Spectroscopic differentiation of stars within the Red Clump

In this dissertation, the spectroscopic difference between Red Giant Branch (RGB) and Red Clump (RC) stars caused by the CN I molecule is explored and a 3D "Hertzsprung-Russell space" is proposed as a way to differentiate RGB and RC stars by spectroscopic methods alone, something that has...

Full description

Autores:
Fuentes Rico, Eric Fabrizio
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/59881
Acceso en línea:
http://hdl.handle.net/1992/59881
Palabra clave:
Red Clump
Red Giant Branch
Spectroscopy
Astronomy
Equivalent Width
Stellar evolution
Hertzsprung-Russell diagram
Hertzsprung-Russell space
CN-cycle
Física
Rights
openAccess
License
Atribución 4.0 Internacional
id UNIANDES2_60d65a16960a598dc4e097068983a934
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/59881
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Spectroscopic differentiation of stars within the Red Clump
title Spectroscopic differentiation of stars within the Red Clump
spellingShingle Spectroscopic differentiation of stars within the Red Clump
Red Clump
Red Giant Branch
Spectroscopy
Astronomy
Equivalent Width
Stellar evolution
Hertzsprung-Russell diagram
Hertzsprung-Russell space
CN-cycle
Física
title_short Spectroscopic differentiation of stars within the Red Clump
title_full Spectroscopic differentiation of stars within the Red Clump
title_fullStr Spectroscopic differentiation of stars within the Red Clump
title_full_unstemmed Spectroscopic differentiation of stars within the Red Clump
title_sort Spectroscopic differentiation of stars within the Red Clump
dc.creator.fl_str_mv Fuentes Rico, Eric Fabrizio
dc.contributor.advisor.none.fl_str_mv Oostra Van Noppen, Benjamín
dc.contributor.author.none.fl_str_mv Fuentes Rico, Eric Fabrizio
dc.contributor.jury.none.fl_str_mv García Varela, José Alejandro
dc.contributor.researchgroup.es_CO.fl_str_mv Astronomy and Astrophysics
dc.subject.keyword.none.fl_str_mv Red Clump
Red Giant Branch
Spectroscopy
Astronomy
Equivalent Width
Stellar evolution
Hertzsprung-Russell diagram
Hertzsprung-Russell space
CN-cycle
topic Red Clump
Red Giant Branch
Spectroscopy
Astronomy
Equivalent Width
Stellar evolution
Hertzsprung-Russell diagram
Hertzsprung-Russell space
CN-cycle
Física
dc.subject.themes.es_CO.fl_str_mv Física
description In this dissertation, the spectroscopic difference between Red Giant Branch (RGB) and Red Clump (RC) stars caused by the CN I molecule is explored and a 3D "Hertzsprung-Russell space" is proposed as a way to differentiate RGB and RC stars by spectroscopic methods alone, something that has long been sought in astronomy.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-16T12:43:55Z
dc.date.available.none.fl_str_mv 2022-08-16T12:43:55Z
dc.date.issued.none.fl_str_mv 2022-08-12
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/59881
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/59881
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.relation.references.es_CO.fl_str_mv Hansen, C., Kawaler, S., & Trimble, V. 2004, Stellar interiors: physical principles, structure and evolution, (2nd ed.), Springer-Verlag, 340.
Bastien, F., Stassun, K., Basri, G., & Pepper, J. 2015, A granulation "flicker"-based measure of stellar surface gravity, The Astrophysical Journal Letters, 818, 43. https://doi.org/10.3847/0004-637X/818/1/43
Nataf, D., Udalski, A., Gould, A., Fouqué, P., & Stanek, K. 2010, The Split Red Clump of the Galactic Bulge from OGLE-III, The Astrophysical Journal Letters, 721, L28-L32. https://doi.org/10.1088/2041-8205/721/1/L28
Ree, C., Yoon, S., Rey, S., & Lee, Y. 2002, Omega Centauri, A Unique Window into Astrophysics, (1st ed. Astronomical Society of the Pacific), 265, 101.
Masseron, T., & Hawkins, K. 2017, The spectroscopic indistinguishability of red giant branch and red clump stars, Astronomy & Astrophysics, 597, L3. https://doi.org/ 10.1051/0004-6361/201629938
Powell, R. 2011, The Hertzsprung Russel Diagram, http://www.atlasoftheuniverse.com/hr.html
Oostra, B., & Vargas, P. 2021, The differential redshift of titanium lines in K stars, (under review).
