.; Chen, J.; Niu, Q. New Dual-Responsive Fluorescent Sensor for Hypochlorite and Cyanide Sensing and Its Imaging Application in Live Cells and Zebrafish. Talanta 2023, 265. https://doi.org/10.1016/j.talanta.2023.124910. Hien, N. K.; Bay, M. Van; Bao, N. C.; Vo, Q. V.; Cuong, N. D.; Thien, T. V.; Ai Nhung, N. T.; Van, D. U.; Nam, P. C.; Quang, D. T. Coumarin-Based Dual Chemosensor for Colorimetric and Fluorescent Detection of Cu2+ in Water Media. ACS Omega 2020, 5 (33), 21241–21249. https://doi.org/10.1021/acsomega.0c03097. Chang, H. Q.; Zhao, X. L.; Wu, W. N.; Jia, L.; Wang, Y. A Highly Sensitive On-off Fluorescent Chemosensor for Cu2+ Based on Coumarin. J Lumin 2017, 182, 268–273. https://doi.org/10.1016/j.jlumin.2016.10.041. Xu, W. J.; Qi, D. Q.; You, J. Z.; Hu, F. F.; Bian, J. Y.; Yang, C. X.; Huang, J. Coumarin-Based “turn-off” Fluorescent Chemosensor with High Selectivity for Cu2+ in Aqueous Solution. J Mol Struct 2015, 1091, 133–137. https://doi.org/10.1016/j.molstruc.2015.02.083. Wani, M. A.; Singh, P. K.; Pandey, R.; Pandey, M. D. Coumarin-Pyrene Conjugate: Synthesis, Structure and Cu-Selective Fluorescent Sensing in Mammalian Kidney Cells. J Lumin 2016, 171, 159–165. https://doi.org/10.1016/j.jlumin.2015.11.017. Nantapon, T.; Naweephattana, P.; Surawatanawong, P.; Saetear, P.; Chantarojsiri, T.; Ruangsupapichat, N. Amino-Coumarin-Based Colorimetric and Fluorescent Chemosensors Capable of Discriminating Co2+, Ni2+, and Cu2+ Ions in Solution and Potential Utilization as a Paper-Based Device. Spectrochim Acta A Mol Biomol Spectrosc 2022, 282. https://doi.org/10.1016/j.saa.2022.121662. Lu, W.; Chen, J.; Shi, J.; Li, Z.; Xu, L.; Jiang, W.; Yang, S.; Gao, B. An Acylhydrazone Coumarin as Chemosensor for the Detection of Ni2+ with Excellent Sensitivity and Low LOD: Synthesis, DFT Calculations and Application in Real Water and Living Cells. Inorganica Chim Acta 2021, 516. https://doi.org/10.1016/j.ica.2020.120144. Xiong, K.; Huo, F.; Yin, C.; Yang, Y.; Chao, J.; Zhang, Y.; Xu, M. A Off-on Green Fluorescent Chemosensor for Cyanide Based on a Hybrid Coumarin-Hemicyanine Dye and Its Bioimaging. Sens Actuators B Chem 2015, 220, 822–828. https://doi.org/10.1016/j.snb.2015.05.084. Nee Pant, G. J.; Singh, P.; Rawat, B. S.; Rawat, M. S. M.; Joshi, G. C. Synthesis, Characterization and Fluorescence Studies of 3,5-Diaryl Substituted 2-Pyrazolines. Spectrochim Acta A Mol Biomol Spectrosc 2011, 78 (3), 1075–1079. https://doi.org/10.1016/j.saa.2010.12.053. Zhang, Y. P.; Dong, Y. Y.; Yang, Y. S.; Guo, H. C.; Cao, B. xia; Sun, S. Q. A New Pyrazoline-Based Probe of Quenched Fluorescent Reversible Recognition for Cu 2 + and Its Application in Cells. Spectrochim Acta A Mol Biomol Spectrosc 2017, 177, 147–152. https://doi.org/10.1016/j.saa.2017.01.042. Gong, Z. L.; Ge, F.; Zhao, B. X. Novel Pyrazoline-Based Selective Fluorescent Sensor for Zn2+ in Aqueous Media. Sens Actuators B Chem 2011, 159 (1), 148–153. https://doi.org/10.1016/j.snb.2011.06.064. Hu, S.; Zhang, S.; Hu, Y.; Tao, Q.; Wu, A. A New Selective Pyrazoline-Based Fluorescent Chemosensor for Cu 2+ in Aqueous Solution. Dyes and Pigments 2013, 96 (2), 509–515. https://doi.org/10.1016/j.dyepig.2012.09.019. Subashini, G.; Saravanan, A.; Shyamsivappan, S.; Arasakumar, T.; Mahalingam, V.; Shankar, R.; Mohan, P. S. A Versatile “on-off-on” Quinoline Pyrazoline Hybrid for Sequential Detection of Cu2+ and S− Ions towards Bio Imaging and Tannery Effluent Monitoring. Inorganica Chim Acta 2018, 483, 173–179. https://doi.org/10.1016/j.ica.2018.08.012. Han, Z.; Yan, J.; Tang, H. Q.; He, Y.; Zhu, Y.; Ge, Y. Q. Novel Simple Fluorescent Sensor for Nickel Ions. Tetrahedron Lett 2017, 58 (13), 1254–1257. https://doi.org/10.1016/j.tetlet.2017.02.009. Subashini, G.; Shankar, R.; Arasakumar, T.; Mohan, P. S. Quinoline Appended Pyrazoline Based Ni Sensor and Its Application towards Live Cell Imaging and Environmental Monitoring. Sens Actuators B Chem 2017, 243, 549–556. https://doi.org/10.1016/j.snb.2016.12.004. Tigreros, A.; Portilla, J. Fluorescent Pyrazole Derivatives: An Attractive Scaffold for Biological Imaging Applications. Current Chinese Science 2020, 1 (2), 197–206. https://doi.org/10.2174/2210298101999201208211116. Rios, M. C.; Bravo, N. F.; Sanchez, C. C.; Portilla, J. Chemosensors Based on N-Heterocyclic Dyes: Advances in Sensing Highly Toxic Ions Such as CN- and Hg2+. RSC Adv. Royal Society of Chemistry October 2, 2021, pp 34206–34234. https://doi.org/10.1039/d1ra06567j. Tigreros, A.; Portilla, J. Ecological and Economic Efforts in the Development of Molecular Sensors for the Optical Detection of Cyanide Ions. Eur. J. Org. Chem. 2022, 2022 (29), e202200249. https://doi.org/10.1002/ejoc.202200249. Tigreros, A.; Portilla, J. Recent Progress in Chemosensors Based on Pyrazole Derivatives. RSC Adv. 2020, 10 (33), 19693–19712. https://doi.org/10.1039/d0ra02394a. Orrego-Hernández, J.; Portilla, J. Synthesis of Dicyanovinyl-Substituted 1-(2-Pyridyl)Pyrazoles: Design of a Fluorescent Chemosensor for Selective Recognition of Cyanide. Journal of Organic Chemistry 2017, 82 (24), 13376–13385. https://doi.org/10.1021/acs.joc.7b02460. Tigreros, A.; Bedoya-Malagón, C.; Valencia, A.; Núñez-Portela, M.; Portilla, J. Photophysical and Anion Sensing Properties of a Triphenylamine-Dioxaborinine Trimeric Compound. RSC Adv 2023, 13 (3), 1757–1764. https://doi.org/10.1039/d2ra07498b. García, M.; Romero, I.; Portilla, J. Synthesis of Fluorescent 1,7-Dipyridyl-Bis-Pyrazolo[3,4- b:4′,3′- e]Pyridines: Design of Reversible Chemosensors for Nanomolar Detection of Cu 2+. ACS Omega 2019, 4 (4), 6757–6768. https://doi.org/10.1021/acsomega.9b00226. Orrego-Hernández, J.; Cobo, J.; Portilla, J. Synthesis, Photophysical Properties, and Metal-Ion Recognition Studies of Fluoroionophores Based on 1-(2-Pyridyl)-4-Styrylpyrazoles. ACS Omega 2019, 4 (15), 16689–16700. https://doi.org/10.1021/acsomega.9b02796. Tigreros, A.; Macías, M.; Portilla, J. Photophysical and Crystallographic Study of Three Integrated Pyrazolo[1,5-a]Pyrimidine–Triphenylamine Systems. Dyes and Pigments 2021, 184. https://doi.org/10.1016/j.dyepig.2020.108730. Tigreros, A.; Macías, M.; Portilla, J. Expeditious Ethanol Quantification Present in Hydrocarbons and Distilled Spirits: Extending Photophysical Usages of the Pyrazolo[1,5-a]Pyrimidines. Dyes and Pigments 2022, 202. https://doi.org/10.1016/j.dyepig.2022.110299. Tigreros, A.; Macías, M.; Portilla, J. Structural, Photophysical, and Water Sensing Properties of Pyrazolo[1,5‐ a ]Pyrimidine‐Triphenylamine Hybrid Systems. ChemPhotoChem 2022, 6 (11), e202200133. https://doi.org/10.1002/cptc.202200133. Orrego-Hernández, J.; Nuñez-Dallos, N.; Portilla, J. Recognition of Mg2+ by a New Fluorescent “Turn-on” Chemosensor Based on Pyridyl-Hydrazono-Coumarin. Talanta 2016, 152, 432–437. https://doi.org/10.1016/j.talanta.2016.02.020. Fabián, N.; Piñeros, B. Estudio de La Síntesis de Sistemas Híbridos Cumarina:N-Heterociclos Para El Reconocimiento de Iones de Interés; 2019. Tigreros, A.; Castillo, J. C.; Portilla, J. Cyanide Chemosensors Based on 3-Dicyanovinylpyrazolo[1,5-a]Pyrimidines: Effects of Peripheral 4-Anisyl Group Substitution on the Photophysical Properties. Talanta 2020, 215. https://doi.org/10.1016/j.talanta.2020.120905. Chibuike, G. U.; Obiora, S. C. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods. Applied and Environmental Soil Science. Hindawi Publishing Corporation 2014. https://doi.org/10.1155/2014/752708. Chen, J.; Liu, W.; Zhou, B.; Niu, G.; Zhang, H.; Wu, J.; Wang, Y.; Ju, W.; Wang, P. Coumarin- and Rhodamine-Fused Deep Red Fluorescent Dyes: Synthesis, Photophysical Properties, and Bioimaging in Vitro. Journal of Organic Chemistry 2013, 78 (12), 6121–6130. https://doi.org/10.1021/jo400783x. Phatangare, K. R.; Lanke, S. K.; Sekar, N. Fluorescent Coumarin Derivatives with Viscosity Sensitive Emission - Synthesis, Photophysical Properties and Computational Studies. J Fluoresc 2014, 24 (4), 1263–1274. https://doi.org/10.1007/s10895-014-1410-3. Duguta, G.; Muddam, B.; Kamatala, C. R.; Chityala, Y. Symmetric Trichloro Triazine Adducts with N, N’-Dimethyl Formamide and N, N’-Dimethyl Acetamide as Green Vilsmeier –Haack Reagents for Effective Formylation and Acylation of Indoles. Chemical Data Collections 2020, 28. https://doi.org/10.1016/j.cdc.2020.100382. Chowdhary, A.; Dhawale, A.; Trivedi, D. R. Benzidine-Based Chemosensors for the Selective Detection of Phosphate, Carbonate and Copper Ions: Applications in Water and Food Sample Analysis and on-Field Detection Kit. Microchemical Journal 2024, 204. https://doi.org/10.1016/j.microc.2024.111088. George, N.; Saini, P.; Singh, G.; Singh, R.; Singh, G.; Malik, P.; Singh, H.; Kaur, G.; Singh, J. Detection of Copper in Tea and Water Sample: A Click-Oriented Azomethine-Based 1,2,3-Triazole Fluorescent Chemosensor with Reversible INHIBIT Logic Gate Behavior and Computational Aspects. J Mol Struct 2024, 1311. https://doi.org/10.1016/j.molstruc.2024.138288. Shahbaz, M.; Sharif, S.; Saeed, M.; Ashraf, A.; Rehman Afzal, T. T. A Facile and Highly Selective Fluorimetric Chemosensor 1,2,4-Aminonaphthol Sulfonic Acid for Detection of Copper Ions in Aqueous Medium. J Lumin 2023, 263. https://doi.org/10.1016/j.jlumin.2023.120149. Mousavi, S. H.; Zanjanchi, M. A.; Mohammadi, A.; Moafi, H. F. Novel Sulfamethoxazole-Based Chemosensor for Detection of Ni (II) Ion: A Combination of Experimental, Antibacterial and DFT Studies. J Mol Struct 2025, 1319. https://doi.org/10.1016/j.molstruc.2024.139599. Nelson, M.; Ayyanar, S.; Selvaraj, M.; Assiri, M. A. Exploiting Cyanide Anion Detection in Food Samples and for Constructing Logic Gates by Turn-off Fluorescent Chemosensor. J Mol Struct 2025, 1321. https://doi.org/10.1016/j.molstruc.2024.140018. Singh, M.; Nadendla, S.; Kumar Kanaparthi, R. A Highly Sensitive Colorimetric and Fluorometric Sensor for the Detection of Cyanide. J Photochem Photobiol A Chem 2025, 458. https://doi.org/10.1016/j.jphotochem.2024.115957. Kodiyawala, A.; Mondal, A.; Murugan, D.; Rangasamy, L.; Sahoo, S. K.; Dutta, S. A Water-Soluble Colorimetric and Turn-on Fluorescence Sensor for Fast and Sensitive Detection of Sulfite/Bisulfite Ions in Real Samples and Live Cells. J Mol Struct 2025, 1321. https://doi.org/10.1016/j.molstruc.2024.139723. Xie, L.; Zheng, R.; Hu, H.; Li, L. Determination of Hypochlorite and Bisulfite in Water by Bifunctional Colorimetric Sensor Based on Octupolar Conjugated Merocyanine Dyes. Microchemical Journal 2022, 172. https://doi.org/10.1016/j.microc.2021.106931. Lyngdoh Lyngkhoi, D.; Khatua, S. A Coumarin Containing Hemicyanine-Based Probe for Dual Channel Detection of Cyanide Ion. Inorganica Chim Acta 2024, 572. https://doi.org/10.1016/j.ica.2024.122300. Garzón, L. M.; Portilla, J. Synthesis of Novel D–π–A Dyes for Colorimetric Cyanide Sensing Based on Hemicyanine–Functionalized N-(2-Pyridyl)Pyrazoles. European J Org Chem 2019, 2019 (42), 7079–7088. https://doi.org/10.1002/ejoc.201901178. Asaithambi, G.; Periasamy, V. Ratiometric Sensing of Sulfite/Bisulfite Ions and Its Applications in Food Samples and Living Cells. J Photochem Photobiol A Chem 2020, 389. https://doi.org/10.1016/j.jphotochem.2019.112214. Lan, J. S.; Zeng, R. F.; Ding, Y.; Zhang, Y.; Zhang, T.; Wu, T. A Simple Pyrene-Hemicyanine Fluorescent Probe for Colorimetric and Ratiometric Detection of SO2 Derivatives in the Mitochondria of Living Cells and Zebrafish in Vivo. Sens Actuators B Chem 2018, 268, 328–337. https://doi.org/10.1016/j.snb.2018.04.047. El-Remaily, M. A. E. A. A. A. Bismuth Triflate: A Highly Efficient Catalyst for the Synthesis of Bio-Active Coumarin Compounds via One-Pot Multi-Component Reaction. Cuihua Xuebao/Chinese Journal of Catalysis 2015, 36 (7), 1124–1130. https://doi.org/10.1016/S1872-2067(14)60308-9. Chemate, S. B.; Sekar, N. Novel Iminocoumarin Derivatives: Synthesis, Spectroscopic and Computational Studies. J Fluoresc 2015, 25 (6), 1615–1628. https://doi.org/10.1007/s10895-015-1648-4. Zhang, Q.; Bu, D.; Ren, H.; Yu, M.; Zhang, H.; Li, Z. Synthesis of a NIR Fluorescent Dye and Its Application for Rapid Detection of HSO3− in Living Cells. Dyes and Pigments 2021, 196. https://doi.org/10.1016/j.dyepig.2021.109753. Chen, J.; Liu, W.; Ma, J.; Xu, H.; Wu, J.; Tang, X.; Fan, Z.; Wang, P. Synthesis and Properties of Fluorescence Dyes: Tetracyclic Pyrazolo[3,4- b ]Pyridine-Based Coumarin Chromophores with Intramolecular Charge Transfer Character. Journal of Organic Chemistry 2012, 77 (7), 3475–3482. https://doi.org/10.1021/jo3002722. Patra, S. K.; Manivannan, R.; Son, Y. A. Multicolor Emissive Organic Material to Display Aggregation Caused Red Shift with Dual State Emission, and Application towards Rewritable Data Storage. J Photochem Photobiol A Chem 2023, 444. https://doi.org/10.1016/j.jphotochem.2023.114945. Huang, Q.; Wang, T.; Xiao, N. Selective Monitoring ATP Using a Fluorogenic Al(III)–Probe Complex in Aqueous Medium. Spectrochim Acta A Mol Biomol Spectrosc 2020, 229. https://doi.org/10.1016/j.saa.2019.117946. Al-Zaydi, K. Microwave Assisted Synthesis, Part 1: Rapid Solventless Synthesis of 3-Substituted Coumarins and Benzocoumarins by Microwave Irradiation of the Corresponding Enaminones. Molecules 2003, 8 (7), 541–555. https://doi.org/10.3390/80700541. Castillo, J.-C.; Rosero, H.-A.; Portilla, J. Simple Access toward 3-Halo-and 3-Nitro-Pyrazolo[1,5-a]Pyrimidines through a One-Pot Sequence, supporting information Content; 2017. Yang, Y.; Bai, B.; Xu, W.; Xu, Z.; Zhang, J.; Li, W. A Highly Sensitive Fluorescent Probe for the Detection of Bisulfite Ion and Its Application in Living Cells. Dyes and Pigments 2017, 136, 830–835. https://doi.org/10.1016/j.dyepig.2016.09.047. Zhang, T.; Yin, C.; Zhang, Y.; Chao, J.; Wen, G.; Huo, F. Mitochondria-Targeted Reversible Ratiometric Fluorescent Probe for Monitoring SO2/HCHO in Living Cells. Spectrochim Acta A Mol Biomol Spectrosc 2020, 234. https://doi.org/10.1016/j.saa.2020.118253. Mergu, N.; Kim, M.; Son, Y. A. A Coumarin-Derived Cu2 +-Fluorescent Chemosensor and Its Direct Application in Aqueous Media. Spectrochim Acta A Mol Biomol Spectrosc 2018, 188, 571–580. https://doi.org/10.1016/j.saa.2017.07.047. Renault, K.; Renard, P. Y.; Sabot, C. Detection of Biothiols with a Fast-Responsive and Water-Soluble Pyrazolone-Based Fluorogenic Probe. European J Org Chem 2018, 2018 (46), 6494–6498. https://doi.org/10.1002/ejoc.201801157. Lin, W.; Yuan, L.; Cao, Z.; Feng, Y.; Long, L. A Sensitive and Selective Fluorescent Thiol Probe in Water Based on the Conjugate 1,4-Addition of Thiols to α,β-Unsaturated Ketones. Chemistry - A European Journal 2009, 15 (20), 5096–5103. https://doi.org/10.1002/chem.200802751. Zhao, R. R.; Xu, Q. L.; Yang, Y.; Cao, J.; Zhou, Y.; Xu, R.; Zhang, J. F. A Coumarin-Based Terpyridine–Zinc Complex for Sensing Pyrophosphate and Its Application in in Vivo Imaging. Tetrahedron Lett 2016, 57 (46), 5022–5025. https://doi.org/10.1016/j.tetlet.2016.09.081. |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
