Dimension reduction methods analysis in multilingual context in the educational field

In recent years, technological solutions base in context-aware and attention natural language processing have been a relevant research area. Undoubtedly, the last discoveries and advances on this subject have revolutionized the current landscape and have allowed to build high- performance models wit...

Full description

Autores:
Sánchez Delgado, Juan Sebastián
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/74209
Acceso en línea:
https://hdl.handle.net/1992/74209
Palabra clave:
NLP
Reduction tecniques
PCA
TSNE
UMAP
Multilanguage
Ingeniería
Rights
embargoedAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNIANDES2_648a6cef9112e1013e8e54dd26eb6f9b
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/74209
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Dimension reduction methods analysis in multilingual context in the educational field
title Dimension reduction methods analysis in multilingual context in the educational field
spellingShingle Dimension reduction methods analysis in multilingual context in the educational field
NLP
Reduction tecniques
PCA
TSNE
UMAP
Multilanguage
Ingeniería
title_short Dimension reduction methods analysis in multilingual context in the educational field
title_full Dimension reduction methods analysis in multilingual context in the educational field
title_fullStr Dimension reduction methods analysis in multilingual context in the educational field
title_full_unstemmed Dimension reduction methods analysis in multilingual context in the educational field
title_sort Dimension reduction methods analysis in multilingual context in the educational field
dc.creator.fl_str_mv Sánchez Delgado, Juan Sebastián
dc.contributor.advisor.none.fl_str_mv Manrique Piramanrique, Rubén Francisco
dc.contributor.author.none.fl_str_mv Sánchez Delgado, Juan Sebastián
dc.contributor.jury.none.fl_str_mv Manrique Piramanrique, Rubén Francisco
dc.subject.keyword.eng.fl_str_mv NLP
topic NLP
Reduction tecniques
PCA
TSNE
UMAP
Multilanguage
Ingeniería
dc.subject.keyword.none.fl_str_mv Reduction tecniques
PCA
TSNE
UMAP
Multilanguage
dc.subject.themes.spa.fl_str_mv Ingeniería
description In recent years, technological solutions base in context-aware and attention natural language processing have been a relevant research area. Undoubtedly, the last discoveries and advances on this subject have revolutionized the current landscape and have allowed to build high- performance models with several advanced applications such as conversational agents, translators, etc. The growing necessities of more complex models have caused and staggering increase not only in features size but also in the number of embedding dimensions. The present document pretends to analyze different dimensional reduction techniques applied to various courses translations versions in order to determine which approach lead to obtain the best clustering results. In contrast to previous works, the main focus will be to encounter which technique is the best suited for a small number of dimensions (between 2 and 4), in such a way that through visualization methods can be proved whether the current translations have an optimal level of similarity in terms of semantics and grammar to be considered valid.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-12-11
dc.date.accessioned.none.fl_str_mv 2024-04-18T21:21:56Z
dc.date.accepted.none.fl_str_mv 2024-04-18
dc.date.available.none.fl_str_mv 2025-03-31
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/74209
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/74209
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv 1. A ́. Huertas-Garc ́ıa, A. Mart ́ın, J. Huertas-Tato, and D. Camacho, “Exploring di- mensionality reduction techniques in multilingual transformers,” Cognitive Com- putation, vol. 15, no. 2, pp. 590–612, 2023.
2. W. Jia, M. Sun, J. Lian, and S. Hou, “Feature dimensionality reduction: a review,” Complex & Intelligent Systems, vol. 8, no. 3, pp. 2663–2693, 2022.
3. C. Wang, L. Feng, L. Yang, T. Wu, and J. Zhang, “Dimensionality reduction by t-distribution adaptive manifold embedding,” Applied Intelligence, pp. 1–11, 2023.
4. M. S. Mauˇcec and G. Donaj, “Machine translation and the evaluation of its qual-ity,” Recent trends in computational intelligence, vol. 143, 2019.
5. D. Munkova, P. Ha ́jek, M. Munk, and J. Skalka, “Evaluation of machine transla- tion quality through the metrics of error rate and accuracy,” Procedia Computer Science, vol. 171, pp. 1327–1336, 01 2020.
6. T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi, “Bertscore: Evaluating text generation with BERT,” CoRR, vol. abs/1904.09675, 2019.
7. Y. Mao, L. Liu, Q. Zhu, X. Ren, and J. Han, “Facet-aware evaluation for extractive summarization,” arXiv preprint arXiv:1908.10383, 2019.
8. R. PL and G. KS, “Cognitive decline assessment using semantic linguistic content and transformer deep learning architecture,” International Journal of Language & Communication Disorders, vol. n/a, no. n/a.