Perryman, M. 2021, Hipparcos satellite: testing in the Large Solar Simulator, ES TEC, https://commons.wikimedia.org/wiki/File:Hipparcos-testing-estec. jpg
University of Iowa. 2017, Imaging the Universe: Stellar Parallax, http://astro. physics.uiowa.edu/ITU/glossary/stellar-parallax/
Carroll, B. & Ostlie, D. 2017, An Introduction to Modern Astrophysics, (2nd ed.), Cambridge University Press.
Dintsios, N., & Artemi, S., & Polatoglou, H. 2018, Evaluating Stars Temperature Through the B-V Index Using a Virtual Real Experiment from Distance: A Case Sce nario for Secondary Education. International Journal of Online and Biomedical En gineering (iJOE), 14(01), pp. 162-178. https://doi.org/10.3991/ijoe.v14i01. 7842
Zombeck, M. 1990, CHandbook of Space Astronomy and Astrophysics, (2nd ed.), Cambridge University Press, 105.
Girardi, L. 2016, Red Clump Stars, The Annual Review of Astronomy and Astro physics, 54, 95 - 133. https://doi.org/10.1146/annurev-astro-081915-023354
van Leeuwen, F. 2007, Validation of the new Hipparcos reduction, Astronomy & Astrophysics, 474, 2, 653-664. https://doi.org/10.1051/0004-6361:20078357
Bagnulo, S., Jehin, E., Ledoux, C., Cabanac, R., Melo, C., Gilmozzi, R. & ESO Paranal Science Operations Team. 2003, The UVES Paranal Observatory Project: A Library of High- Resolution Spectra of Stars across the Hertzsprung-Russell Diagram, The Messenger, 114, 10-14.
Strassmeier, K., Ilyin, I., Järvinen, A., Weber, M., Woche, M., Barnes, S. I., Bauer, S. -M., Beckert, E., Bittner, W., Bredthauer, R., Carroll, T. A., Denker, C., Dionies, F., DiVarano, I., Döscher, D., Fechner, T., Feuerstein, D., Granzer, T., Hahn, T., Har nisch, G., Hofmann, A., Lesser, M., Paschke, J., Pankratow, S., Plank, V., Plüschke, D., Popow, E. & Sablowski, D. 2015, PEPSI: The high-resolution échelle spectrograph and polarimeter for the Large Binocular Telescope, Astronomische Nachrichten, 336, 4. https://doi.org/10.1002/asna.201512172
Ochsenbein F. et. al. 2000, The VizieR database of astronomical catalogues, Astron omy & Astrophysics, 143, 23. https://doi.org/10.1051/aas:2000169. This research has made use of the VizieR catalogue access tool, CDS, Strasbourg, France (DOI : 10.26093/cds/vizier). The original description of the VizieR service was published in 2000, A&AS 143, 23.
Wenger, M., Ochsenbein, F., Egret, D., Dubois, P. Bonnarel, F., Borde, S., Genova, F., Jasniewicz, G., Laloë, S., Lesteven, S. & Monier R. 2000, The SIMBAD astronomical database. The CDS reference database for astronomical objects, Astronomy & Astrophysics, 143, 9-22. https://doi.org/10.1051/aas:2000332. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France.
Ryabchikova, T., Piskunov, N., Kurucz, R., Stempels, H., Heiter, U., Pakhomov, Yu. & Barklem, P. 2015, A major upgrade of the VALD database, The Royal Swedish Academy of Sciences, 90, 5. https://doi.org/10.1088/0031-8949/90/5/054005. This work has made use of the VALD database, operated at Uppsala University, the Institute of Astronomy RAS in Moscow, and the University of Vienna.
Alves, D. 2000, K-Band Calibration of the Red Clump Luminosity, The Astrophysical Journal, 539, 732. https://doi.org/10.1086/309278
Brown, J. & Sneden, C. & Lambert, D. & Dutchover, E. 1989, A Search for Lithium-rich Giant Stars, The Astrophysical Journal Supplement Series, 71, 293. https: //doi.org/10.1086/191375
Ester, M. & Kriegel, H. & Sander, J. & Xu, X. 1996, A density-based algorithm for discovering clusters in large spatial databases with noise, AAAI Press, 226-231.