158 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Doctorado en Ciencias - Química |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Química |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/0651e861-b8cb-44cd-8d9d-a1f17d82513d/download https://repositorio.uniandes.edu.co/bitstreams/c12a84ef-f765-40e9-8518-99a6342aff01/download https://repositorio.uniandes.edu.co/bitstreams/f3549c1d-f2ae-49f2-a66d-ee0da87175a5/download https://repositorio.uniandes.edu.co/bitstreams/ddb41bc7-ad87-4735-879b-3b3d718eba4e/download https://repositorio.uniandes.edu.co/bitstreams/1c71c7b7-3650-49c0-8e02-a682e9867474/download https://repositorio.uniandes.edu.co/bitstreams/419d40c3-d299-491b-a9f8-7eaf177693f8/download https://repositorio.uniandes.edu.co/bitstreams/81b8b1f5-8814-4a72-9f7d-3c84b2d73995/download https://repositorio.uniandes.edu.co/bitstreams/3ff5b9e6-d26f-4d07-bd79-369e889f6ab4/download |
bitstream.checksum.fl_str_mv |
ffd544d638a12ffc063af281cd54f750 a45ea7b54c44e401da7d0b7f9012a797 ae9e573a68e7f92501b6913cc846c39f 4460e5956bc1d1639be9ae6146a50347 2e656f8a8df5aba594bd77c46ced6ce3 5d5ef9f9fb42b8541329ab23d5150cca 3b0e1410e1808eb55cd32f6a7a766817 4f265db43844d3625f3bd51be06a5146 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1831927678211457024 |
spelling |
Portilla Salinas, Jaime Antoniovirtual::23122-1Bravo Piñeros, Néstor FabianMarchal Ingrain, AntonioOrtiz Gonzales, AlejandroRivas Hernández, Ricardo EusebioFacultad de Ciencias2025-02-03T14:32:51Z2025-02-03T14:32:51Z2024-10-28https://hdl.handle.net/1992/75989instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/El trabajo de investigación titulado “Síntesis y solvatofluorocromismo de pigmentos basados en cumarinas conjugadas con pirazolo[1,5-a]pirimidinas y pirazolinas: un enfoque en la quimiodetección de iones” y que se desarrolló en el Grupo de Investigación de Compuestos Biorgánicos (GICOBIORG) de la Universidad de Los Andes, bajo la dirección del profesor Dr. Jaime Antonio Portilla Salinas, se centra en el diseño y desarrollo de nuevos compuestos fluorescentes capaces de detectar cationes y aniones. El enfoque de diseño utiliza mecanismos fotofísicos basados en las propiedades electrónicas y de solvatofluorocromismo para los pigmentos sintetizados, los cuales son una serie de compuestos híbridos de cumarina con pirazolo[1,5-a]pirimidina y pirazolina que poseen propiedades fotofísicas modulables según el medio en el que actúan (i.e., disolvente, iones, etc.) y diverso sitio de reconocimiento. El objetivo de investigación principal es explorar cómo los compuestos híbridos obtenidos responden a cambios en el entorno, con especial énfasis en su capacidad para detectar especies químicas como el cobre (Cu²⁺), níquel (Ni²⁺), cianuro (CN⁻), sulfito (SO₃2⁻) y bisulfito (HSO₃⁻). Así, mediante mediciones espectroscópicas, se identificaron las propiedades de absorción, emisión y enlazamiento de los pigmentos, destacando su utilidad como sensores químicos o sondas moleculares. Los experimentos de absorción y emisión revelaron que estos compuestos presentan desplazamientos de Stokes significativos, dependientes de la polaridad y polarizabilidad del solvente, lo que indica una reorganización estructural en sus estados excitados; asimismo, se pudieron establecer los sitios de unión de las sondas con los analitos de interés mediante RMN, algo crucial para los mecanismos de detección. Los resultados obtenidos de la investigación desarrollada en este trabajo de investigación doctoral no solo demuestran la sensibilidad de los pigmentos desarrollados hacia diversos analitos, sino que también amplian las perspectivas en el diseño de sensores fluorescentes más eficientes, con aplicaciones potenciales en campos como el monitoreo ambiental y la industria química. Este trabajo contribuye al desarrollo de herramientas útiles para la detección rápida y precisa de contaminantes, lo que lo convierte en un aporte significativo en la química de materiales y sensores, además que ofrece una formación de amplio alcance e integral al investigador principal, desde la química sintética hasta la analítica.El Ministerio de Ciencias, Tecnología e Innovación (Minciencias), convocatoria No. 1 del Fondo de Ciencia, Tecnología e Innovación (FCTeI) del Sistema General de Regalías (SGR).Universidad de los Andes por medio de Asistencia graduada y crédito condonable.DoctoradoGICOBIORG158 páginasapplication/pdfspaUniversidad de los AndesDoctorado en Ciencias - QuímicaFacultad de CienciasDepartamento de QuímicaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Síntesis y solvatofluorocromismo de pigmentos basados en cumarinas conjugadas con pirazolo[1,5-a]pirimidinas y pirazolinas: un enfoque en la quimiodetección de ionesTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDSensor molecularCumarinaPirazolo[1,5-a]pirimidinasPirazolinaSolvatofluorocromismoQuimiodetecciónFluorescenciaCobreNiquelCianuroSulfitoBisulfitoQuímicaSinhamahapatra, A.; Sutradhar, N.; Pahari, S.; Bajaj, H. C.; Panda, A. B. Mesoporous Zirconium Phosphate: An Efficient Catalyst for the Synthesis of Coumarin Derivatives through Pechmann Condensation Reaction. Appl Catal A Gen 2011, 394 (1–2), 93–100. https://doi.org/10.1016/j.apcata.2010.12.027.Rosen, T. Preparation OfCinnamic Acids and Related Aromatic Derivatives 1.12.3.2 Aliphatic Aldehydes and Ketones 1.12.3.3 Preparation Of Coumarins 1.Borges, F.; Roleira, F.; Milhazes, N.; Santana, L.; Uriarte, E. Simple Coumarins and Analogues in Medicinal Chemistry: Occurrence, Synthesis and Biological Activity. Curr Med Chem 2005, 12 (8), 887–916. https://doi.org/10.2174/0929867053507315.Belavagi, N. S.; Deshapande, N.; Sunagar, M. G.; Khazi, I. A. M. A Practical One-Pot Synthesis of Coumarins in Aqueous Sodium Bicarbonate via Intramolecular Wittig Reaction at Room Temperature. RSC Adv 2014, 4 (75), 39667–39671. https://doi.org/10.1039/c4ra06996j.Hwang, I. T.; Lee, S. A.; Hwang, J. S.; Lee, K. I. A Facile Synthesis of Highly Functionalized 4-Arylcoumarins via Kostanecki Reactions Mediated by DBU. Molecules 2011, 16 (8), 6313–6321. https://doi.org/10.3390/molecules16086313.Cao, D.; Liu, Z.; Verwilst, P.; Koo, S.; Jangjili, P.; Kim, J. S.; Lin, W. Coumarin-Based Small-Molecule Fluorescent Chemosensors. Chem Rev 2019, 119 (18), 10403–10519. https://doi.org/10.1021/acs.chemrev.9b00145.Sharma, R. K.; Katiyar, D. Recent Advances in Transition-Metal-Catalyzed Synthesis of Coumarins. Synthesis (Germany). Georg Thieme Verlag August 1, 2016, pp 2303–2322. https://doi.org/10.1055/s-0035-1560450.Dalpozzo, R.; Mancuso, R. Copper-Catalyzed Synthesis of Coumarins. A Mini-Review. Catalysts 2021, 11 (11). https://doi.org/10.3390/catal11111382.Liu, M.; Jiang, Q.; Lu, Z.; Huang, Y.; Tan, Y.; Jiang, Q. A Coumarin-Based Fluorescent Turn-on Probe for Detection of Biothiols in Vitro. Luminescence 2015, 30 (8), 1395–1402. https://doi.org/10.1002/bio.2912.Jung, H. S.; Ko, K. C.; Lee, J. H.; Kim, S. H.; Bhuniya, S.; Lee, J. Y.; Kim, Y.; Kim, S. J.; Kim, J. S. Rationally Designed Fluorescence Turn-on Sensors: A New Design Strategy Based on Orbital Control. Inorg Chem 2010, 49 (18), 8552–8557. https://doi.org/10.1021/ic101165k.Eicher, Theophil.; Hauptmann, Siegfried.; Speicher, Andreas. The Chemistry of Heterocycles : Structure, Reactions, Syntheses, and Applications; Wiley-VCH Verlag GmbH & Co., KGaA, 2004.Vekariya, R. H.; Patel, H. D. Recent Advances in the Synthesis of Coumarin Derivatives via Knoevenagel Condensation: A Review. Synthetic Communications. Taylor and Francis Inc. October 2, 2014, pp 2756–2788. https://doi.org/10.1080/00397911.2014.926374.Lee, S.; Sivakumar, K.; Shin, W. S.; Xie, F.; Wang, Q. Synthesis