Spectroscopic differentiation of stars within the Red Clump
In this dissertation, the spectroscopic difference between Red Giant Branch (RGB) and Red Clump (RC) stars caused by the CN I molecule is explored and a 3D "Hertzsprung-Russell space" is proposed as a way to differentiate RGB and RC stars by spectroscopic methods alone, something that has...
- Autores:
-
Fuentes Rico, Eric Fabrizio
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2022
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/59881
- Acceso en línea:
- http://hdl.handle.net/1992/59881
- Palabra clave:
- Red Clump
Red Giant Branch
Spectroscopy
Astronomy
Equivalent Width
Stellar evolution
Hertzsprung-Russell diagram
Hertzsprung-Russell space
CN-cycle
Física
- Rights
- openAccess
- License
- Atribución 4.0 Internacional
id |
UNIANDES2_60d65a16960a598dc4e097068983a934 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/59881 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.none.fl_str_mv |
Spectroscopic differentiation of stars within the Red Clump |
title |
Spectroscopic differentiation of stars within the Red Clump |
spellingShingle |
Spectroscopic differentiation of stars within the Red Clump Red Clump Red Giant Branch Spectroscopy Astronomy Equivalent Width Stellar evolution Hertzsprung-Russell diagram Hertzsprung-Russell space CN-cycle Física |
title_short |
Spectroscopic differentiation of stars within the Red Clump |
title_full |
Spectroscopic differentiation of stars within the Red Clump |
title_fullStr |
Spectroscopic differentiation of stars within the Red Clump |
title_full_unstemmed |
Spectroscopic differentiation of stars within the Red Clump |
title_sort |
Spectroscopic differentiation of stars within the Red Clump |
dc.creator.fl_str_mv |
Fuentes Rico, Eric Fabrizio |
dc.contributor.advisor.none.fl_str_mv |
Oostra Van Noppen, Benjamín |
dc.contributor.author.none.fl_str_mv |
Fuentes Rico, Eric Fabrizio |
dc.contributor.jury.none.fl_str_mv |
García Varela, José Alejandro |
dc.contributor.researchgroup.es_CO.fl_str_mv |
Astronomy and Astrophysics |
dc.subject.keyword.none.fl_str_mv |
Red Clump Red Giant Branch Spectroscopy Astronomy Equivalent Width Stellar evolution Hertzsprung-Russell diagram Hertzsprung-Russell space CN-cycle |
topic |
Red Clump Red Giant Branch Spectroscopy Astronomy Equivalent Width Stellar evolution Hertzsprung-Russell diagram Hertzsprung-Russell space CN-cycle Física |
dc.subject.themes.es_CO.fl_str_mv |
Física |
description |
In this dissertation, the spectroscopic difference between Red Giant Branch (RGB) and Red Clump (RC) stars caused by the CN I molecule is explored and a 3D "Hertzsprung-Russell space" is proposed as a way to differentiate RGB and RC stars by spectroscopic methods alone, something that has long been sought in astronomy. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-08-16T12:43:55Z |
dc.date.available.none.fl_str_mv |
2022-08-16T12:43:55Z |
dc.date.issued.none.fl_str_mv |
2022-08-12 |
dc.type.es_CO.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.es_CO.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/59881 |
dc.identifier.instname.es_CO.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.es_CO.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.es_CO.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/59881 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.relation.references.es_CO.fl_str_mv |