Laney, C. & Joner, M. v Pietrzyski, G. 2012 A new Large Magellanic Cloud K-band distance from precision measurements of nearby red clump stars, Monthly Notices of the Royal Astronomical Society, 419, 1637-1641. https://doi.org/10.1111/j. 1365-2966.2011.19826.x
Valentini, M. & Munari, U. 2010, A spectroscopic survey of faint, high-Galactic-latitude red clump stars. I. The high resolution sample, Astronomy & Astrophysics, 522, A79. https://doi.org/10.1051/0004-6361/201014870
Gontcharov, G. 2008, Red giant clump in the Tycho-2 catalogue, Astronomy Letters, 34, 785-796. https://doi.org/10.1134/S1063773708110078
Gontcharov, G. 2011, The Red Giant Branch in the Tycho-2 Catalogue, Astronomy Letters, 37, 707-710. https://doi.org/10.1134/S1063773711090040
Abia, C., Palmerini, S., Busso, M. & Cristallo, S. 2012, Carbon and oxygen isotopic ratios in Arcturus and Aldebaran, Astronomy & Astrophysics, 548, 12. https:// doi.org/10.1051/0004-6361/201220148
Rebull, L., Carlberg, J. & Gibbs, J. 2015, On infrared excesses associated with Li-rich K giants, The Astronomical Journal, 150, 123. https://doi.org/10.1088/ 0004-6256/150/4/123
Cardiel, N., Zamorano, J., Bará, S., Cabello, C. & Gallego, J. 2021, Synthetic RGB photometry of bright stars: definition of the standard photometric system and UCM library of spectrophotometric spectra, Monthly Notices of the Royal Astronomical Society, 504, 3730-3748. https://doi.org/10.1093/mnras/stab997
Lagadec, E., Verhoelst, T., Mékarnia, D., Suárez, O., Bendjoya, P. & Szczerba, R. 2011, A mid-infrared imaging catalogue of post-asymptotic giant branch stars, Monthly Notices of the Royal Astronomical Society 417, 32-92. https://doi.org/ 10.1111/j.1365-2966.2011.18557.x
Gray, D. & Kaur, T. 2019, A Recipe for Finding Stellar Radii, Temperatures, Surface Gravities, Metallicities, and Masses Using Spectral Lines, The Astrophysical Journal, 882, 148. https://doi.org/10.3847/1538-4357/ab2fce
Edvardsson, B. 1988, Spectroscopic surface gravities and chemical compositions for 8 nearby single sub-giants, Astronomy and Astrophysics, 190, 148-166.
Lee, B., Han, I., Park, M., Mkrtichian, D., Hatzes, A. & Kim, K. 2014, Planetary companions in K giants Cancri, Leonis, and Ursae Minoris, Astronomy & Astrophysics, 566, 7. https://doi.org/10.1051/0004-6361/201322608
Massarotti, A., Latham, D., Stefanik, R. & Fogel, J. 2007, Rotational and radial velocities for a sample of 761 Hipparcos giants and the role of binarity, The Astronomical Journal, 135, 209. https://doi.org/10.1088/0004-6256/135/1/209
Luck, R. 2015, Abundances in the local region. I, G and K giants, The Astronomical Journal, 150, 88. https://doi.org/10.1088/0004-6256/150/3/88
Park, S., Kang, W., Lee, J. & Lee, S. 2013, Wilson-Bappu effect: extended to surface gravity, The Astronomical Journal, 146, 73. https://doi.org/10.1088/0004-6256/146/4/73
Dominy, J. 1984, The chemical composition and evolutionary state of the early stars, Astrophysical Journal Supplement Series, 55, 27-43.