and Anti-Angiogenesis Activity of Coumarin Derivatives. Bioorg Med Chem Lett 2006, 16 (17), 4596–4599. https://doi.org/10.1016/j.bmcl.2006.06.007.Mohamed, H. M.; Abd El-Wahab, A. H. F.; Ahmed, K. A.; El-Agrody, A. M.; Bedair, A. H.; Eid, F. A.; Khafagy, M. M. Synthesis, Reactions and Antimicrobial Activities of 8-Ethoxycoumarin Derivatives. Molecules 2012, 17 (1), 971–988. https://doi.org/10.3390/molecules17010971.Medina, F. G.; Marrero, J. G.; Macías-Alonso, M.; González, M. C.; Córdova-Guerrero, I.; Teissier García, A. G.; Osegueda-Robles, S. Coumarin Heterocyclic Derivatives: Chemical Synthesis and Biological Activity. Natural Product Reports. Royal Society of Chemistry October 1, 2015, pp 1472–1507. https://doi.org/10.1039/c4np00162a.Bochkov, A. Y.; Akchurin, I. O.; Traven, V. F. A New Facile Way for the Preparation of 3-Formylcoumarins. Heterocycl Comm 2017, 23 (2), 75–78. https://doi.org/10.1515/hc-2017-0038.Fringuelli, F.; Piermatti, O.; Pizzo, F. One-Pot Synthesis of 3-Carboxycoumarins via Consecutive Knoevenagel and Pinner Reactions in Water. Synthesis (Stuttg) 2003, No. 15, 2331–2334. https://doi.org/10.1055/s-2003-41061.Sarker, S. D.; Nahar, L. Progress in the Chemistry of Naturally Occurring Coumarins. Progress in the chemistry of organic natural products. January 1, 2017, pp 241–304. https://doi.org/10.1007/978-3-319-59542-9_3.Joule, J. A.; Mills, K. Heterocyclic Chemistry, Fifth Edition.Ortiz, M. C.; Portilla, J. Access to five-membered n-heteroaromatic compounds:current approach based on microwave-assisted synthesis. Targets in Heterocyclic Systems 2021, 25, 436–462. https://doi.org/10.17374/targets.2022.25.436.Castillo, J.-C.; Portilla, J. Recent advances in the synthesis of new pyrazole derivatives. https://doi.org/10.17374/targets.2019.22.194.Tandel, S. N.; Kasundra, D. V.; Patel, P. N. Design and Synthesis of Chalcone Mediated Novel Pyrazoline Scaffolds: Discovery of Benzothiophene Comprising Antimicrobial Inhibitors. Results Chem 2023, 101119. https://doi.org/10.1016/j.rechem.2023.101119.Ravindar, L.; Hasbullah, S. A.; Rakesh, K. P.; Hassan, N. I. Pyrazole and Pyrazoline Derivatives as Antimalarial Agents: A Key Review. European Journal of Pharmaceutical Sciences. Elsevier B.V. April 1, 2023. https://doi.org/10.1016/j.ejps.2022.106365.Feng, Y.; Huang, X.; Xu, H.; Liu, J.; Xie, P.; He, H.; Yin, S. A New Insight into the Sensing Mechanism of Thiazole-Substituted Pyrazoline Fluorescent Sensor for the Detection of Picric Acid. Chem Phys 2023, 575. https://doi.org/10.1016/j.chemphys.2023.112059.Santos, G. C.; Kappenberg, Y. G.; Rosa, J. M. L.; Ketzer, A.; Tisoco, I.; Martins, M. A. P.; Zanatta, N.; Frizzo, C. P.; Iglesias, B. A.; Bonacorso, H. G. Hybrid Pyrazoline-Triazole Fluorescent Dyes: Synthesis, Photophysics, Electrochemical, and Antioxidative Activity. J Photochem Photobiol A Chem 2023, 444. https://doi.org/10.1016/j.jphotochem.2023.114900.Bozkurt, E.; Gul, H. I. A Novel Pyrazoline-Based Fluorometric “Turn-off” Sensing for Hg2+. Sens Actuators B Chem 2018, 255, 814–825. https://doi.org/10.1016/j.snb.2017.08.062.Pyrazoles, pyrazolines, pyrazolidines, indazoles a n d condensed rings the chemistry of heterocyclic compounds.Hu, S.; Song, J.; Wu, G.; Cheng, C.; Gao, Q. A New Pyrazoline-Based Fluorescent Sensor for Al3+ in Aqueous Solution. Spectrochim Acta A Mol Biomol Spectrosc 2015, 136 (PB), 1188–1194. https://doi.org/10.1016/j.saa.2014.10.005.Uchacz, T.; Maroń, A. M.; Szlachcic, P.; Danel, A.; Pokladko-Kowar, M.; Gondek, E.; Kolek, P.; Zapotoczny, S.; Stadnicka, K. M. Photoinduced Charge Transfer in Push-Pull Pyrazoline-Based Chromophores – Relationship between Molecular Structure and Photophysical, Photovoltaic Properties. Spectrochim Acta A Mol Biomol Spectrosc 2023, 296. https://doi.org/10.1016/j.saa.2023.122643.Chibac, A. L.; Roman, G.; Cojocaru, C.; Sacarescu, G.; Simionescu, M.; Sacarescu, L. Pyrazoline Based Chloride Sensor for Body Fluids Screening. J Mol Liq 2019, 284, 139–146. https://doi.org/10.1016/j.molliq.2019.04.007.Zhang, X. H.; Wu, S. K.; Gao, Z. Q.; Lee, C. S.; Lee, S. T.; Kwong, H.-L. Pyrazoline Derivatives for Blue Color Emitter in Organic Electroluminescent Devices; 2000; Vol. 371.Stakhira, P.; Khomyak, S.; Cherpak, V.; Volyniuk, D.; Simokaitiene, J.; Tomkeviciene, A.; Kukhta, N. A.; Grazulevicius, J. V.; Kukhta, A. V.; Sun, X. W.; Demir, H. V.; Hotra, Z.; Voznyak, L. Blue Organic Light-Emitting Diodes Based on Pyrazoline Phenyl Derivative. Synth Met 2012, 162 (3–4), 352–355. https://doi.org/10.1016/j.synthmet.2011.12.017.Landge, S. M.; Tkatchouk, E.; Benítez, D.; Lanfranchi, D. A.; Elhabiri, M.; Goddard, W. A.; Aprahamian, I. Isomerization Mechanism in Hydrazone-Based Rotary Switches: Lateral Shift, Rotation, or Tautomerization? J Am Chem Soc 2011, 133 (25), 9812–9823. https://doi.org/10.1021/ja200699v.Varghese, B.; Al-Busafi, S. N.; Suliman, F. O.; Al-Kindy, S. M. Z. Unveiling a Versatile Heterocycle: Pyrazoline-a Review. RSC Advances. Royal Society of Chemistry 2017, pp 46999–47016. https://doi.org/10.1039/c7ra08939b.Insuasty- Obando, B. Las Chalconas y Su Uso Como Precursores En La Síntesis de Compuestos Heterocíclicos Nitrogenados. Rev Acad Colomb Cienc Exactas Fis Nat 2016, 40 (155), 234. https://doi.org/10.18257/raccefyn.309.Haider, K.; Shafeeque, M.; Yahya, S.; Yar, M. S. A Comprehensive Review on Pyrazoline Based Heterocyclic Hybrids as Potent Anticancer Agents. European Journal of Medicinal Chemistry Reports. Elsevier Masson s.r.l. August 1, 2022. https://doi.org/10.1016/j.ejmcr.2022.100042.Rahmatzadeh, S. S.; Karami, B.; Khodabakhshi, S. A Modified and Practical Synthetic Route to Indazoles and Pyrazoles Using Tungstate Sulfuric Acid. Journal of the Chinese Chemical Society 2015, 62 (1), 17–20. https://doi.org/10.1002/jccs.201400251.Daneshfar, Z.; Rostami, A. Cellulose Sulfonic Acid as a Green, Efficient, and Reusable Catalyst for Nazarov Cyclization of Unactivated Dienones and Pyrazoline Synthesis. RSC Adv 2015, 5 (127), 104695–104707. https://doi.org/10.1039/c5ra19773b.Sureja, D. K.; Vadalia, K. R. Microwave Assisted, Solvent-Free Synthesis and in-Vitro Antimicrobial Screening of Some Novel Pyrazolo[3,4- d ]Pyrimidin-4(5 H )-One Derivatives. Beni Suef Univ J Basic Appl Sci 2017, 6 (1), 33–38. https://doi.org/10.1016/j.bjbas.2016.12.006.Almansa, C.; De Arriba, A. F.; Cavalcanti, F. L.; Gómez, L. A.; Miralles, A.; Merlos, M.; García-Rafanell, J.; Forn, J. Synthesis and SAR of a New Series of COX-2-Selective Inhibitors: Pyrazolo[1,5-α]Pyrimidines. J Med Chem 2001, 44 (3), 350–361. https://doi.org/10.1021/jm0009383.Hammouda, M. M.; Gaffer, H. E.; Elattar, K. M. Insights into the Medicinal Chemistry of Heterocycles Integrated with a Pyrazolo[1,5-a]Pyrimidine Scaffold. RSC Medicinal Chemistry. Royal Society of Chemistry September 8, 2022, pp 1150–1196. https://doi.org/10.1039/d2md00192f.Petroski, R. E.; Pomeroy, J. E.; Das, R.; Bowman, H.; Yang, W.; Chen, A. P.; Foster, A. C. Indiplon Is a High-Affinity Positive Allosteric Modulator with Selectivity for Α1 Subunit-Containing GABAA Receptors. Journal of Pharmacology and Experimental Therapeutics 2006, 317 (1), 369–377. https://doi.org/10.1124/jpet.105.096701.Terrett, N. K.; Bell, A. S.; Brown, D.; Ellis, P. Sildenafil (viagra~), a potent and selective inhibitor of type 5 cgmp phosphodiesterase with utility for the treatment of male erectile dysfunction; 1996; Vol. 6.Portilla, J. Recent Advances in the Chemistry of Pyrazolo[1,5-a]Pyrimidines. In Advances in Heterocyclic