Hansen, C., Kawaler, S., & Trimble, V. 2004, Stellar interiors: physical principles, structure and evolution, (2nd ed.), Springer-Verlag, 340. Bastien, F., Stassun, K., Basri, G., & Pepper, J. 2015, A granulation "flicker"-based measure of stellar surface gravity, The Astrophysical Journal Letters, 818, 43. https://doi.org/10.3847/0004-637X/818/1/43 Nataf, D., Udalski, A., Gould, A., Fouqué, P., & Stanek, K. 2010, The Split Red Clump of the Galactic Bulge from OGLE-III, The Astrophysical Journal Letters, 721, L28-L32. https://doi.org/10.1088/2041-8205/721/1/L28 Ree, C., Yoon, S., Rey, S., & Lee, Y. 2002, Omega Centauri, A Unique Window into Astrophysics, (1st ed. Astronomical Society of the Pacific), 265, 101. Masseron, T., & Hawkins, K. 2017, The spectroscopic indistinguishability of red giant branch and red clump stars, Astronomy & Astrophysics, 597, L3. https://doi.org/ 10.1051/0004-6361/201629938 Powell, R. 2011, The Hertzsprung Russel Diagram, http://www.atlasoftheuniverse.com/hr.html Oostra, B., & Vargas, P. 2021, The differential redshift of titanium lines in K stars, (under review). Perryman, M. 2021, Hipparcos satellite: testing in the Large Solar Simulator, ES TEC, https://commons.wikimedia.org/wiki/File:Hipparcos-testing-estec. jpg University of Iowa. 2017, Imaging the Universe: Stellar Parallax, http://astro. physics.uiowa.edu/ITU/glossary/stellar-parallax/ Carroll, B. & Ostlie, D. 2017, An Introduction to Modern Astrophysics, (2nd ed.), Cambridge University Press. Dintsios, N., & Artemi, S., & Polatoglou, H. 2018, Evaluating Stars Temperature Through the B-V Index Using a Virtual Real Experiment from Distance: A Case Sce nario for Secondary Education. International Journal of Online and Biomedical En gineering (iJOE), 14(01), pp. 162-178. https://doi.org/10.3991/ijoe.v14i01. 7842 Zombeck, M. 1990, CHandbook of Space Astronomy and Astrophysics, (2nd ed.), Cambridge University Press, 105. Girardi, L. 2016, Red Clump Stars, The Annual Review of Astronomy and Astro physics, 54, 95 - 133. https://doi.org/10.1146/annurev-astro-081915-023354 van Leeuwen, F. 2007, Validation of the new Hipparcos reduction, Astronomy & Astrophysics, 474, 2, 653-664. https://doi.org/10.1051/0004-6361:20078357 Bagnulo, S., Jehin, E., Ledoux, C., Cabanac, R., Melo, C., Gilmozzi, R. & ESO Paranal Science Operations Team. 2003, The UVES Paranal Observatory Project: A Library of High- Resolution Spectra of Stars across the Hertzsprung-Russell Diagram, The Messenger, 114, 10-14. Strassmeier, K., Ilyin, I., Järvinen, A., Weber, M., Woche, M., Barnes, S. I., Bauer, S. -M., Beckert, E., Bittner, W., Bredthauer, R., Carroll, T. A., Denker, C., Dionies, F., DiVarano, I., Döscher, D., Fechner, T., Feuerstein, D., Granzer, T., Hahn, T., Har nisch, G., Hofmann, A., Lesser, M., Paschke, J., Pankratow, S., Plank, V., Plüschke, D., Popow, E. & Sablowski, D. 2015, PEPSI: The high-resolution échelle spectrograph and polarimeter for the Large Binocular Telescope, Astronomische Nachrichten, 336, 4. https://doi.org/10.1002/asna.201512172 Ochsenbein F. et. al. 2000, The VizieR database of astronomical catalogues, Astron omy & Astrophysics, 143, 23. https://doi.org/10.1051/aas:2000169. This research has made use of the VizieR catalogue access tool, CDS, Strasbourg, France (DOI : 10.26093/cds/vizier). The original description of the VizieR service was published in 2000, A&AS 143, 23. Wenger, M., Ochsenbein, F., Egret, D., Dubois, P. Bonnarel, F., Borde, S., Genova, F., Jasniewicz, G., Laloë, S., Lesteven, S. & Monier R. 2000, The SIMBAD astronomical database. The CDS reference database for astronomical objects, Astronomy & Astrophysics, 143, 9-22. https://doi.org/10.1051/aas:2000332. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. Ryabchikova, T., Piskunov, N., Kurucz, R., Stempels, H., Heiter, U., Pakhomov, Yu. & Barklem, P. 2015, A major upgrade of the VALD database, The Royal Swedish Academy of Sciences, 90, 5. https://doi.org/10.1088/0031-8949/90/5/054005. This work has made use of the VALD database, operated at Uppsala University, the Institute of Astronomy RAS in Moscow, and the University of Vienna. Alves, D. 2000, K-Band Calibration of the Red Clump Luminosity, The Astrophysical Journal, 539, 732. https://doi.org/10.1086/309278 Brown, J. & Sneden, C. & Lambert, D. & Dutchover, E. 1989, A Search for Lithium-rich Giant Stars, The Astrophysical Journal Supplement Series, 71, 293. https: //doi.org/10.1086/191375 Ester, M. & Kriegel, H. & Sander, J. & Xu, X. 1996, A density-based algorithm for discovering clusters in large spatial databases with noise, AAAI Press, 226-231. Laney, C. & Joner, M. v Pietrzyski, G. 2012 A new Large Magellanic Cloud K-band distance from precision measurements of nearby red clump stars, Monthly Notices of the Royal Astronomical Society, 419, 1637-1641. https://doi.org/10.1111/j. 1365-2966.2011.19826.x Valentini, M. & Munari, U. 2010, A spectroscopic survey of faint, high-Galactic-latitude red clump stars. I. The high resolution sample, Astronomy & Astrophysics, 522, A79. https://doi.org/10.1051/0004-6361/201014870 Gontcharov, G. 2008, Red giant clump in the Tycho-2 catalogue, Astronomy Letters, 34, 785-796. https://doi.org/10.1134/S1063773708110078 Gontcharov, G. 2011, The Red Giant Branch in the Tycho-2 Catalogue, Astronomy Letters, 37, 707-710. https://doi.org/10.1134/S1063773711090040 Abia, C., Palmerini, S., Busso, M. & Cristallo, S. 2012, Carbon and oxygen isotopic ratios in Arcturus and Aldebaran, Astronomy & Astrophysics, 548, 12. https:// doi.org/10.1051/0004-6361/201220148 Rebull, L., Carlberg, J. & Gibbs, J. 2015, On infrared excesses associated with Li-rich K giants, The Astronomical Journal, 150, 123. https://doi.org/10.1088/ 0004-6256/150/4/123 Cardiel, N., Zamorano, J., Bará, S., Cabello, C. & Gallego, J. 2021, Synthetic RGB photometry of bright stars: definition of the standard photometric system and UCM library of spectrophotometric spectra, Monthly Notices of the Royal Astronomical Society, 504, 3730-3748. https://doi.org/10.1093/mnras/stab997 Lagadec, E., Verhoelst, T., Mékarnia, D., Suárez, O., Bendjoya, P. & Szczerba, R. 2011, A mid-infrared imaging catalogue of post-asymptotic giant branch stars, Monthly Notices of the Royal Astronomical Society 417, 32-92. https://doi.org/ 10.1111/j.1365-2966.2011.18557.x Gray, D. & Kaur, T. 2019, A Recipe for Finding Stellar Radii, Temperatures, Surface Gravities, Metallicities, and Masses Using Spectral Lines, The Astrophysical Journal, 882, 148. https://doi.org/10.3847/1538-4357/ab2fce Edvardsson, B. 1988, Spectroscopic surface gravities and chemical compositions for 8 nearby single sub-giants, Astronomy and Astrophysics, 190, 148-166. Lee, B., Han, I., Park, M., Mkrtichian, D., Hatzes, A. & Kim, K. 2014, Planetary companions in K giants Cancri, Leonis, and Ursae Minoris, Astronomy & Astrophysics, 566, 7. https://doi.org/10.1051/0004-6361/201322608 Massarotti, A., Latham, D., Stefanik, R. & Fogel, J. 2007, Rotational and radial velocities for a sample of 761 Hipparcos giants and the role of binarity, The Astronomical Journal, 135, 209. https://doi.org/10.1088/0004-6256/135/1/209 Luck, R. 2015, Abundances in the local region. I, G and K giants, The Astronomical Journal, 150, 88. https://doi.org/10.1088/0004-6256/150/3/88 Park, S., Kang, W., Lee, J. & Lee, S. 2013, Wilson-Bappu effect: extended to surface gravity, The Astronomical Journal, 146, 73. https://doi.org/10.1088/0004-6256/146/4/73 Dominy, J. 1984, The chemical composition and evolutionary state of the early stars, Astrophysical Journal Supplement Series, 55, 27-43. Guenther, D. 2000, Evolutionary Model and Oscillation Frequencies for Ursae Majoris: A Comparison with Observations, The Astrophysical Journal, 530, L45. https://doi.org/10.1086/312473 Ramírez, I. & Allende, C. 2011, Fundamental parameters and chemical composition of Arcturus, The Astrophysical Journal, 743, 135. https://doi.org/10.1088/ 0004-637X/743/2/135 Farr, W., Pope, B., Davies, G., North, T., White, T., Barret, J., Miglio, A., Lund, M., Antoci, V. & Andersen, M. 2018, Aldebaran b's Temperate Past