Guenther, D. 2000, Evolutionary Model and Oscillation Frequencies for Ursae Majoris: A Comparison with Observations, The Astrophysical Journal, 530, L45. https://doi.org/10.1086/312473
Ramírez, I. & Allende, C. 2011, Fundamental parameters and chemical composition of Arcturus, The Astrophysical Journal, 743, 135. https://doi.org/10.1088/ 0004-637X/743/2/135
Farr, W., Pope, B., Davies, G., North, T., White, T., Barret, J., Miglio, A., Lund, M., Antoci, V. & Andersen, M. 2018, Aldebaran b's Temperate Past Uncovered in Planet Search Data, The Astrophysical Journal Letters, 865, L20. https://doi.org/10.3847/2041-8213/aadfde
Strassmeier, K., Ilyin, I. & Weber, M. 2018, Gaia benchmark stars and other M-K standards, Astronomy & Astrophysics, 612, A45. https://doi.org/10.1051/0004-6361/201731633
Jofré, E., Petrucci, R., Saffe, C., Saker, L., Artur de la Villarmois, E., Chavero, C., Gómez, M. & Mauas P. 2015, Stellar parameters and chemical abundances of 223 evolved stars with and without planets, Astronomy & Astrophysics, 574, A50. https://doi.org/10.1051/0004-6361/201424474
Cruzalèbes, P., Jorissen, A., Rabbia, Y., Sacuto, S., Chiavassa, A., Pasquato, E., Plez, B., Eriksson, K., Spang, A. & Chesneau, O. 2013, Fundamental parameters of 16 late-type stars derived from their angular diameter measured with VLTI/AMBER, Monthly Notices of the Royal Astronomical Society, 434, 437-450. https://doi. org/10.1093/mnras/stt1037
Jones, K. & Robinson, R. 1992, Spectroscopic investigation of cool giants and the authenticity of their reported microwave emission, Monthly Notices of the Royal Astronomical Society, 256, 535-544. https://doi.org/10.1093/mnras/256.3.535
McWilliam, A. 1990, High-Resolution Spectroscopic Survey of 671 GK Giants. I. Stellar Atmosphere Parameters and Abundances, Astrophysical Journal Supplement, 74, 1075. https:/doi:10.1086/191527
Tetzlaff, N., Neuhäuser, R. & Hohle, M. 2010, A catalogue of young runaway Hipparcos stars within 3 kpc from the Sun, Monthly Notices of the Royal Astronomical Society, 410, 190-200. https://doi.org/10.1111/j.1365-2966.2010.17434.x
Soubiran, C., Le Campion, J., Brouillet, N. & Chemin, L. 2016, The PASTEL catalogue: 2016 version, Astronomy & Astrophysics, 591, A118. https://doi.org/10.1051/0004-6361/201628497
Anderson, E. & Francis, Ch. 2012, XHIP: An extended hipparcos compilation, Astronomy Letters, 38, 331-346. https://doi.org/10.1134/S1063773712050015
Stock, S., Reffert, S. & Quirrenbach, A. 2018, VizieR Online Data Catalog: Stellar parameters of 372 giant stars, VizieR Online Data Catalog. https://ui.adsabs.harvard.edu/abs/2018yCat..36160033S
dc.rights.license.spa.fl_str_mv Atribución 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 108
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Física
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Física
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/94607007-4e02-42b9-9b3f-767a9f25bf54/download
https://repositorio.uniandes.edu.co/bitstreams/20cba637-f381-440e-9346-6f670d23d815/download
https://repositorio.uniandes.edu.co/bitstreams/ca31387f-8b1c-45bc-ba01-9108e23f21d3/download
https://repositorio.uniandes.edu.co/bitstreams/0649cff5-82cd-48c6-b8c3-b4d465d27fc8/download
https://repositorio.uniandes.edu.co/bitstreams/29a283ab-65aa-4b68-ad73-b45585609209/download
https://repositorio.uniandes.edu.co/bitstreams/3ad026ca-49e2-43f0-a583-34c2b308577b/download
https://repositorio.uniandes.edu.co/bitstreams/c7ca1e71-336a-4525-9512-34e57c6556e7/download
https://repositorio.uniandes.edu.co/bitstreams/a8294eaa-dc68-41d0-a167-50da3efbc275/download
bitstream.checksum.fl_str_mv ec96042b3e7b5edb913c8d4724011b9f
d64c8cadc034d4a2826187f4c081a4f5
eee7132bd0aa9718ff88a6a91c91e44f
4491fe1afb58beaaef41a73cf7ff2e27
5aa5c691a1ffe97abd12c2966efcb8d6
0175ea4a2d4caec4bbcc37e300941108
5a93535e1e9e59871ba852689d4209f8
93b09742aae14503499094fb9f8d1d7c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1818111818612080640