Chemistry; Elsevier Inc., 2024; pp 71–138. https://doi.org/10.1016/bs.aihch.2023.08.001.Castillo, J. C.; Rosero, H. A.; Portilla, J. Simple Access toward 3-Halo- and 3-Nitro-Pyrazolo[1,5-a] Pyrimidines through a One-Pot Sequence. RSC Adv 2017, 7 (45), 28483–28488. https://doi.org/10.1039/c7ra04336h.Castillo, J. C.; Tigreros, A.; Portilla, J. 3-Formylpyrazolo[1,5- a]Pyrimidines as Key Intermediates for the Preparation of Functional Fluorophores. Journal of Organic Chemistry 2018, 83 (18), 10887–10897. https://doi.org/10.1021/acs.joc.8b01571.Tigreros, A.; Rosero, H. A.; Castillo, J. C.; Portilla, J. Integrated Pyrazolo[1,5-a]Pyrimidine–Hemicyanine System as a Colorimetric and Fluorometric Chemosensor for Cyanide Recognition in Water. Talanta 2019, 196, 395–401. https://doi.org/10.1016/j.talanta.2018.12.100.Jiao, Y.; Zhou, L.; He, H.; Yin, J.; Duan, C. A New Fluorescent Chemosensor for Recognition of Hg2+ Ions Based on a Coumarin Derivative. Talanta 2017, 162, 403–407. https://doi.org/10.1016/j.talanta.2016.10.004.Shiraishi, Y.; Nakamura, M.; Hirai, T. Effects of Substituents on Fluorometric Detection of Cyanide Anions by Indolium-Coumarin Dyads. Physical Chemistry Chemical Physics 2015, 17 (38), 25027–25036. https://doi.org/10.1039/c5cp03877d.Goswami, S.; Sen, D.; Das, A. K.; Das, N. K.; Aich, K.; Fun, H. K.; Quah, C. K.; Maity, A. K.; Saha, P. A New Rhodamine-Coumarin Cu2+-Selective Colorimetric and “off-on” Fluorescence Probe for Effective Use in Chemistry and Bioimaging along with Its Bound X-Ray Crystal Structure. Sens Actuators B Chem 2013, 183, 518–525. https://doi.org/10.1016/j.snb.2013.04.005.Yan, L.; Li, R.; Shen, W.; Qi, Z. Multiple–Color AIE Coumarin–Based Schiff Bases and Potential Application in Yellow OLEDs. J Lumin 2018, 194, 151–155. https://doi.org/10.1016/j.jlumin.2017.10.032.Signore, G.; Nifosì, R.; Albertazzi, L.; Storti, B.; Bizzarri, R. Polarity-Sensitive Coumarins Tailored to Live Cell Imaging. J Am Chem Soc 2010, 132 (4), 1276–1288. https://doi.org/10.1021/ja9050444.Romero, E. L.; D’Vries, R. F.; Zuluaga, F.; Chaur, M. N. Multiple Dynamics of Hydrazone Based Compounds. J Braz Chem Soc 2015, 26 (6), 1265–1273. https://doi.org/10.5935/0103-5053.20150092.Burdette, S. C. Molecular Switches: Hydrazones Double down on Zinc. Nat Chem 2012, 4 (9), 695–696. https://doi.org/10.1038/nchem.1438.Traven, V. F.; Cheptsov, D. A.; Vershinina, G. V.; Solovjeva, N. P.; Chibisova, T. A.; Dolotov, S. M.; Ivanov, I. V. (7-Dialkylamino-3-Coumarinyl)Pyrazolines – New Effective Push-Pull Photogenerators of Acidity. J Photochem Photobiol A Chem 2018, 351, 8–15. https://doi.org/10.1016/j.jphotochem.2017.09.072.Chibac, A. L.; Roman, G.; Cojocaru, C.; Sacarescu, G.; Simionescu, M.; Sacarescu, L. Pyrazoline Based Chloride Sensor for Body Fluids Screening. J Mol Liq 2019, 284, 139–146. https://doi.org/10.1016/j.molliq.2019.04.007.Hu, S.; Zhang, S.; Hu, Y.; Tao, Q.; Wu, A. A New Selective Pyrazoline-Based Fluorescent Chemosensor for Cu 2+ in Aqueous Solution. Dyes and Pigments 2013, 96 (2), 509–515. https://doi.org/10.1016/j.dyepig.2012.09.019.Mani, K. S.; Rajamanikandan, R.; Murugesapandian, B.; Shankar, R.; Sivaraman, G.; Ilanchelian, M.; Rajendran, S. P. Coumarin Based Hydrazone as an ICT-Based Fluorescence Chemosensor for the Detection of Cu 2+ Ions and the Application in HeLa Cells. Spectrochim Acta A Mol Biomol Spectrosc 2019, 214, 170–176. https://doi.org/10.1016/j.saa.2019.02.020.Bozkurt, E.; Gul, H. I.; Mete, E. Solvent and Substituent Effect on the Photophysical Properties of Pyrazoline Derivatives: A Spectroscopic Study. J Photochem Photobiol A Chem 2018, 352, 35–42. https://doi.org/10.1016/j.jphotochem.2017.10.010.Wang, S. Q.; Gao, Y.; Wang, H. Y.; Zheng, X. X.; Shen, S. L.; Zhang, Y. R.; Zhao, B. X. Synthesis, X-Ray Crystal Structure and Optical Properties of Novel 1,3,5-Triarylpyrazoline Derivatives and the Fluorescent Sensor for Cu 2+. Spectrochim Acta A Mol Biomol Spectrosc 2013, 106, 110–117. https://doi.org/10.1016/j.saa.2012.12.062.Czarnik, A. W. Desperately Seeking Sensors. Chem Biol 1995, 2 (7), 423–428. https://doi.org/10.1016/1074-5521(95)90257-0.Castillo, J. C.; Tigreros, A.; Portilla, J. 3-Formylpyrazolo[1,5- a]Pyrimidines as Key Intermediates for the Preparation of Functional Fluorophores. Journal of Organic Chemistry 2018, 83 (18), 10887–10897. https://doi.org/10.1021/acs.joc.8b01571.Tigreros, A.; Macías, M.; Portilla, J. Photophysical and Crystallographic Study of Three Integrated Pyrazolo[1,5-a]Pyrimidine–Triphenylamine Systems. Dyes and Pigments 2021, 184. https://doi.org/10.1016/j.dyepig.2020.108730.Tigreros, A.; Aranzazu, S. L.; Bravo, N. F.; Zapata-Rivera, J.; Portilla, J. Pyrazolo[1,5-: A] Pyrimidines-Based Fluorophores: A Comprehensive Theoretical-Experimental Study. RSC Adv 2020, 10 (65), 39542–39552. https://doi.org/10.1039/d0ra07716j.Tigreros, A.; Aranzazu, S. L.; Ríos, M. C.; Portilla, J. Pyrazolo[1,5-a]Pyrimidine-Dioxaborinine Hybrid Dyes: Synthesis and Substituent Effect in the Photophysical Properties. European J Org Chem 2023, 26 (15). https://doi.org/10.1002/ejoc.202300089.Tigreros, A.; Zapata-Rivera, J.; Portilla, J. Pyrazolo[1,5-a]Pyrimidinium Salts for Cyanide Sensing: A Performance and Sustainability Study of the Probes. ACS Sustain Chem Eng 2021, 9 (36), 12058–12069. https://doi.org/10.1021/acssuschemeng.1c01689.Gu, Y. Q.; Shen, W. Y.; Zhou, Y.; Chen, S. F.; Mi, Y.; Long, B. F.; Young, D. J.; Hu, F. L. A Pyrazolopyrimidine Based Fluorescent Probe for the Detection of Cu2+ and Ni2+ and Its Application in Living Cells. Spectrochim Acta A Mol Biomol Spectrosc 2019, 209, 141–149. https://doi.org/10.1016/j.saa.2018.10.030.Tigreros, A.; Castillo, J. C.; Portilla, J. Cyanide Chemosensors Based on 3-Dicyanovinylpyrazolo[1,5-a]Pyrimidines: Effects of Peripheral 4-Anisyl Group Substitution on the Photophysical Properties. Talanta 2020, 215. https://doi.org/10.1016/j.talanta.2020.120905.Wu, Y. C.; Li, H. J.; Yang, H. Z. A Sensitive and Highly Selective Fluorescent Sensor for In3+. Org Biomol Chem 2010, 8 (15), 3394–3397. https://doi.org/10.1039/c0ob00002g.Tigreros, A.; Portilla, J. Modern Approaches on Material Science Pyrazolo [1,5-A] Pyrimidines an Interesting Scaffold for Optical Applications. https://doi.org/10.32474/MAMS.2021.04.000178.García-Olave, M.; Tigreros, A.; Iglesias, B. A.; Portilla, J. Synthesis and Photophysical Properties of Pyrazolo[1,5-a]Pyrimidines Containing D−π−A Architecture Similar to Prodan. J Mol Struct 2024, 1317. https://doi.org/10.1016/j.molstruc.2024.139142.Kaur, B.; Kaur, N.; Kumar, S. Colorimetric Metal Ion Sensors – A Comprehensive Review of the Years 2011–2016. Coordination Chemistry Reviews. Elsevier B.V. March 1, 2018, pp 13–69. https://doi.org/10.1016/j.ccr.2017.12.002.Lakowicz, J. R. Principles of Fluorescence Spectroscopy Third Edition. 