9. A. R. Lahitani, A. E. Permanasari, and N. A. Setiawan, “Cosine similarity to determine similarity measure: Study case in online essay assessment,” in 2016 4th International Conference on Cyber and IT Service Management, pp. 1–6, 2016.
10. M. Iwasawa, D. Namekata, R. Sakamoto, T. Nakamura, Y. Kimura, K. Nitadori, L. Wang, M. Tsubouchi, J. Makino, Z. Liu, H. Fu, and G. Yang, “Implementation and performance of barnes-hut n-body algorithm on extreme-scale heterogeneous many-core architectures,” 2019.
11. R. Gove, L. Cadalzo, N. Leiby, J. M. Singer, and A. Zaitzeff, “New guidance for using t-sne: Alternative defaults, hyperparameter selection automation, and comparative evaluation,” Visual Informatics, vol. 6, no. 2, pp. 87–97, 2022.
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.none.fl_str_mv 31 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Ingeniería de Sistemas y Computación
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/3d46d580-f64f-425f-8c0e-a8a9b499e1be/download
https://repositorio.uniandes.edu.co/bitstreams/90f01e3d-abde-4771-a199-841637a6da0f/download
https://repositorio.uniandes.edu.co/bitstreams/4777767f-ad21-419f-9b1b-7ace6c2e9f1a/download
https://repositorio.uniandes.edu.co/bitstreams/9a1a0158-53a8-4078-aca9-9fd7fddfdbfe/download
https://repositorio.uniandes.edu.co/bitstreams/4e8cbaec-763e-409b-a8ad-58a74a022b18/download
https://repositorio.uniandes.edu.co/bitstreams/b71dd2e1-03bb-413f-98cd-b98a1792bd7f/download
https://repositorio.uniandes.edu.co/bitstreams/4a1f7341-7911-4cc4-946c-82037f2599e3/download
https://repositorio.uniandes.edu.co/bitstreams/21bba39a-a74e-4ec4-bccb-f2ba5ad1ff7e/download
bitstream.checksum.fl_str_mv 558571fdab8672abc1782a0a5650551b
acfd35de1091c638c65dfaf258ae2c46
ae9e573a68e7f92501b6913cc846c39f
4460e5956bc1d1639be9ae6146a50347
fc2c173767deebc829c69eb7e3077858
83caa7cbe0c95a8d1438c774bdff83ca
ffd23679bf637477566b7fecf912dc7e
c0ee98eca3e1aff27c7a28fd239bb836
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133898271850496
spelling Manrique Piramanrique, Rubén Franciscovirtual::423-1Sánchez Delgado, Juan SebastiánManrique Piramanrique, Rubén Franciscovirtual::17917-12024-04-18T21:21:56Z2025-03-312023-12-112024-04-18https://hdl.handle.net/1992/74209instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/In recent years, technological solutions base in context-aware and attention natural language processing have been a relevant research area. Undoubtedly, the last discoveries and advances on this subject have revolutionized the current landscape and have allowed to build high- performance models with several advanced applications such as conversational agents, translators, etc. The growing necessities of more complex models have caused and staggering increase not only in features size but also in the number of embedding dimensions. The present document pretends to analyze different dimensional reduction techniques applied to various courses translations versions in order to determine which approach lead to obtain the best clustering results. In contrast to previous works, the main focus will be to encounter which technique is the best suited for a small number of dimensions (between 2 and 4), in such a way that through visualization methods can be proved whether the current translations have an optimal level of similarity in terms of semantics and grammar to be considered valid.Ingeniero de Sistemas y ComputaciónPregrado31 páginasapplication/pdfengUniversidad de los AndesIngeniería de Sistemas y ComputaciónFacultad de IngenieríaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfDimension reduction methods analysis in multilingual context in the educational fieldTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPNLPReduction tecniquesPCATSNEUMAPMultilanguageIngeniería1. A ́. Huertas-Garc ́ıa, A. Mart ́ın, J. Huertas-Tato, and D. Camacho, “Exploring di- mensionality reduction techniques in multilingual transformers,” Cognitive Com- putation, vol. 15, no. 2, pp. 590–612, 2023.2. W. Jia, M. Sun, J. Lian, and S. Hou, “Feature dimensionality reduction: a review,” Complex & Intelligent Systems, vol. 8, no. 3, pp. 2663–2693, 2022.3. C. Wang, L. Feng, L. Yang, T. Wu, and