spelling Atribución 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Oostra Van Noppen, Benjamín0f1d9c70-3936-4c61-8d34-323e9e7fb820600Fuentes Rico, Eric Fabrizio209f40fa-bc6e-4b30-a48b-e8e6ae6ff39c600García Varela, José AlejandroAstronomy and Astrophysics2022-08-16T12:43:55Z2022-08-16T12:43:55Z2022-08-12http://hdl.handle.net/1992/59881instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/In this dissertation, the spectroscopic difference between Red Giant Branch (RGB) and Red Clump (RC) stars caused by the CN I molecule is explored and a 3D "Hertzsprung-Russell space" is proposed as a way to differentiate RGB and RC stars by spectroscopic methods alone, something that has long been sought in astronomy.Although Red Clump (RC) stars have been increasingly used as standard candles to measure stellar extinctions, distances, chemistry and kinematics both in and out of the Milky Way due to the small variation within their properties, this ever growing interest and appreciation in RC methods seems to not have been followed by the development of easier ways to quickly identify RC stars, for the RC and a part of the Red Giant Branch (RGB) are superimposed in the Hertzsprung-Russell (HR) diagram and the only way to differentiate them has so far been by resorting to complicated chemical and asteroseismological methods. After APOKASC "a project devoted to asteroseismology" revealed an offset between the surface gravities determined with spectroscopy and those determined with asteroseismology, the idea that there could exist a missing spectroscopic variable that allows to distinguish between RC and RGB stars by spectroscopic methods alone soon came out and recent studies have found that such variable could be related to the CN-cycle of stars, being the CN I absorption spectral lines stronger in RC stars than in similar RGB stars. In this dissertation, that line of work is resumed by measuring the equivalent width (EW) of 9 absorption spectral lines (4 Fe I, 1 Ti I and 4 CN I lines) within the wavelength range [7400 Å, 7500 Å] for a sample of 31 stars within the RC's neighborhood in the HR diagram. Although the sample of stars used was too small to really "prove" something, no counterexample to the hypothesis could be found; at least at first glance, the results seem to indicate that the limit EWTi/EWCN = 2.5 is of great significance since all RGB stars but one fell above it and all RC stars fell below it, forming a remarkably small clump in the (Absolute visual magnitude, EWTi/EWCN) plane. Furthermore, it was found that adding the EWTi/EWCN dimension to the classical 2D HR diagram results in a "3D HR space" that seems to be able to differentiate the 2 evolutionary stages (RC and RGB) as distinct 3D clumps and also suggests that some of the stars whose evolutionary status could not be found in literature are actually carbon stars traveling up the Asymptotic Giant Branch (AGB), for they also manifest as a distinct 3D clump. In any case, however, the fact that the strength of the lines of the CN I molecule seems to be able to differentiate RC and RGB stars reveals a puzzling difference between their photosphere's C-content that does not find any explanation within classical low-mass stellar evolution theory. This phenomenon could be caused by some still-to-be-explained non-canonical convection mechanism related to the helium flash, but far more evidence is required to assert this with strong conviction.FísicoPregradoStellar spectroscopy108application/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaSpectroscopic differentiation of stars within the Red ClumpTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPRed ClumpRed Giant BranchSpectroscopyAstronomyEquivalent WidthStellar evolutionHertzsprung-Russell diagramHertzsprung-Russell spaceCN-cycleFísicaHansen, C., Kawaler, S., & Trimble, V. 2004, Stellar interiors: physical principles, structure and evolution, (2nd