2006.Sıdır, İ.; Kara, Y. E.; Sıdır, Y. G.; Berber, H.; Fausto, R. Reversal in Solvatochromism, Photochromism and Thermochromism in a New Bis-Azo Dye Based on Naphthalen-1-Amine. J Photochem Photobiol A Chem 2024, 446. https://doi.org/10.1016/j.jphotochem.2023.115138.Homocianu, M. Exploring Solvatochromism: A Comprehensive Analysis of Research Data. Microchemical Journal. Elsevier Inc. March 1, 2024. https://doi.org/10.1016/j.microc.2024.110166.Wu, J.; Liu, W.; Ge, J.; Zhang, H.; Wang, P. New Sensing Mechanisms for Design of Fluorescent Chemosensors Emerging in Recent Years. Chemical Society Reviews. July 2011, pp 3483–3495. https://doi.org/10.1039/c0cs00224k.The Principle of Time-Correlated Single Photon Counting.Time-Resolved Fluorescence Lifetime Measurements.Yeh, J. T.; Chen, W. C.; Liu, S. R.; Wu, S. P. A Coumarin-Based Sensitive and Selective Fluorescent Sensor for Copper(II) Ions. New Journal of Chemistry 2014, 38 (9), 4434–4439. https://doi.org/10.1039/c4nj00695j.Shortreed, M.; Kopelman, R.; Kuhn, M.; Hoyland, B. Electrochemical Detection Techniques in the Applied Biosciences; Analysis and Clinical Application; Oxford University Press, 1992; Vol. 13.Huang, Y. H.; Ge, Q. M.; Zhao, Y. Y.; Cong, H.; Zhao, J. L.; Tao, Z.; Luo, Q. Y. Recognition of Silver Cations by Multifarene[2,2] Chemosensors with Unexpected Fluorescence Response. Spectrochim Acta A Mol Biomol Spectrosc 2019, 218, 213–220. https://doi.org/10.1016/j.saa.2019.04.011.Kumar, M.; Kumar, A.; Faizi, M. S. H.; Kumar, S.; Singh, M. K.; Sahu, S. K.; Kishor, S.; John, R. P. A Selective ‘Turn-on’ Fluorescent Chemosensor for Detection of Al3+ in Aqueous Medium: Experimental and Theoretical Studies. Sens Actuators B Chem 2018, 260, 888–899. https://doi.org/10.1016/j.snb.2018.01.098.Fitzgerald, W. F.; Lamborg, C. H.; Hammerschmidt, C. R. Marine Biogeochemical Cycling of Mercury. Chemical Reviews. February 2007, pp 641–662. https://doi.org/10.1021/cr050353m.Walker, C. F.; Black, R. E. Zinc and the Risk for Infectious Disease. Annual Review of Nutrition. 2004, pp 255–275. https://doi.org/10.1146/annurev.nutr.23.011702.073054.Frederickson, C. J.; Koh, J. Y.; Bush, A. I. The Neurobiology of Zinc in Health and Disease. Nature Reviews Neuroscience. June 2005, pp 449–462. https://doi.org/10.1038/nrn1671.Cuerva, C.; Morais, N.; Campo, J. A.; Cano, M.; Lodeiro, C. Isoquinolinylpyrazoles and Pyridylisoxazoles as Luminescent Materials with Sensorial Ability towards Pollutant Toxic Metal Ions. Experimental and Computational Studies. J Lumin 2018, 198, 517–530. https://doi.org/10.1016/j.jlumin.2018.02.058.High, B.; Bruce, D.; Richter, M. M. Determining Copper Ions in Water Using Electrochemiluminescence; 2001; Vol. 449, 1-2, pages 17-22.Waggoner, D. J.; Bartnikas, T. B.; Gitlin, J. D. The Role of Copper in Neurodegenerative Disease; 1999, 4, 221-230.Zhang, X. B.; Peng, J.; He, C. L.; Shen, G. L.; Yu, R. Q. A Highly Selective Fluorescent Sensor for Cu2+ Based on 2-(2′-Hydroxyphenyl)Benzoxazole in a Poly(Vinyl Chloride) Matrix. Anal Chim Acta 2006, 567 (2), 189–195. https://doi.org/10.1016/j.aca.2006.03.025.Finkel, T.; Serrano, M.; Blasco, M. A. The Common Biology of Cancer and Ageing. Nature. Nature Publishing Group August 16, 2007, pp 767–774. https://doi.org/10.1038/nature05985.Barranguet, C.; Van Den Ende, F. P.; Rutgers, M.; Breure, A. M.; Greijdanus, M.; Sinke, J. J.; Admiraal, W. Copper-induced modifications of the trophic relations in riverine algal-bacterial biofilms; 2003; Vol. 22.Ragsdale, S. W. Nickel-Based Enzyme Systems. Journal of Biological Chemistry. July 10, 2009, pp 18571–18575. https://doi.org/10.1074/jbc.R900020200.Kasprzak, K. S.; Sunderman, F. W.; Salnikow, K. Nickel Carcinogenesis. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis. Elsevier December 10, 2003, pp 67–97. https://doi.org/10.1016/j.mrfmmm.2003.08.021.Goodman, J. E.; Prueitt, R. L.; Dodge, D. G.; Thakali, S. Carcinogenicity Assessment of Water-Soluble Nickel Compounds. Critical Reviews in Toxicology. 2009, pp 365–417. https://doi.org/10.1080/10408440902762777.Gupta, V. K.; Prasad, R.; Kumar, A. Dibenzocyclamnickel(II) as Ionophore in PVC-Matrix for Ni 2+-Selective Sensor. Sensors 2002, 2, 384–396.Devaramani, S.; Kumar, K. S.; Suma, B. P.; Pandurangappa, M. Rhodamine B Phenylhydrazide as a New Chemosensor for Sulfite Quantification: Application to Food Samples. In Materials Today: Proceedings; Elsevier Ltd, 2021; Vol. 49, pp 748–755. https://doi.org/10.1016/j.matpr.2021.05.227.Han, Y.; Huang, Y.; Lin, Q.; Tang, L.; Yang, G.; Xin, H.; Zhao, S.; Guan, R.; Wang, K. N.; Cao, D. Bifunctional Fluorescent Probe for the Recognition of Hydrazine and Bisulfite in Lipid Droplets. Sens Actuators B Chem 2023, 393. https://doi.org/10.1016/j.snb.2023.134181.Li, Y.; Shi, L.; Zhang, Y.; Sun, G.; Sun, L.; Su, J. A Simple Dihydrophenazine-Based Chemosensor for the Detection of Sulfite with Turn-on Fluorescence. Dyes and Pigments 2019, 160, 794–798. https://doi.org/10.1016/j.dyepig.2018.03.020.Li, H.; Yang, Y.; Wu, X.; Jia, R.; Zhao, P.; Wang, Y. A Novel Reactive Chemosensor for Sulfide Detection with High Selectivity and Sensitivity Based on 4-Cl Coumarin Derivatives. Dyes and Pigments 2021, 191. https://doi.org/10.1016/j.dyepig.2021.109373.Ou, Z.; Liu, S.; Liu, Y.; Chen, H.; Li, H. A Highly Sensitive Chemosensor for Rapid Recognition of Cu2+ and HSO3− in 100% Aqueous Solution. Spectrochim Acta A Mol Biomol Spectrosc 2021, 263. https://doi.org/10.1016/j.saa.2021.120215.Botz, M. M.; Mudder, T. I.; Akcil, A. U. Cyanide Treatment: Physical, Chemical, and Biological Processes. In Gold Ore Processing: Project Development and Operations; Elsevier, 2016; pp 619–645. https://doi.org/10.1016/B978-0-444-63658-4.00035-9.Lindsay, A. E.; Greenbaum, A. R.; O’Hare, D. Analytical Techniques for Cyanide in Blood and Published Blood Cyanide Concentrations from Healthy Subjects and Fire Victims. Analytica Chimica Acta. Elsevier May 31, 2004, pp 185–195. https://doi.org/10.1016/j.aca.2004.02.006.Baud, F. J. Cyanide: Critical Issues in Diagnosis and Treatment. In Human and Experimental Toxicology; 2007; Vol. 26, pp 191–201. https://doi.org/10.1177/0960327107070566.Ma, W.; Chen, R.; Hu, T.; Xing, S.; Zhou, G.; Qin, X.; Ren, H.; Zhang, Z.; Chen, J.; Niu, Q. New Dual-Responsive Fluorescent Sensor for Hypochlorite and Cyanide Sensing and Its Imaging Application in Live Cells and Zebrafish. Talanta 2023, 265. https://doi.org/10.1016/j.talanta.2023.124910.Hien, N. K.; Bay, M. Van; Bao, N. C.; Vo, Q. V.; Cuong, N. D.; Thien, T. V.; Ai Nhung, N. T.; Van, D. U.; Nam, P. C.; Quang, D. T. Coumarin-Based Dual Chemosensor for Colorimetric and Fluorescent Detection of Cu2+ in Water Media. ACS Omega 2020, 5 (33), 21241–21249. https://doi.org/10.1021/acsomega.0c03097.Chang, H. Q.; Zhao, X. L.; Wu, W. N.; Jia, L.; Wang, Y. A Highly Sensitive On-off Fluorescent Chemosensor for Cu2+ Based on Coumarin. J Lumin 2017, 182, 268–273. https://doi.org/10.1016/j.jlumin.2016.10.041.Xu, W. J.; Qi, D. Q.; You, J. Z.; Hu, F. F.; Bian, J. Y.; Yang, C. X.; Huang, J. Coumarin-Based “turn-off” Fluorescent Chemosensor with High Selectivity for Cu2+ in Aqueous Solution. J Mol Struct 2015, 1091, 133–137. https://doi.org/10.1016/j.molstruc.2015.02.083.Wani, M. A.; Singh, P. K.; Pandey, R.; Pandey, M. D. Coumarin-Pyrene Conjugate: Synthesis, Structure and Cu-Selective Fluorescent Sensing in Mammalian Kidney Cells. J Lumin 2016, 171, 159–165. https://doi.org/10.1016/j.jlumin.2015.11.017.Nantapon, T.; Naweephattana, P.; Surawatanawong, P.; Saetear, P.; Chantarojsiri, T.; Ruangsupapichat, N. Amino-Coumarin-Based Colorimetric and Fluorescent Chemosensors Capable of Discriminating Co2+, Ni2+, and Cu2+ Ions in Solution and Potential Utilization as a Paper-Based Device. Spectrochim Acta A Mol Biomol Spectrosc 2022, 282. https://doi.org/10.1016/j.saa.2022.121662.Lu, W.; Chen, J.; Shi, J.; Li, Z.; Xu, L.; Jiang, W.; Yang, S.; Gao, B. An Acylhydrazone Coumarin as Chemosensor for the Detection of Ni2+ with Excellent Sensitivity and Low LOD: Synthesis, DFT Calculations and Application in Real Water and Living Cells. Inorganica Chim Acta 2021, 516. https://doi.org/10.1016/j.ica.2020.120144.Xiong, K.; Huo, F.; Yin, C.; Yang, Y.; Chao, J.; Zhang, Y.; Xu, M. A Off-on