Uncovered in Planet Search Data, The Astrophysical Journal Letters, 865, L20. https://doi.org/10.3847/2041-8213/aadfde Strassmeier, K., Ilyin, I. & Weber, M. 2018, Gaia benchmark stars and other M-K standards, Astronomy & Astrophysics, 612, A45. https://doi.org/10.1051/0004-6361/201731633 Jofré, E., Petrucci, R., Saffe, C., Saker, L., Artur de la Villarmois, E., Chavero, C., Gómez, M. & Mauas P. 2015, Stellar parameters and chemical abundances of 223 evolved stars with and without planets, Astronomy & Astrophysics, 574, A50. https://doi.org/10.1051/0004-6361/201424474 Cruzalèbes, P., Jorissen, A., Rabbia, Y., Sacuto, S., Chiavassa, A., Pasquato, E., Plez, B., Eriksson, K., Spang, A. & Chesneau, O. 2013, Fundamental parameters of 16 late-type stars derived from their angular diameter measured with VLTI/AMBER, Monthly Notices of the Royal Astronomical Society, 434, 437-450. https://doi. org/10.1093/mnras/stt1037 Jones, K. & Robinson, R. 1992, Spectroscopic investigation of cool giants and the authenticity of their reported microwave emission, Monthly Notices of the Royal Astronomical Society, 256, 535-544. https://doi.org/10.1093/mnras/256.3.535 McWilliam, A. 1990, High-Resolution Spectroscopic Survey of 671 GK Giants. I. Stellar Atmosphere Parameters and Abundances, Astrophysical Journal Supplement, 74, 1075. https:/doi:10.1086/191527 Tetzlaff, N., Neuhäuser, R. & Hohle, M. 2010, A catalogue of young runaway Hipparcos stars within 3 kpc from the Sun, Monthly Notices of the Royal Astronomical Society, 410, 190-200. https://doi.org/10.1111/j.1365-2966.2010.17434.x Soubiran, C., Le Campion, J., Brouillet, N. & Chemin, L. 2016, The PASTEL catalogue: 2016 version, Astronomy & Astrophysics, 591, A118. https://doi.org/10.1051/0004-6361/201628497 Anderson, E. & Francis, Ch. 2012, XHIP: An extended hipparcos compilation, Astronomy Letters, 38, 331-346. https://doi.org/10.1134/S1063773712050015 Stock, S., Reffert, S. & Quirrenbach, A. 2018, VizieR Online Data Catalog: Stellar parameters of 372 giant stars, VizieR Online Data Catalog. https://ui.adsabs.harvard.edu/abs/2018yCat..36160033S |
dc.rights.license.spa.fl_str_mv |
Atribución 4.0 Internacional |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
108 |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Física |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Física |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/94607007-4e02-42b9-9b3f-767a9f25bf54/download https://repositorio.uniandes.edu.co/bitstreams/20cba637-f381-440e-9346-6f670d23d815/download https://repositorio.uniandes.edu.co/bitstreams/ca31387f-8b1c-45bc-ba01-9108e23f21d3/download https://repositorio.uniandes.edu.co/bitstreams/0649cff5-82cd-48c6-b8c3-b4d465d27fc8/download https://repositorio.uniandes.edu.co/bitstreams/29a283ab-65aa-4b68-ad73-b45585609209/download https://repositorio.uniandes.edu.co/bitstreams/3ad026ca-49e2-43f0-a583-34c2b308577b/download https://repositorio.uniandes.edu.co/bitstreams/c7ca1e71-336a-4525-9512-34e57c6556e7/download https://repositorio.uniandes.edu.co/bitstreams/a8294eaa-dc68-41d0-a167-50da3efbc275/download |
bitstream.checksum.fl_str_mv |
ec96042b3e7b5edb913c8d4724011b9f d64c8cadc034d4a2826187f4c081a4f5 eee7132bd0aa9718ff88a6a91c91e44f 4491fe1afb58beaaef41a73cf7ff2e27 5aa5c691a1ffe97abd12c2966efcb8d6 0175ea4a2d4caec4bbcc37e300941108 5a93535e1e9e59871ba852689d4209f8 93b09742aae14503499094fb9f8d1d7c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1818111818612080640 |
spelling |
