Absence of singular continuous spectrum of selfadjoint operators

Spectral analysis is a powerful tool for study of properties of differential operators in mathematical physics, in particular in quantum mechanics. The aim of this paper is to give an introduction to the theory of linear operators on Banach and Hilbert spaces, to study the spectral properties of sel...

Full description

Autores:
Pérez Recuero, Jonathan
Tipo de recurso:
Fecha de publicación:
2012
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/11883
Acceso en línea:
http://hdl.handle.net/1992/11883
Palabra clave:
Teoría de los operadores
Análisis espectral
Operador de Schrödinger
Matemáticas
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
Description
Summary:Spectral analysis is a powerful tool for study of properties of differential operators in mathematical physics, in particular in quantum mechanics. The aim of this paper is to give an introduction to the theory of linear operators on Banach and Hilbert spaces, to study the spectral properties of selfadjoint operators on a Hilbert space and to apply some classic results that provide conditions for the absence of singular continuous spectrum of certain selfadjoint operator. Finally, these results are applied to the Schrödinger operators with potential in L2(Rm)