Green Fluorescent Chemosensor for Cyanide Based on a Hybrid Coumarin-Hemicyanine Dye and Its Bioimaging. Sens Actuators B Chem 2015, 220, 822–828. https://doi.org/10.1016/j.snb.2015.05.084.Nee Pant, G. J.; Singh, P.; Rawat, B. S.; Rawat, M. S. M.; Joshi, G. C. Synthesis, Characterization and Fluorescence Studies of 3,5-Diaryl Substituted 2-Pyrazolines. Spectrochim Acta A Mol Biomol Spectrosc 2011, 78 (3), 1075–1079. https://doi.org/10.1016/j.saa.2010.12.053.Zhang, Y. P.; Dong, Y. Y.; Yang, Y. S.; Guo, H. C.; Cao, B. xia; Sun, S. Q. A New Pyrazoline-Based Probe of Quenched Fluorescent Reversible Recognition for Cu 2 + and Its Application in Cells. Spectrochim Acta A Mol Biomol Spectrosc 2017, 177, 147–152. https://doi.org/10.1016/j.saa.2017.01.042.Gong, Z. L.; Ge, F.; Zhao, B. X. Novel Pyrazoline-Based Selective Fluorescent Sensor for Zn2+ in Aqueous Media. Sens Actuators B Chem 2011, 159 (1), 148–153. https://doi.org/10.1016/j.snb.2011.06.064.Hu, S.; Zhang, S.; Hu, Y.; Tao, Q.; Wu, A. A New Selective Pyrazoline-Based Fluorescent Chemosensor for Cu 2+ in Aqueous Solution. Dyes and Pigments 2013, 96 (2), 509–515. https://doi.org/10.1016/j.dyepig.2012.09.019.Subashini, G.; Saravanan, A.; Shyamsivappan, S.; Arasakumar, T.; Mahalingam, V.; Shankar, R.; Mohan, P. S. A Versatile “on-off-on” Quinoline Pyrazoline Hybrid for Sequential Detection of Cu2+ and S− Ions towards Bio Imaging and Tannery Effluent Monitoring. Inorganica Chim Acta 2018, 483, 173–179. https://doi.org/10.1016/j.ica.2018.08.012.Han, Z.; Yan, J.; Tang, H. Q.; He, Y.; Zhu, Y.; Ge, Y. Q. Novel Simple Fluorescent Sensor for Nickel Ions. Tetrahedron Lett 2017, 58 (13), 1254–1257. https://doi.org/10.1016/j.tetlet.2017.02.009.Subashini, G.; Shankar, R.; Arasakumar, T.; Mohan, P. S. Quinoline Appended Pyrazoline Based Ni Sensor and Its Application towards Live Cell Imaging and Environmental Monitoring. Sens Actuators B Chem 2017, 243, 549–556. https://doi.org/10.1016/j.snb.2016.12.004.Tigreros, A.; Portilla, J. Fluorescent Pyrazole Derivatives: An Attractive Scaffold for Biological Imaging Applications. Current Chinese Science 2020, 1 (2), 197–206. https://doi.org/10.2174/2210298101999201208211116.Rios, M. C.; Bravo, N. F.; Sanchez, C. C.; Portilla, J. Chemosensors Based on N-Heterocyclic Dyes: Advances in Sensing Highly Toxic Ions Such as CN- and Hg2+. RSC Adv. Royal Society of Chemistry October 2, 2021, pp 34206–34234. https://doi.org/10.1039/d1ra06567j.Tigreros, A.; Portilla, J. Ecological and Economic Efforts in the Development of Molecular Sensors for the Optical Detection of Cyanide Ions. Eur. J. Org. Chem. 2022, 2022 (29), e202200249. https://doi.org/10.1002/ejoc.202200249.Tigreros, A.; Portilla, J. Recent Progress in Chemosensors Based on Pyrazole Derivatives. RSC Adv. 2020, 10 (33), 19693–19712. https://doi.org/10.1039/d0ra02394a.Orrego-Hernández, J.; Portilla, J. Synthesis of Dicyanovinyl-Substituted 1-(2-Pyridyl)Pyrazoles: Design of a Fluorescent Chemosensor for Selective Recognition of Cyanide. Journal of Organic Chemistry 2017, 82 (24), 13376–13385. https://doi.org/10.1021/acs.joc.7b02460.Tigreros, A.; Bedoya-Malagón, C.; Valencia, A.; Núñez-Portela, M.; Portilla, J. Photophysical and Anion Sensing Properties of a Triphenylamine-Dioxaborinine Trimeric Compound. RSC Adv 2023, 13 (3), 1757–1764. https://doi.org/10.1039/d2ra07498b.García, M.; Romero, I.; Portilla, J. Synthesis of Fluorescent 1,7-Dipyridyl-Bis-Pyrazolo[3,4- b:4′,3′- e]Pyridines: Design of Reversible Chemosensors for Nanomolar Detection of Cu 2+. ACS Omega 2019, 4 (4), 6757–6768. https://doi.org/10.1021/acsomega.9b00226.Orrego-Hernández, J.; Cobo, J.; Portilla, J. Synthesis, Photophysical Properties, and Metal-Ion Recognition Studies of Fluoroionophores Based on 1-(2-Pyridyl)-4-Styrylpyrazoles. ACS Omega 2019, 4 (15), 16689–16700. https://doi.org/10.1021/acsomega.9b02796.Tigreros, A.; Macías, M.; Portilla, J. Photophysical and Crystallographic Study of Three Integrated Pyrazolo[1,5-a]Pyrimidine–Triphenylamine Systems. Dyes and Pigments 2021, 184. https://doi.org/10.1016/j.dyepig.2020.108730.Tigreros, A.; Macías, M.; Portilla, J. Expeditious Ethanol Quantification Present in Hydrocarbons and Distilled Spirits: Extending Photophysical Usages of the Pyrazolo[1,5-a]Pyrimidines. Dyes and Pigments 2022, 202. https://doi.org/10.1016/j.dyepig.2022.110299.Tigreros, A.; Macías, M.; Portilla, J. Structural, Photophysical, and Water Sensing Properties of Pyrazolo[1,5‐ a ]Pyrimidine‐Triphenylamine Hybrid Systems. ChemPhotoChem 2022, 6 (11), e202200133. https://doi.org/10.1002/cptc.202200133.Orrego-Hernández, J.; Nuñez-Dallos, N.; Portilla, J. Recognition of Mg2+ by a New Fluorescent “Turn-on” Chemosensor Based on Pyridyl-Hydrazono-Coumarin. Talanta 2016, 152, 432–437. https://doi.org/10.1016/j.talanta.2016.02.020.Fabián, N.; Piñeros, B. Estudio de La Síntesis de Sistemas Híbridos Cumarina:N-Heterociclos Para El Reconocimiento de Iones de Interés; 2019.Tigreros, A.; Castillo, J. C.; Portilla, J. Cyanide Chemosensors Based on 3-Dicyanovinylpyrazolo[1,5-a]Pyrimidines: Effects of Peripheral 4-Anisyl Group Substitution on the Photophysical Properties. Talanta 2020, 215. https://doi.org/10.1016/j.talanta.2020.120905.Chibuike, G. U.; Obiora, S. C. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods. Applied and Environmental Soil Science. Hindawi Publishing Corporation 2014. https://doi.org/10.1155/2014/752708.Chen, J.; Liu, W.; Zhou, B.; Niu, G.; Zhang, H.; Wu, J.; Wang, Y.; Ju, W.; Wang, P. Coumarin- and Rhodamine-Fused Deep Red Fluorescent Dyes: Synthesis, Photophysical Properties, and Bioimaging in Vitro. Journal of Organic Chemistry 2013, 78 (12), 6121–6130. https://doi.org/10.1021/jo400783x.Phatangare, K. R.; Lanke, S. K.; Sekar, N. Fluorescent Coumarin Derivatives with Viscosity Sensitive Emission - Synthesis, Photophysical Properties and Computational Studies. J Fluoresc 2014, 24 (4), 1263–1274. https://doi.org/10.1007/s10895-014-1410-3.Duguta, G.; Muddam, B.; Kamatala, C. R.; Chityala, Y. Symmetric Trichloro Triazine Adducts with N, N’-Dimethyl Formamide and N, N’-Dimethyl Acetamide as Green Vilsmeier –Haack Reagents for Effective Formylation and Acylation of Indoles. Chemical Data Collections 2020, 28. https://doi.org/10.1016/j.cdc.2020.100382.Chowdhary, A.; Dhawale, A.; Trivedi, D. R. Benzidine-Based Chemosensors for the Selective Detection of Phosphate, Carbonate and Copper Ions: Applications in Water and Food Sample Analysis and on-Field Detection Kit. Microchemical Journal 2024, 204. https://doi.org/10.1016/j.microc.2024.111088.George, N.; Saini, P.; Singh, G.; Singh, R.; Singh, G.; Malik, P.; Singh, H.; Kaur, G.; Singh, J. Detection of Copper in Tea and Water Sample: A Click-Oriented Azomethine-Based 1,2,3-Triazole Fluorescent Chemosensor with Reversible INHIBIT Logic Gate Behavior and Computational Aspects. J Mol Struct 2024, 1311. https://doi.org/10.1016/j.molstruc.2024.138288.Shahbaz, M.; Sharif, S.; Saeed, M.; Ashraf, A.; Rehman Afzal, T. T. A Facile and Highly Selective Fluorimetric Chemosensor 1,2,4-Aminonaphthol Sulfonic Acid for Detection of Copper Ions in Aqueous Medium. J Lumin 2023, 263. https://doi.org/10.1016/j.jlumin.2023.120149.Mousavi, S. H.; Zanjanchi, M. A.; Mohammadi, A.; Moafi, H. F. Novel Sulfamethoxazole-Based Chemosensor for Detection of Ni (II) Ion: A Combination of Experimental, Antibacterial and DFT Studies. J Mol Struct 2025, 1319. https://doi.org/10.1016/j.molstruc.2024.139599.Nelson, M.; Ayyanar, S.; Selvaraj, M.; Assiri, M. A. Exploiting Cyanide Anion