J. Zhang, “Dimensionality reduction by t-distribution adaptive manifold embedding,” Applied Intelligence, pp. 1–11, 2023.4. M. S. Mauˇcec and G. Donaj, “Machine translation and the evaluation of its qual-ity,” Recent trends in computational intelligence, vol. 143, 2019.5. D. Munkova, P. Ha ́jek, M. Munk, and J. Skalka, “Evaluation of machine transla- tion quality through the metrics of error rate and accuracy,” Procedia Computer Science, vol. 171, pp. 1327–1336, 01 2020.6. T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi, “Bertscore: Evaluating text generation with BERT,” CoRR, vol. abs/1904.09675, 2019.7. Y. Mao, L. Liu, Q. Zhu, X. Ren, and J. Han, “Facet-aware evaluation for extractive summarization,” arXiv preprint arXiv:1908.10383, 2019.8. R. PL and G. KS, “Cognitive decline assessment using semantic linguistic content and transformer deep learning architecture,” International Journal of Language & Communication Disorders, vol. n/a, no. n/a.9. A. R. Lahitani, A. E. Permanasari, and N. A. Setiawan, “Cosine similarity to determine similarity measure: Study case in online essay assessment,” in 2016 4th International Conference on Cyber and IT Service Management, pp. 1–6, 2016.10. M. Iwasawa, D. Namekata, R. Sakamoto, T. Nakamura, Y. Kimura, K. Nitadori, L. Wang, M. Tsubouchi, J. Makino, Z. Liu, H. Fu, and G. Yang, “Implementation and performance of barnes-hut n-body algorithm on extreme-scale heterogeneous many-core architectures,” 2019.11. R. Gove, L. Cadalzo, N. Leiby, J. M. Singer, and A. Zaitzeff, “New guidance for using t-sne: Alternative defaults, hyperparameter selection automation, and comparative evaluation,” Visual Informatics, vol. 6, no. 2, pp. 87–97, 2022.202013577Publication9f6e12e0-098e-4548-ab81-75552e8385e7virtual::423-19f6e12e0-098e-4548-ab81-75552e8385e7virtual::423-19f6e12e0-098e-4548-ab81-75552e8385e7virtual::17917-19f6e12e0-098e-4548-ab81-75552e8385e7virtual::17917-1ORIGINALDimension_reduction_methods_analysis_in_multilingual_context_in_the_educational_field.pdfDimension_reduction_methods_analysis_in_multilingual_context_in_the_educational_field.pdfRestricción de acceso hasta 2025 para uso interno dentro del departamento para futuras publicaciones.application/pdf3900649https://repositorio.uniandes.edu.co/bitstreams/3d46d580-f64f-425f-8c0e-a8a9b499e1be/download558571fdab8672abc1782a0a5650551bMD51autorizacion tesis de grado.pdfautorizacion tesis de grado.pdfHIDEapplication/pdf648599https://repositorio.uniandes.edu.co/bitstreams/90f01e3d-abde-4771-a199-841637a6da0f/downloadacfd35de1091c638c65dfaf258ae2c46MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/4777767f-ad21-419f-9b1b-7ace6c2e9f1a/downloadae9e573a68e7f92501b6913cc846c39fMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/9a1a0158-53a8-4078-aca9-9fd7fddfdbfe/download4460e5956bc1d1639be9ae6146a50347MD55TEXTDimension_reduction_methods_analysis_in_multilingual_context_in_the_educational_field.pdf.txtDimension_reduction_methods_analysis_in_multilingual_context_in_the_educational_field.pdf.txtExtracted texttext/plain63713https://repositorio.uniandes.edu.co/bitstreams/4e8cbaec-763e-409b-a8ad-58a74a022b18/downloadfc2c173767deebc829c69eb7e3077858MD56autorizacion tesis de grado.pdf.txtautorizacion tesis de grado.pdf.txtExtracted texttext/plain1421https://repositorio.uniandes.edu.co/bitstreams/b71dd2e1-03bb-413f-98cd-b98a1792bd7f/download83caa7cbe0c95a8d1438c774bdff83caMD58THUMBNAILDimension_reduction_methods_analysis_in_multilingual_context_in_the_educational_field.pdf.jpgDimension_reduction_methods_analysis_in_multilingual_context_in_the_educational_field.pdf.jpgGenerated Thumbnailimage/jpeg9669https://repositorio.uniandes.edu.co/bitstreams/4a1f7341-7911-4cc4-946c-82037f2599e3/downloadffd23679bf637477566b7fecf912dc7eMD57autorizacion tesis de grado.pdf.jpgautorizacion tesis de grado.pdf.jpgGenerated Thumbnailimage/jpeg10979https://repositorio.uniandes.edu.co/bitstreams/21bba39a-a74e-4ec4-bccb-f2ba5ad1ff7e/downloadc0ee98eca3e1aff27c7a28fd239bb836MD591992/74209oai:repositorio.uniandes.edu.co:1992/742092024-04-19 03:03:25.625http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalrestrictedhttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K