ed.), Springer-Verlag, 340.Bastien, F., Stassun, K., Basri, G., & Pepper, J. 2015, A granulation "flicker"-based measure of stellar surface gravity, The Astrophysical Journal Letters, 818, 43. https://doi.org/10.3847/0004-637X/818/1/43Nataf, D., Udalski, A., Gould, A., Fouqué, P., & Stanek, K. 2010, The Split Red Clump of the Galactic Bulge from OGLE-III, The Astrophysical Journal Letters, 721, L28-L32. https://doi.org/10.1088/2041-8205/721/1/L28Ree, C., Yoon, S., Rey, S., & Lee, Y. 2002, Omega Centauri, A Unique Window into Astrophysics, (1st ed. Astronomical Society of the Pacific), 265, 101.Masseron, T., & Hawkins, K. 2017, The spectroscopic indistinguishability of red giant branch and red clump stars, Astronomy & Astrophysics, 597, L3. https://doi.org/ 10.1051/0004-6361/201629938Powell, R. 2011, The Hertzsprung Russel Diagram, http://www.atlasoftheuniverse.com/hr.htmlOostra, B., & Vargas, P. 2021, The differential redshift of titanium lines in K stars, (under review).Perryman, M. 2021, Hipparcos satellite: testing in the Large Solar Simulator, ES TEC, https://commons.wikimedia.org/wiki/File:Hipparcos-testing-estec. jpgUniversity of Iowa. 2017, Imaging the Universe: Stellar Parallax, http://astro. physics.uiowa.edu/ITU/glossary/stellar-parallax/Carroll, B. & Ostlie, D. 2017, An Introduction to Modern Astrophysics, (2nd ed.), Cambridge University Press.Dintsios, N., & Artemi, S., & Polatoglou, H. 2018, Evaluating Stars Temperature Through the B-V Index Using a Virtual Real Experiment from Distance: A Case Sce nario for Secondary Education. International Journal of Online and Biomedical En gineering (iJOE), 14(01), pp. 162-178. https://doi.org/10.3991/ijoe.v14i01. 7842Zombeck, M. 1990, CHandbook of Space Astronomy and Astrophysics, (2nd ed.), Cambridge University Press, 105.Girardi, L. 2016, Red Clump Stars, The Annual Review of Astronomy and Astro physics, 54, 95 - 133. https://doi.org/10.1146/annurev-astro-081915-023354van Leeuwen, F. 2007, Validation of the new Hipparcos reduction, Astronomy & Astrophysics, 474, 2, 653-664. https://doi.org/10.1051/0004-6361:20078357Bagnulo, S., Jehin, E., Ledoux, C., Cabanac, R., Melo, C., Gilmozzi, R. & ESO Paranal Science Operations Team. 2003, The UVES Paranal Observatory Project: A Library of High- Resolution Spectra of Stars across the Hertzsprung-Russell Diagram, The Messenger, 114, 10-14.Strassmeier, K., Ilyin, I., Järvinen, A., Weber, M., Woche, M., Barnes, S. I., Bauer, S. -M., Beckert, E., Bittner, W., Bredthauer, R., Carroll, T. A., Denker, C., Dionies, F., DiVarano, I., Döscher, D., Fechner, T., Feuerstein, D., Granzer, T., Hahn, T., Har nisch, G., Hofmann, A., Lesser, M., Paschke, J., Pankratow, S., Plank, V., Plüschke, D., Popow, E. & Sablowski, D. 2015, PEPSI: The high-resolution échelle spectrograph and polarimeter for the Large Binocular Telescope, Astronomische Nachrichten, 336, 4. https://doi.org/10.1002/asna.201512172Ochsenbein F. et. al. 2000, The VizieR database of astronomical catalogues, Astron omy & Astrophysics, 143, 23. https://doi.org/10.1051/aas:2000169. This research has made use of the VizieR catalogue access tool, CDS, Strasbourg, France (DOI : 10.26093/cds/vizier). The original description of the VizieR service was published in 2000, A&AS 143, 23.Wenger, M., Ochsenbein, F., Egret, D., Dubois, P. Bonnarel, F., Borde, S., Genova, F., Jasniewicz, G., Laloë, S., Lesteven, S. & Monier R. 2000, The SIMBAD astronomical database. The CDS reference database for astronomical objects, Astronomy & Astrophysics, 143, 9-22. https://doi.org/10.1051/aas:2000332. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France.Ryabchikova, T., Piskunov, N., Kurucz, R., Stempels, H., Heiter, U., Pakhomov, Yu. & Barklem, P. 2015, A major upgrade of the VALD database, The Royal Swedish Academy of Sciences, 90, 5. https://doi.org/10.1088/0031-8949/90/5/054005. This work has made use of the VALD database, operated at Uppsala University, the Institute of Astronomy RAS in Moscow, and the University of Vienna.Alves, D. 2000, K-Band Calibration of the Red Clump Luminosity, The Astrophysical Journal, 539, 732. https://doi.org/10.1086/309278Brown, J. & Sneden, C. & Lambert, D. & Dutchover, E. 1989, A Search for Lithium-rich Giant Stars, The Astrophysical Journal Supplement Series, 71, 293. https: //doi.org/10.1086/191375Ester, M. & Kriegel, H. & Sander, J. & Xu, X. 1996, A density-based algorithm for discovering clusters in large spatial databases with noise, AAAI Press, 226-231.Laney, C. & Joner, M. v Pietrzyski, G. 2012 A new Large Magellanic Cloud K-band distance from precision measurements of nearby red clump stars, Monthly Notices of the Royal Astronomical Society, 419, 1637-1641. https://doi.org/10.1111/j. 1365-2966.2011.19826.xValentini, M. & Munari, U. 2010, A spectroscopic survey of faint, high-Galactic-latitude red clump stars. I. The high resolution sample, Astronomy & Astrophysics, 522, A79. https://doi.org/10.1051/0004-6361/201014870Gontcharov, G. 2008, Red giant clump in the Tycho-2 catalogue, Astronomy Letters, 34, 785-796. https://doi.org/10.1134/S1063773708110078Gontcharov, G. 2011, The Red Giant Branch in the Tycho-2 Catalogue, Astronomy Letters, 37, 707-710. https://doi.org/10.1134/S1063773711090040Abia, C., Palmerini, S., Busso, M. & Cristallo, S. 2012, Carbon and oxygen isotopic ratios in Arcturus and Aldebaran, Astronomy & Astrophysics, 548, 12. https:// doi.org/10.1051/0004-6361/201220148Rebull, L., Carlberg, J. & Gibbs, J. 2015, On infrared excesses associated with Li-rich K giants, The Astronomical Journal, 150, 123. https://doi.org/10.1088/ 0004-6256/150/4/123Cardiel, N., Zamorano, J., Bará, S., Cabello, C. & Gallego, J. 2021, Synthetic RGB photometry of bright stars: definition of the standard photometric system and UCM library of spectrophotometric spectra, Monthly Notices of the Royal Astronomical Society, 504, 3730-3748. https://doi.org/10.1093/mnras/stab997Lagadec, E., Verhoelst, T., Mékarnia, D., Suárez, O., Bendjoya, P. & Szczerba, R. 2011, A mid-infrared imaging catalogue of post-asymptotic giant branch stars, Monthly Notices of the Royal Astronomical Society 417, 32-92. https://doi.org/ 10.1111/j.1365-2966.2011.18557.xGray, D. & Kaur, T. 2019, A Recipe for Finding Stellar Radii, Temperatures, Surface Gravities, Metallicities, and Masses Using Spectral Lines, The Astrophysical Journal, 882, 148. https://doi.org/10.3847/1538-4357/ab2fceEdvardsson, B. 1988, Spectroscopic surface gravities and chemical compositions for 8 nearby single sub-giants, Astronomy and Astrophysics, 190, 148-166.Lee, B., Han, I., Park, M., Mkrtichian, D., Hatzes, A. & Kim, K. 2014, Planetary companions in K giants Cancri, Leonis, and Ursae Minoris, Astronomy & Astrophysics, 566, 7. https://doi.org/10.1051/0004-6361/201322608Massarotti, A., Latham, D., Stefanik, R. & Fogel, J. 2007, Rotational and radial velocities for a sample of 761 Hipparcos giants and the role of binarity, The Astronomical Journal, 135, 209. https://doi.org/10.1088/0004-6256/135/1/209Luck, R. 2015, Abundances in the local region. I, G and K giants, The Astronomical Journal, 150, 88. https://doi.org/10.1088/0004-6256/150/3/88Park, S., Kang, W., Lee, J. & Lee, S. 2013, Wilson-Bappu effect: extended to surface gravity, The Astronomical Journal, 146, 73. https://doi.org/10.1088/0004-6256/146/4/73Dominy, J. 1984, The chemical composition and evolutionary state of the early stars, Astrophysical Journal Supplement Series, 55, 27-43.Guenther, D. 2000, Evolutionary Model and Oscillation Frequencies for Ursae Majoris: A Comparison with Observations, The Astrophysical Journal, 530, L45. https://doi.org/10.1086/312473Ramírez, I. & Allende, C. 2011, Fundamental parameters and chemical composition of Arcturus, The Astrophysical Journal, 743, 135. https://doi.org/10.1088/ 0004-637X/743/2/135Farr, W., Pope, B., Davies, G., North, T., White, T., Barret, J., Miglio, A., Lund, M., Antoci, V. & Andersen, M. 2018, Aldebaran b's Temperate Past Uncovered in Planet Search Data, The Astrophysical Journal Letters, 865, L20. https://doi.org/10.3847/2041-8213/aadfdeStrassmeier, K., Ilyin, I. & Weber, M. 2018, Gaia benchmark stars and other M-K standards, Astronomy & Astrophysics, 612, A45. https://doi.org/10.1051/0004-6361/201731633Jofré, E., Petrucci, R., Saffe, C., Saker, L., Artur de la Villarmois, E., Chavero, C., Gómez, M. & Mauas P. 2015, Stellar parameters and chemical abundances of 223 evolved stars with and without planets, Astronomy & Astrophysics, 574, A50. https://doi.org/10.1051/0004-6361/201424474Cruzalèbes, P., Jorissen, A., Rabbia, Y., Sacuto, S., Chiavassa, A., Pasquato, E., Plez, B., Eriksson, K., Spang, A. & Chesneau, O. 2013, Fundamental parameters of 16 late-type stars derived from their angular diameter measured with VLTI/AMBER, Monthly Notices of the Royal Astronomical Society, 434, 437-450. https://doi. org/10.1093/mnras/stt1037Jones, K. & Robinson, R. 1992, Spectroscopic investigation of cool giants and the authenticity of their reported microwave emission, Monthly Notices of the Royal Astronomical Society, 256, 535-544. https://doi.org/10.1093/mnras/256.3.535McWilliam, A. 1990, High-Resolution Spectroscopic Survey of 671 GK Giants. I. Stellar Atmosphere Parameters and Abundances, Astrophysical Journal Supplement, 74, 1075. https:/doi:10.1086/191527Tetzlaff, N., Neuhäuser, R. & Hohle, M. 2010, A catalogue of young runaway Hipparcos stars within 3 kpc from the Sun, Monthly Notices of the Royal Astronomical Society, 410, 190-200. https://doi.org/10.1111/j.1365-2966.2010.17434.xSoubiran, C., Le Campion, J., Brouillet, N. & Chemin, L. 2016, The PASTEL catalogue: 2016 version, Astronomy & Astrophysics, 591, A118. https://doi.org/10.1051/0004-6361/201628497Anderson, E. & Francis, Ch. 2012, XHIP: An extended hipparcos compilation, Astronomy Letters, 38, 331-346. https://doi.org/10.1134/S1063773712050015Stock, S., Reffert, S. & Quirrenbach, A. 2018, VizieR Online Data Catalog: Stellar parameters of 372 giant stars, VizieR Online Data Catalog. https://ui.adsabs.harvard.edu/abs/2018yCat..36160033S201614381PublicationORIGINALThesis_Final_Version.pdfThesis_Final_Version.pdfThesis_documentapplication/pdf13817676https://repositorio.uniandes.edu.co/bitstreams/94607007-4e02-42b9-9b3f-767a9f25bf54/downloadec96042b3e7b5edb913c8d4724011b9fMD53Autorizacion Firmada.pdfAutorizacion Firmada.pdfHIDEapplication/pdf195167https://repositorio.uniandes.edu.co/bitstreams/20cba637-f381-440e-9346-6f670d23d815/downloadd64c8cadc034d4a2826187f4c081a4f5MD54TEXTThesis_Final_Version.pdf.txtThesis_Final_Version.pdf.txtExtracted texttext/plain140709https://repositorio.uniandes.edu.co/bitstreams/ca31387f-8b1c-45bc-ba01-9108e23f21d3/downloadeee7132bd0aa9718ff88a6a91c91e44fMD55Autorizacion Firmada.pdf.txtAutorizacion Firmada.pdf.txtExtracted texttext/plain1163https://repositorio.uniandes.edu.co/bitstreams/0649cff5-82cd-48c6-b8c3-b4d465d27fc8/download4491fe1afb58beaaef41a73cf7ff2e27MD57LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/29a283ab-65aa-4b68-ad73-b45585609209/download5aa5c691a1ffe97abd12c2966efcb8d6MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/3ad026ca-49e2-43f0-a583-34c2b308577b/download0175ea4a2d4caec4bbcc37e300941108MD52THUMBNAILThesis_Final_Version.pdf.jpgThesis_Final_Version.pdf.jpgIM Thumbnailimage/jpeg10589https://repositorio.uniandes.edu.co/bitstreams/c7ca1e71-336a-4525-9512-34e57c6556e7/download5a93535e1e9e59871ba852689d4209f8MD56Autorizacion Firmada.pdf.jpgAutorizacion Firmada.pdf.jpgIM Thumbnailimage/jpeg15855https://repositorio.uniandes.edu.co/bitstreams/a8294eaa-dc68-41d0-a167-50da3efbc275/download93b09742aae14503499094fb9f8d1d7cMD581992/59881oai:repositorio.uniandes.edu.co:1992/598812023-10-10 17:03:21.883http://creativecommons.org/licenses/by/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==