Detection in Food Samples and for Constructing Logic Gates by Turn-off Fluorescent Chemosensor. J Mol Struct 2025, 1321. https://doi.org/10.1016/j.molstruc.2024.140018.Singh, M.; Nadendla, S.; Kumar Kanaparthi, R. A Highly Sensitive Colorimetric and Fluorometric Sensor for the Detection of Cyanide. J Photochem Photobiol A Chem 2025, 458. https://doi.org/10.1016/j.jphotochem.2024.115957.Kodiyawala, A.; Mondal, A.; Murugan, D.; Rangasamy, L.; Sahoo, S. K.; Dutta, S. A Water-Soluble Colorimetric and Turn-on Fluorescence Sensor for Fast and Sensitive Detection of Sulfite/Bisulfite Ions in Real Samples and Live Cells. J Mol Struct 2025, 1321. https://doi.org/10.1016/j.molstruc.2024.139723.Xie, L.; Zheng, R.; Hu, H.; Li, L. Determination of Hypochlorite and Bisulfite in Water by Bifunctional Colorimetric Sensor Based on Octupolar Conjugated Merocyanine Dyes. Microchemical Journal 2022, 172. https://doi.org/10.1016/j.microc.2021.106931.Lyngdoh Lyngkhoi, D.; Khatua, S. A Coumarin Containing Hemicyanine-Based Probe for Dual Channel Detection of Cyanide Ion. Inorganica Chim Acta 2024, 572. https://doi.org/10.1016/j.ica.2024.122300.Garzón, L. M.; Portilla, J. Synthesis of Novel D–π–A Dyes for Colorimetric Cyanide Sensing Based on Hemicyanine–Functionalized N-(2-Pyridyl)Pyrazoles. European J Org Chem 2019, 2019 (42), 7079–7088. https://doi.org/10.1002/ejoc.201901178.Asaithambi, G.; Periasamy, V. Ratiometric Sensing of Sulfite/Bisulfite Ions and Its Applications in Food Samples and Living Cells. J Photochem Photobiol A Chem 2020, 389. https://doi.org/10.1016/j.jphotochem.2019.112214.Lan, J. S.; Zeng, R. F.; Ding, Y.; Zhang, Y.; Zhang, T.; Wu, T. A Simple Pyrene-Hemicyanine Fluorescent Probe for Colorimetric and Ratiometric Detection of SO2 Derivatives in the Mitochondria of Living Cells and Zebrafish in Vivo. Sens Actuators B Chem 2018, 268, 328–337. https://doi.org/10.1016/j.snb.2018.04.047.El-Remaily, M. A. E. A. A. A. Bismuth Triflate: A Highly Efficient Catalyst for the Synthesis of Bio-Active Coumarin Compounds via One-Pot Multi-Component Reaction. Cuihua Xuebao/Chinese Journal of Catalysis 2015, 36 (7), 1124–1130. https://doi.org/10.1016/S1872-2067(14)60308-9.Chemate, S. B.; Sekar, N. Novel Iminocoumarin Derivatives: Synthesis, Spectroscopic and Computational Studies. J Fluoresc 2015, 25 (6), 1615–1628. https://doi.org/10.1007/s10895-015-1648-4.Zhang, Q.; Bu, D.; Ren, H.; Yu, M.; Zhang, H.; Li, Z. Synthesis of a NIR Fluorescent Dye and Its Application for Rapid Detection of HSO3− in Living Cells. Dyes and Pigments 2021, 196. https://doi.org/10.1016/j.dyepig.2021.109753.Chen, J.; Liu, W.; Ma, J.; Xu, H.; Wu, J.; Tang, X.; Fan, Z.; Wang, P. Synthesis and Properties of Fluorescence Dyes: Tetracyclic Pyrazolo[3,4- b ]Pyridine-Based Coumarin Chromophores with Intramolecular Charge Transfer Character. Journal of Organic Chemistry 2012, 77 (7), 3475–3482. https://doi.org/10.1021/jo3002722.Patra, S. K.; Manivannan, R.; Son, Y. A. Multicolor Emissive Organic Material to Display Aggregation Caused Red Shift with Dual State Emission, and Application towards Rewritable Data Storage. J Photochem Photobiol A Chem 2023, 444. https://doi.org/10.1016/j.jphotochem.2023.114945.Huang, Q.; Wang, T.; Xiao, N. Selective Monitoring ATP Using a Fluorogenic Al(III)–Probe Complex in Aqueous Medium. Spectrochim Acta A Mol Biomol Spectrosc 2020, 229. https://doi.org/10.1016/j.saa.2019.117946.Al-Zaydi, K. Microwave Assisted Synthesis, Part 1: Rapid Solventless Synthesis of 3-Substituted Coumarins and Benzocoumarins by Microwave Irradiation of the Corresponding Enaminones. Molecules 2003, 8 (7), 541–555. https://doi.org/10.3390/80700541.Castillo, J.-C.; Rosero, H.-A.; Portilla, J. Simple Access toward 3-Halo-and 3-Nitro-Pyrazolo[1,5-a]Pyrimidines through a One-Pot Sequence, supporting information Content; 2017.Yang, Y.; Bai, B.; Xu, W.; Xu, Z.; Zhang, J.; Li, W. A Highly Sensitive Fluorescent Probe for the Detection of Bisulfite Ion and Its Application in Living Cells. Dyes and Pigments 2017, 136, 830–835. https://doi.org/10.1016/j.dyepig.2016.09.047.Zhang, T.; Yin, C.; Zhang, Y.; Chao, J.; Wen, G.; Huo, F. Mitochondria-Targeted Reversible Ratiometric Fluorescent Probe for Monitoring SO2/HCHO in Living Cells. Spectrochim Acta A Mol Biomol Spectrosc 2020, 234. https://doi.org/10.1016/j.saa.2020.118253.Mergu, N.; Kim, M.; Son, Y. A. A Coumarin-Derived Cu2 +-Fluorescent Chemosensor and Its Direct Application in Aqueous Media. Spectrochim Acta A Mol Biomol Spectrosc 2018, 188, 571–580. https://doi.org/10.1016/j.saa.2017.07.047.Renault, K.; Renard, P. Y.; Sabot, C. Detection of Biothiols with a Fast-Responsive and Water-Soluble Pyrazolone-Based Fluorogenic Probe. European J Org Chem 2018, 2018 (46), 6494–6498. https://doi.org/10.1002/ejoc.201801157.Lin, W.; Yuan, L.; Cao, Z.; Feng, Y.; Long, L. A Sensitive and Selective Fluorescent Thiol Probe in Water Based on the Conjugate 1,4-Addition of Thiols to α,β-Unsaturated Ketones. Chemistry - A European Journal 2009, 15 (20), 5096–5103. https://doi.org/10.1002/chem.200802751.Zhao, R. R.; Xu, Q. L.; Yang, Y.; Cao, J.; Zhou, Y.; Xu, R.; Zhang, J. F. A Coumarin-Based Terpyridine–Zinc Complex for Sensing Pyrophosphate and Its Application in in Vivo Imaging. Tetrahedron Lett 2016, 57 (46), 5022–5025. https://doi.org/10.1016/j.tetlet.2016.09.081.201728051Publication15cce969-be9e-4320-94bc-85afca78cca4virtual::23122-115cce969-be9e-4320-94bc-85afca78cca4virtual::23122-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000370380virtual::23122-1ORIGINALSíntesis y solvatofluorocromismo de pigmentos basados en cumarinas conjugadas.pdfSíntesis y solvatofluorocromismo de pigmentos basados en cumarinas conjugadas.pdfapplication/pdf11612831https://repositorio.uniandes.edu.co/bitstreams/0651e861-b8cb-44cd-8d9d-a1f17d82513d/downloadffd544d638a12ffc063af281cd54f750MD51autorizacion tesis.pdfautorizacion tesis.pdfHIDEapplication/pdf280376https://repositorio.uniandes.edu.co/bitstreams/c12a84ef-f765-40e9-8518-99a6342aff01/downloada45ea7b54c44e401da7d0b7f9012a797MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/f3549c1d-f2ae-49f2-a66d-ee0da87175a5/downloadae9e573a68e7f92501b6913cc846c39fMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/ddb41bc7-ad87-4735-879b-3b3d718eba4e/download4460e5956bc1d1639be9ae6146a50347MD53TEXTSíntesis y solvatofluorocromismo de pigmentos basados en cumarinas conjugadas.pdf.txtSíntesis y solvatofluorocromismo de pigmentos basados en cumarinas conjugadas.pdf.txtExtracted texttext/plain102125https://repositorio.uniandes.edu.co/bitstreams/1c71c7b7-3650-49c0-8e02-a682e9867474/download2e656f8a8df5aba594bd77c46ced6ce3MD55autorizacion tesis.pdf.txtautorizacion tesis.pdf.txtExtracted texttext/plain2089https://repositorio.uniandes.edu.co/bitstreams/419d40c3-d299-491b-a9f8-7eaf177693f8/download5d5ef9f9fb42b8541329ab23d5150ccaMD57THUMBNAILSíntesis y solvatofluorocromismo de pigmentos basados en cumarinas conjugadas.pdf.jpgSíntesis y solvatofluorocromismo de pigmentos basados en cumarinas conjugadas.pdf.jpgGenerated Thumbnailimage/jpeg7993https://repositorio.uniandes.edu.co/bitstreams/81b8b1f5-8814-4a72-9f7d-3c84b2d73995/download3b0e1410e1808eb55cd32f6a7a766817MD56autorizacion tesis.pdf.jpgautorizacion tesis.pdf.jpgGenerated Thumbnailimage/jpeg10895https://repositorio.uniandes.edu.co/bitstreams/3ff5b9e6-d26f-4d07-bd79-369e889f6ab4/download4f265db43844d3625f3bd51be06a5146MD581992/75989oai:repositorio.uniandes.edu.co:1992/759892025-03-05 09:40:49.333http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |