Homothetic covering and the illumination problem of convex bodies

At a first glance, the problem of illuminating the boundary of a convex body by light sources and the problem of covering a convex body by smaller homothetic copies seem different. But actually they both are incarnations of the same open problem in convex and discrete geometry, the illumination conj...

Full description

Autores:
Rodríguez Sierra, Santiago
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/75513
Acceso en línea:
https://hdl.handle.net/1992/75513
Palabra clave:
Convex body
Illumination by points or directions
Homothetic covering
Polytope
Gohberg-Markus-Hadwiger problem
Regular boundary
Erdös-Rogers upper bound
Matemáticas
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNIANDES2_627a4abdb85deae953d35e3d316b60cb
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/75513
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Homothetic covering and the illumination problem of convex bodies
title Homothetic covering and the illumination problem of convex bodies
spellingShingle Homothetic covering and the illumination problem of convex bodies
Convex body
Illumination by points or directions
Homothetic covering
Polytope
Gohberg-Markus-Hadwiger problem
Regular boundary
Erdös-Rogers upper bound
Matemáticas
title_short Homothetic covering and the illumination problem of convex bodies
title_full Homothetic covering and the illumination problem of convex bodies
title_fullStr Homothetic covering and the illumination problem of convex bodies
title_full_unstemmed Homothetic covering and the illumination problem of convex bodies
title_sort Homothetic covering and the illumination problem of convex bodies
dc.creator.fl_str_mv Rodríguez Sierra, Santiago
dc.contributor.advisor.none.fl_str_mv Dann, Susanna
dc.contributor.author.none.fl_str_mv Rodríguez Sierra, Santiago
dc.contributor.jury.none.fl_str_mv Bogart, Tristram
dc.subject.keyword.eng.fl_str_mv Convex body
Illumination by points or directions
Homothetic covering
Polytope
Gohberg-Markus-Hadwiger problem
Regular boundary
Erdös-Rogers upper bound
topic Convex body
Illumination by points or directions
Homothetic covering
Polytope
Gohberg-Markus-Hadwiger problem
Regular boundary
Erdös-Rogers upper bound
Matemáticas
dc.subject.themes.spa.fl_str_mv Matemáticas
description At a first glance, the problem of illuminating the boundary of a convex body by light sources and the problem of covering a convex body by smaller homothetic copies seem different. But actually they both are incarnations of the same open problem in convex and discrete geometry, the illumination conjecture. This conjecture is also known as the Gohberg-Markus-Hadwiger conjecture, referring to some of its original proposers. In fact the two different versions of the problem were poses independently of one another and later shown that they were equivalent.\\ In 1957 Hadwiger posed the problem of finding the smallest natural number $N$ such that any $d$-dimensional convex body can be covered by the interior of a union of at the most $N$ of its translates. In the 1960 the problem was translated in terms of smaller homothetical copies of the original body. Later, in 1960, Boltyanski introduced the problem of illuminating the boundary of a convex body by the smallest amount of external light sources. For a given convex body we call the answer to both of the previous problems the illumination number of the body. It is conjectured that every $d$-dimensional convex body has an illumination number smaller than or equal to $2^d$ with equality for $d$-dimensional parallelepipeds. It turns, out that this is one of the central problems in convex and discrete geometry.\\ Our work consists of studying the advancements done to solve the conjecture in various possible approaches.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024-12-03
dc.date.accessioned.none.fl_str_mv 2025-01-21T12:47:23Z
dc.date.available.none.fl_str_mv 2025-01-21T12:47:23Z
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/75513
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/75513
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Hugo Hadwiger. Ungelöste probleme nr. 20. Elemente der Mathematik, 12:121, 1957.
I. Ts. Gohberg and A. S. Markus. Certain problem about the covering of convex sets with homothetic ones. Izvestiya Moldavskogo Filiala Akademii Nauk SSSR, 10:87–90, 1960.
V. Boltyanski. The problem of illuminating the boundary of a convex body. Izv. Mold. Fil. AN SSSR, 76:77–84, 1960.
Benulf Weißbach. Invariant illumination of convex bodies. (invariante beleuchtung konvexer köper.). Beiträge zur Algebra und Geometrie, 37(1):9–15, 1996.
Paul Erd¨os and C. Ambrose Rogers. The star number of coverings of space with convex bodies. Acta Arithmetica, 9:41–45, 1964.
Karoly Bezdek and Muhammad A. Khan. The geometry of homothetic covering and illumination, 2016.
S.P. Boyd and L. Vandenberghe. Convex Optimization. Berichte über verteilte messysteme. Cambridge University Press, 2004.
V. Boltyanski, H. Martini, and P.S. Soltan. Excursions into Combinatorial Geometry. Universitext. Springer Berlin Heidelberg, 1996.
C. A. Rogers and G. C. Shephard. The difference body of a convex body. Archiv der Mathematik, 8:220–233, 8 1957.
Paul Erdös and C. Ambrose Rogers. Covering space with convex bodies. Acta Arithmetica, 7(3):281–285, 1962.
Edmund Hlawka. Zur geometrie der zahlen. Mathematische Zeitschrift, 49:285–312, 1943.
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 72 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Matemáticas
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Matemáticas
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/e4a5880a-436b-45fc-a9b9-0ee5d973452c/download
https://repositorio.uniandes.edu.co/bitstreams/76efc7b6-fd63-49a8-acf0-7af68d5736e5/download
https://repositorio.uniandes.edu.co/bitstreams/270eecc5-243d-47ba-9a4a-ebe0931c4c21/download
https://repositorio.uniandes.edu.co/bitstreams/fb2d9b8b-e353-4e48-9606-9aebc66b38f2/download
https://repositorio.uniandes.edu.co/bitstreams/94099f36-334a-4a91-bb6d-944f4059ec64/download
https://repositorio.uniandes.edu.co/bitstreams/562fccd7-67e3-4742-aba3-7cf8d0550562/download
https://repositorio.uniandes.edu.co/bitstreams/17c3ea30-2fc1-4d37-9323-97e7fd3ba47d/download
https://repositorio.uniandes.edu.co/bitstreams/75771f71-8fb9-46c1-ba6b-1c45d0bd9966/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
ae9e573a68e7f92501b6913cc846c39f
0978121722bfce3636866fdf20ab6b1f
b6d53382939d706de5ca5a20b0b8c143
2619303e7f641014b8041223a8fd3a62
b1e5a4be89f9f42c686ab12266e75535
6e699fd778ccc9d64b5395796a2d271b
af5f2ccb062fa8df61825e0e0f75dbcc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1831927686101991424
spelling Dann, Susannavirtual::22285-1Rodríguez Sierra, SantiagoBogart, Tristram2025-01-21T12:47:23Z2025-01-21T12:47:23Z2024-12-03https://hdl.handle.net/1992/75513instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/At a first glance, the problem of illuminating the boundary of a convex body by light sources and the problem of covering a convex body by smaller homothetic copies seem different. But actually they both are incarnations of the same open problem in convex and discrete geometry, the illumination conjecture. This conjecture is also known as the Gohberg-Markus-Hadwiger conjecture, referring to some of its original proposers. In fact the two different versions of the problem were poses independently of one another and later shown that they were equivalent.\\ In 1957 Hadwiger posed the problem of finding the smallest natural number $N$ such that any $d$-dimensional convex body can be covered by the interior of a union of at the most $N$ of its translates. In the 1960 the problem was translated in terms of smaller homothetical copies of the original body. Later, in 1960, Boltyanski introduced the problem of illuminating the boundary of a convex body by the smallest amount of external light sources. For a given convex body we call the answer to both of the previous problems the illumination number of the body. It is conjectured that every $d$-dimensional convex body has an illumination number smaller than or equal to $2^d$ with equality for $d$-dimensional parallelepipeds. It turns, out that this is one of the central problems in convex and discrete geometry.