Atribución 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Oostra Van Noppen, Benjamín0f1d9c70-3936-4c61-8d34-323e9e7fb820600Fuentes Rico, Eric Fabrizio209f40fa-bc6e-4b30-a48b-e8e6ae6ff39c600García Varela, José AlejandroAstronomy and Astrophysics2022-08-16T12:43:55Z2022-08-16T12:43:55Z2022-08-12http://hdl.handle.net/1992/59881instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/In this dissertation, the spectroscopic difference between Red Giant Branch (RGB) and Red Clump (RC) stars caused by the CN I molecule is explored and a 3D "Hertzsprung-Russell space" is proposed as a way to differentiate RGB and RC stars by spectroscopic methods alone, something that has long been sought in astronomy.Although Red Clump (RC) stars have been increasingly used as standard candles to measure stellar extinctions, distances, chemistry and kinematics both in and out of the Milky Way due to the small variation within their properties, this ever growing interest and appreciation in RC methods seems to not have been followed by the development of easier ways to quickly identify RC stars, for the RC and a part of the Red Giant Branch (RGB) are superimposed in the Hertzsprung-Russell (HR) diagram and the only way to differentiate them has so far been by resorting to complicated chemical and asteroseismological methods. After APOKASC "a project devoted to asteroseismology" revealed an offset between the surface gravities determined with spectroscopy and those determined with asteroseismology, the idea that there could exist a missing spectroscopic variable that allows to distinguish between RC and RGB stars by spectroscopic methods alone soon came out and recent studies have found that such variable could be related to the CN-cycle of stars, being the CN I absorption spectral lines stronger in RC stars than in similar RGB stars. In this dissertation, that line of work is resumed by measuring the equivalent width (EW) of 9 absorption spectral lines (4 Fe I, 1 Ti I and 4 CN I lines) within the wavelength range [7400 Å, 7500 Å] for a sample of 31 stars within the RC's neighborhood in the HR diagram. Although the sample of stars used was too small to really "prove" something, no counterexample to the hypothesis could be found; at least at first glance, the results seem to indicate that the limit EWTi/EWCN = 2.5 is of great significance since all RGB stars but one fell above it and all RC stars fell below it, forming a remarkably small clump in the (Absolute visual magnitude, EWTi/EWCN) plane. Furthermore, it was found that adding the EWTi/EWCN dimension to the classical 2D HR diagram results in a "3D HR space" that seems to be able to differentiate the 2 evolutionary stages (RC and RGB) as distinct 3D clumps and also suggests that some of the stars whose evolutionary status could not be found in literature are actually carbon stars traveling up the Asymptotic Giant Branch (AGB), for they also manifest as a distinct 3D clump. In any case, however, the fact that the strength of the lines of the CN I molecule seems to be able to differentiate RC and RGB stars reveals a puzzling difference between their photosphere's C-content that does not find any explanation within classical low-mass stellar evolution theory. This phenomenon could be caused by some still-to-be-explained non-canonical convection mechanism related to the helium flash, but far more evidence is required to assert this with strong conviction.FísicoPregradoStellar spectroscopy108application/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaSpectroscopic differentiation of stars within the Red ClumpTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPRed ClumpRed Giant BranchSpectroscopyAstronomyEquivalent WidthStellar evolutionHertzsprung-Russell diagramHertzsprung-Russell spaceCN-cycleFísicaHansen, C., Kawaler, S., & Trimble, V. 2004, Stellar interiors: physical principles, structure and evolution, (2nd ed.), Springer-Verlag, 340.Bastien, F., Stassun, K., Basri, G., & Pepper, J. 2015, A granulation "flicker"-based measure of stellar surface gravity, The Astrophysical Journal Letters, 818, 43. https://doi.org/10.3847/0004-637X/818/1/43Nataf, D., Udalski, A., Gould, A., Fouqué, P., & Stanek, K. 2010, The Split Red Clump of the Galactic Bulge from OGLE-III, The Astrophysical Journal Letters, 721, L28-L32. https://doi.org/10.1088/2041-8205/721/1/L28Ree, C., Yoon, S., Rey, S., & Lee, Y. 2002, Omega Centauri, A Unique Window into Astrophysics, (1st ed. Astronomical Society of the Pacific), 265, 101.Masseron, T., & Hawkins, K. 2017, The spectroscopic indistinguishability of red giant branch and red clump stars, Astronomy & Astrophysics, 597, L3. https://doi.org/ 10.1051/0004-6361/201629938Powell, R. 2011, The Hertzsprung Russel Diagram, http://www.atlasoftheuniverse.com/hr.htmlOostra, B., & Vargas, P. 2021, The differential redshift of titanium lines in K stars, (under review).Perryman, M. 2021, Hipparcos satellite: testing in the Large Solar Simulator, ES TEC, https://commons.wikimedia.org/wiki/File:Hipparcos-testing-estec. jpgUniversity of Iowa. 2017, Imaging the Universe: Stellar Parallax, http://astro. physics.uiowa.edu/ITU/glossary/stellar-parallax/Carroll, B. & Ostlie, D. 2017, An Introduction to Modern Astrophysics, (2nd ed.), Cambridge University Press.Dintsios, N., & Artemi, S., & Polatoglou, H. 2018, Evaluating Stars Temperature Through the B-V Index Using a Virtual Real Experiment from Distance: A Case Sce nario for Secondary Education. International Journal of Online and Biomedical En gineering (iJOE), 14(01), pp. 162-178. https://doi.org/10.3991/ijoe.v14i01. 7842Zombeck, M. 1990, CHandbook of Space Astronomy and Astrophysics, (2nd ed.), Cambridge University Press, 105.Girardi, L. 2016, Red Clump Stars, The Annual Review of Astronomy and Astro physics, 54, 95 - 133. https://doi.org/10.1146/annurev-astro-081915-023354van Leeuwen, F. 2007, Validation of the new Hipparcos reduction, Astronomy & Astrophysics, 474, 2, 653-664. https://doi.org/10.1051/0004-6361:20078357Bagnulo, S., Jehin, E., Ledoux, C., Cabanac, R., Melo, C., Gilmozzi, R. & ESO Paranal Science Operations Team. 2003, The UVES Paranal Observatory Project: A Library of High- Resolution Spectra of Stars across the Hertzsprung-Russell Diagram, The Messenger, 114, 10-14.Strassmeier, K., Ilyin, I., Järvinen, A., Weber, M., Woche, M., Barnes, S. I., Bauer, S. -M., Beckert, E., Bittner, W., Bredthauer, R., Carroll, T. A., Denker, C., Dionies, F., DiVarano, I., Döscher, D., Fechner, T., Feuerstein, D., Granzer, T., Hahn, T., Har nisch, G., Hofmann, A., Lesser, M., Paschke, J., Pankratow, S., Plank, V., Plüschke, D., Popow, E. & Sablowski, D. 2015, PEPSI: The high-resolution échelle spectrograph and polarimeter for the Large Binocular Telescope, Astronomische Nachrichten, 336, 4. https://doi.org/10.1002/asna.201512172Ochsenbein F. et. al. 2000, The VizieR database of astronomical catalogues, Astron omy & Astrophysics, 143, 23. https://doi.org/10.1051/aas:2000169. This research has made use of the VizieR catalogue access tool, CDS, Strasbourg, France (DOI : 10.26093/cds/vizier). The original description of the VizieR service was published in 2000, A&AS 143, 23.Wenger, M., Ochsenbein, F., Egret, D., Dubois, P. Bonnarel, F., Borde, S., Genova, F., Jasniewicz, G., Laloë, S., Lesteven, S. & Monier R. 2000, The SIMBAD astronomical database. The CDS reference database for astronomical objects, Astronomy & Astrophysics, 143, 9-22. https://doi.org/10.1051/aas:2000332. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France.Ryabchikova, T., Piskunov, N., Kurucz, R., Stempels, H., Heiter, U., Pakhomov, Yu. & Barklem, P. 2015, A major upgrade of the VALD database, The Royal Swedish Academy of Sciences, 90, 5. https://doi.org/10.1088/0031-8949/90/5/054005. This work has made use of the VALD database, operated at Uppsala University, the Institute of Astronomy RAS in Moscow, and the University of Vienna.Alves, D. 2000, K-Band Calibration of the Red Clump Luminosity, The Astrophysical Journal, 539, 732. https://doi.org/10.1086/309278Brown, J. & Sneden, C. & Lambert, D. & Dutchover, E. 1989, A Search for Lithium-rich Giant Stars, The Astrophysical Journal Supplement Series, 71, 293. https: //doi.org/10.1086/191375Ester, M. & Kriegel, H. & Sander, J. & Xu, X. 1996, A density-based algorithm for discovering clusters in large spatial databases with noise, AAAI Press, 226-231.Laney, C. & Joner, M. v Pietrzyski, G. 2012 A new Large Magellanic Cloud K-band distance from precision measurements of nearby red clump stars, Monthly Notices of the Royal Astronomical Society, 419, 1637-1641. https://doi.org/10.1111/j. 1365-2966.2011.19826.xValentini, M. & Munari, U. 2010, A spectroscopic survey of faint, high-Galactic-latitude red clump stars. I. The high resolution sample, Astronomy & Astrophysics, 522, A79. https://doi.org/10.1051/0004-6361/201014870Gontcharov, G. 2008, Red giant clump in the Tycho-2 catalogue, Astronomy Letters, 34, 785-796. https://doi.org/10.1134/S1063773708110078Gontcharov, G. 2011, The Red Giant Branch in the Tycho-2 Catalogue, Astronomy Letters, 37, 707-710. https://doi.org/10.1134/S1063773711090040Abia, C., Palmerini, S., Busso, M. & Cristallo, S. 2012, Carbon and oxygen isotopic ratios in Arcturus and Aldebaran, Astronomy & Astrophysics, 548, 12. https:// doi.org/10.1051/0004-6361/201220148Rebull, L., Carlberg, J. & Gibbs, J. 2015, On infrared excesses associated with Li-rich K giants, The Astronomical Journal, 150, 123. https://doi.org/10.1088/ 0004-6256/150/4/123Cardiel, N., Zamorano, J., Bará, S., Cabello, C. & Gallego, J. 2021, Synthetic RGB photometry of bright stars: definition of the standard photometric system and UCM library of spectrophotometric spectra, Monthly Notices of the Royal Astronomical Society, 504, 3730-3748. https://doi.org/10.1093/mnras/stab997Lagadec, E., Verhoelst, T., Mékarnia, D., Suárez, O., Bendjoya, P. & Szczerba, R. 2011, A mid-infrared imaging catalogue of post-asymptotic giant branch stars, Monthly Notices of the Royal Astronomical Society 417, 32-92. https://doi.org/ 10.1111/j.1365-2966.2011.18557.xGray, D. & Kaur, T. 2019, A Recipe for Finding Stellar Radii, Temperatures, Surface Gravities, Metallicities, and Masses Using Spectral Lines, The Astrophysical Journal, 882, 148. https://doi.org/10.3847/1538-4357/ab2fceEdvardsson, B. 1988, Spectroscopic surface gravities and chemical compositions for 8 nearby single sub-giants, Astronomy and Astrophysics, 190, 148-166.Lee, B., Han, I., Park, M., Mkrtichian, D., Hatzes, A. & Kim, K. 2014, Planetary companions in K giants Cancri, Leonis, and Ursae Minoris, Astronomy & Astrophysics, 566, 7. https://doi.org/10.1051/0004-6361/201322608Massarotti, A., Latham, D., Stefanik, R. & Fogel, J. 2007, Rotational and radial velocities for a sample of 761 Hipparcos giants and the role of binarity, The Astronomical Journal, 135, 209. https://doi.org/10.1088/0004-6256/135/1/209Luck, R. 2015, Abundances in the local region. I, G and K giants, The Astronomical Journal, 150, 88. https://doi.org/10.1088/0004-6256/150/3/88Park, S., Kang, W., Lee, J. & Lee, S. 2013, Wilson-Bappu effect: extended to surface gravity, The Astronomical Journal, 146, 73. https://doi.org/10.1088/0004-6256/146/4/73Dominy, J. 1984, The chemical composition and evolutionary state of the early stars, Astrophysical Journal Supplement Series, 55, 27-43.Guenther, D. 2000, Evolutionary Model and Oscillation Frequencies for Ursae Majoris: A Comparison with Observations, The Astrophysical Journal, 530, L45. https://doi.org/10.1086/312473Ramírez, I. & Allende, C. 2011, Fundamental parameters and chemical composition of Arcturus, The Astrophysical Journal, 743, 135. https://doi.org/10.1088/ 0004-637X/743/2/135Farr, W., Pope, B., Davies, G., North, T., White, T., Barret, J., Miglio, A., Lund, M., Antoci, V. & Andersen, M. 2018, Aldebaran b's Temperate