\\ Our work consists of studying the advancements done to solve the conjecture in various possible approaches.Pregrado72 páginasapplication/pdfengUniversidad de los AndesMatemáticasFacultad de CienciasDepartamento de MatemáticasAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Homothetic covering and the illumination problem of convex bodiesTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPConvex bodyIllumination by points or directionsHomothetic coveringPolytopeGohberg-Markus-Hadwiger problemRegular boundaryErdös-Rogers upper boundMatemáticasHugo Hadwiger. Ungelöste probleme nr. 20. Elemente der Mathematik, 12:121, 1957.I. Ts. Gohberg and A. S. Markus. Certain problem about the covering of convex sets with homothetic ones. Izvestiya Moldavskogo Filiala Akademii Nauk SSSR, 10:87–90, 1960.V. Boltyanski. The problem of illuminating the boundary of a convex body. Izv. Mold. Fil. AN SSSR, 76:77–84, 1960.Benulf Weißbach. Invariant illumination of convex bodies. (invariante beleuchtung konvexer köper.). Beiträge zur Algebra und Geometrie, 37(1):9–15, 1996.Paul Erd¨os and C. Ambrose Rogers. The star number of coverings of space with convex bodies. Acta Arithmetica, 9:41–45, 1964.Karoly Bezdek and Muhammad A. Khan. The geometry of homothetic covering and illumination, 2016.S.P. Boyd and L. Vandenberghe. Convex Optimization. Berichte über verteilte messysteme. Cambridge University Press, 2004.V. Boltyanski, H. Martini, and P.S. Soltan. Excursions into Combinatorial Geometry. Universitext. Springer Berlin Heidelberg, 1996.C. A. Rogers and G. C. Shephard. The difference body of a convex body. Archiv der Mathematik, 8:220–233, 8 1957.Paul Erdös and C. Ambrose Rogers. Covering space with convex bodies. Acta Arithmetica, 7(3):281–285, 1962.Edmund Hlawka. Zur geometrie der zahlen. Mathematische Zeitschrift, 49:285–312, 1943.202020476Publication1097da79-8923-4450-b773-4b6850f28517virtual::22285-11097da79-8923-4450-b773-4b6850f28517virtual::22285-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/e4a5880a-436b-45fc-a9b9-0ee5d973452c/download4460e5956bc1d1639be9ae6146a50347MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/76efc7b6-fd63-49a8-acf0-7af68d5736e5/downloadae9e573a68e7f92501b6913cc846c39fMD52ORIGINALHomothetic covering and the illumination problem of convex bodies.pdfHomothetic covering and the illumination problem of convex bodies.pdfapplication/pdf1751950https://repositorio.uniandes.edu.co/bitstreams/270eecc5-243d-47ba-9a4a-ebe0931c4c21/download0978121722bfce3636866fdf20ab6b1fMD53autorizacion tesis.pdfautorizacion tesis.pdfHIDEapplication/pdf294212https://repositorio.uniandes.edu.co/bitstreams/fb2d9b8b-e353-4e48-9606-9aebc66b38f2/downloadb6d53382939d706de5ca5a20b0b8c143MD54TEXTHomothetic covering and the illumination problem of convex bodies.pdf.txtHomothetic covering and the illumination problem of convex bodies.pdf.txtExtracted texttext/plain100756https://repositorio.uniandes.edu.co/bitstreams/94099f36-334a-4a91-bb6d-944f4059ec64/download2619303e7f641014b8041223a8fd3a62MD55autorizacion tesis.pdf.txtautorizacion tesis.pdf.txtExtracted texttext/plain2007https://repositorio.uniandes.edu.co/bitstreams/562fccd7-67e3-4742-aba3-7cf8d0550562/downloadb1e5a4be89f9f42c686ab12266e75535MD57THUMBNAILHomothetic covering and the illumination problem of convex bodies.pdf.jpgHomothetic covering and the illumination problem of convex bodies.pdf.jpgGenerated Thumbnailimage/jpeg4485https://repositorio.uniandes.edu.co/bitstreams/17c3ea30-2fc1-4d37-9323-97e7fd3ba47d/download6e699fd778ccc9d64b5395796a2d271bMD56autorizacion tesis.pdf.jpgautorizacion tesis.pdf.jpgGenerated Thumbnailimage/jpeg11095https://repositorio.uniandes.edu.co/bitstreams/75771f71-8fb9-46c1-ba6b-1c45d0bd9966/downloadaf5f2ccb062fa8df61825e0e0f75dbccMD581992/75513oai:repositorio.uniandes.edu.co:1992/755132025-03-05 09:40:32.722http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K