Past Uncovered in Planet Search Data, The Astrophysical Journal Letters, 865, L20. https://doi.org/10.3847/2041-8213/aadfdeStrassmeier, K., Ilyin, I. & Weber, M. 2018, Gaia benchmark stars and other M-K standards, Astronomy & Astrophysics, 612, A45. https://doi.org/10.1051/0004-6361/201731633Jofré, E., Petrucci, R., Saffe, C., Saker, L., Artur de la Villarmois, E., Chavero, C., Gómez, M. & Mauas P. 2015, Stellar parameters and chemical abundances of 223 evolved stars with and without planets, Astronomy & Astrophysics, 574, A50. https://doi.org/10.1051/0004-6361/201424474Cruzalèbes, P., Jorissen, A., Rabbia, Y., Sacuto, S., Chiavassa, A., Pasquato, E., Plez, B., Eriksson, K., Spang, A. & Chesneau, O. 2013, Fundamental parameters of 16 late-type stars derived from their angular diameter measured with VLTI/AMBER, Monthly Notices of the Royal Astronomical Society, 434, 437-450. https://doi. org/10.1093/mnras/stt1037Jones, K. & Robinson, R. 1992, Spectroscopic investigation of cool giants and the authenticity of their reported microwave emission, Monthly Notices of the Royal Astronomical Society, 256, 535-544. https://doi.org/10.1093/mnras/256.3.535McWilliam, A. 1990, High-Resolution Spectroscopic Survey of 671 GK Giants. I. Stellar Atmosphere Parameters and Abundances, Astrophysical Journal Supplement, 74, 1075. https:/doi:10.1086/191527Tetzlaff, N., Neuhäuser, R. & Hohle, M. 2010, A catalogue of young runaway Hipparcos stars within 3 kpc from the Sun, Monthly Notices of the Royal Astronomical Society, 410, 190-200. https://doi.org/10.1111/j.1365-2966.2010.17434.xSoubiran, C., Le Campion, J., Brouillet, N. & Chemin, L. 2016, The PASTEL catalogue: 2016 version, Astronomy & Astrophysics, 591, A118. https://doi.org/10.1051/0004-6361/201628497Anderson, E. & Francis, Ch. 2012, XHIP: An extended hipparcos compilation, Astronomy Letters, 38, 331-346. https://doi.org/10.1134/S1063773712050015Stock, S., Reffert, S. & Quirrenbach, A. 2018, VizieR Online Data Catalog: Stellar parameters of 372 giant stars, VizieR Online Data Catalog. https://ui.adsabs.harvard.edu/abs/2018yCat..36160033S201614381PublicationORIGINALThesis_Final_Version.pdfThesis_Final_Version.pdfThesis_documentapplication/pdf13817676https://repositorio.uniandes.edu.co/bitstreams/94607007-4e02-42b9-9b3f-767a9f25bf54/downloadec96042b3e7b5edb913c8d4724011b9fMD53Autorizacion Firmada.pdfAutorizacion Firmada.pdfHIDEapplication/pdf195167https://repositorio.uniandes.edu.co/bitstreams/20cba637-f381-440e-9346-6f670d23d815/downloadd64c8cadc034d4a2826187f4c081a4f5MD54TEXTThesis_Final_Version.pdf.txtThesis_Final_Version.pdf.txtExtracted texttext/plain140709https://repositorio.uniandes.edu.co/bitstreams/ca31387f-8b1c-45bc-ba01-9108e23f21d3/downloadeee7132bd0aa9718ff88a6a91c91e44fMD55Autorizacion Firmada.pdf.txtAutorizacion Firmada.pdf.txtExtracted texttext/plain1163https://repositorio.uniandes.edu.co/bitstreams/0649cff5-82cd-48c6-b8c3-b4d465d27fc8/download4491fe1afb58beaaef41a73cf7ff2e27MD57LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/29a283ab-65aa-4b68-ad73-b45585609209/download5aa5c691a1ffe97abd12c2966efcb8d6MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/3ad026ca-49e2-43f0-a583-34c2b308577b/download0175ea4a2d4caec4bbcc37e300941108MD52THUMBNAILThesis_Final_Version.pdf.jpgThesis_Final_Version.pdf.jpgIM Thumbnailimage/jpeg10589https://repositorio.uniandes.edu.co/bitstreams/c7ca1e71-336a-4525-9512-34e57c6556e7/download5a93535e1e9e59871ba852689d4209f8MD56Autorizacion Firmada.pdf.jpgAutorizacion Firmada.pdf.jpgIM Thumbnailimage/jpeg15855https://repositorio.uniandes.edu.co/bitstreams/a8294eaa-dc68-41d0-a167-50da3efbc275/download93b09742aae14503499094fb9f8d1d7cMD581992/59881oai:repositorio.uniandes.edu.co:1992/598812023-10-10 17:03:21.883http://creativecommons.org/licenses/by/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg== |