Aprendizaje por refuerzo profundo para extraer la máxima transferencia de potencia para sistemas fotovoltaicos bajo el efecto de sombreado parcial

Se proponen Deep Q-Networks, un algoritmo de aprendizaje por refuerzo profundo, para hacer el control MPPT de un arreglo de paneles solares en caso de sombreado parcial. Se comprueba y compara su funcionamiento en simulaciones y en una implementación física.

Autores:
Torres Villamizar, María Isabella
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/58974
Acceso en línea:
http://hdl.handle.net/1992/58974
Palabra clave:
Aprendizaje por refuerzo profundo
DQN
MPPT
Paneles solares
Sombreado parcial
Energía solar fotovoltaica
Reinforcement learning
Condición de sombreado parcial
Ingeniería
Rights
openAccess
License
Attribution-NoDerivatives 4.0 Internacional
id UNIANDES2_5ffc5e610d07a9cacdbca020125c9832
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/58974
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Aprendizaje por refuerzo profundo para extraer la máxima transferencia de potencia para sistemas fotovoltaicos bajo el efecto de sombreado parcial
dc.title.alternative.none.fl_str_mv Deep reinforcement learning approach for maximum power point tracking of photovoltaic system under partial shading conditions based on actor-critic agents
title Aprendizaje por refuerzo profundo para extraer la máxima transferencia de potencia para sistemas fotovoltaicos bajo el efecto de sombreado parcial
spellingShingle Aprendizaje por refuerzo profundo para extraer la máxima transferencia de potencia para sistemas fotovoltaicos bajo el efecto de sombreado parcial
Aprendizaje por refuerzo profundo
DQN
MPPT
Paneles solares
Sombreado parcial
Energía solar fotovoltaica
Reinforcement learning
Condición de sombreado parcial
Ingeniería
title_short Aprendizaje por refuerzo profundo para extraer la máxima transferencia de potencia para sistemas fotovoltaicos bajo el efecto de sombreado parcial
title_full Aprendizaje por refuerzo profundo para extraer la máxima transferencia de potencia para sistemas fotovoltaicos bajo el efecto de sombreado parcial
title_fullStr Aprendizaje por refuerzo profundo para extraer la máxima transferencia de potencia para sistemas fotovoltaicos bajo el efecto de sombreado parcial
title_full_unstemmed Aprendizaje por refuerzo profundo para extraer la máxima transferencia de potencia para sistemas fotovoltaicos bajo el efecto de sombreado parcial
title_sort Aprendizaje por refuerzo profundo para extraer la máxima transferencia de potencia para sistemas fotovoltaicos bajo el efecto de sombreado parcial
dc.creator.fl_str_mv Torres Villamizar, María Isabella
dc.contributor.advisor.none.fl_str_mv Bressan, Michael
dc.contributor.author.none.fl_str_mv Torres Villamizar, María Isabella
dc.contributor.jury.none.fl_str_mv Giraldo Trujillo, Luis Felipe
dc.subject.keyword.none.fl_str_mv Aprendizaje por refuerzo profundo
DQN
MPPT
Paneles solares
Sombreado parcial
Energía solar fotovoltaica
Reinforcement learning
Condición de sombreado parcial
topic Aprendizaje por refuerzo profundo
DQN
MPPT
Paneles solares
Sombreado parcial
Energía solar fotovoltaica
Reinforcement learning
Condición de sombreado parcial
Ingeniería
dc.subject.themes.es_CO.fl_str_mv Ingeniería
description Se proponen Deep Q-Networks, un algoritmo de aprendizaje por refuerzo profundo, para hacer el control MPPT de un arreglo de paneles solares en caso de sombreado parcial. Se comprueba y compara su funcionamiento en simulaciones y en una implementación física.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-19T20:34:01Z
dc.date.available.none.fl_str_mv 2022-07-19T20:34:01Z
dc.date.issued.none.fl_str_mv 2022
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/58974
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/58974
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv spa
language spa
dc.relation.references.es_CO.fl_str_mv Statistics time series, trends in renewable energy. https://www.irena.org/Statistics/View-Data-by-Topic/Capacity-and-Generation/ Statistics-Time-Series, publisher=IRENA.
K. Ishaque and Z. Salam, A deterministic particle swarm optimization maximum power point tracker for photovoltaic system under partial shading condition, IEEE Transactions on Industrial Electronics, 2012.
S. K. Pandey, S. L. Patil, D. Ginoya, U. M. Chaskar, and S. B. Phadke, Robust control of mismatched buck dc dc converters by pwm-based sliding mode control schemes, Control Engineering Practice, 2019.
G. Hou, Y. Ke, and C. Huang, A flexible constant power generation scheme for photovoltaic system by error-based active disturbance rejection control and perturb observe, Energy, 2021.
K.-Y. Chou, S.-T. Yang, C.-S. Yang, and Y.-P. Chen, Maximum power point tracking of photovoltaic system based on reinforcement learning, Institute of Electrical and Control Engineering, 2019.
V. Smil, Examining energy transitions: A dozen insights based on performance, Elservier, 2016.
Energy outlook. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2022.pdf, 2020.
Cuota de energías renovables en la producción de electricidad. https://datos.enerdata.net/energias-renovables/produccion-electricidad-renovable.html.
S. H. Hanzaei, S. A. Gorji, and M. Ektesabi, A scheme-based review of mppt techniques with respect to input variables including solar irradiance and pv arrays¿ temperature, 2020.
F. Belhachat and C. Larbes, A review of global maximum power point tracking techniques of photovoltaic system under partial shading conditions, Renewable and Sustainable Energy Reviews, 2018.
F. Belhachat and C. Larbes, Comprehensive review on global maximum power point tracking techniques for pv systems subjected to partial shading conditions, Solar Energy, 2019.
H. Rezk, A. Fathy, and A. Y. Abdelaziz, A comparison of different global mppt techniques based on meta-heuristic algorithms for photovoltaic system subjected to partial shading conditions, Renewable and Sustainable Energy Reviews, 2017.
S. Motahhira, A. E. Hammoumib, and A. E. Ghzizalb, The most used mppt algorithms: Review and the suitable low-cost embedded board for each algorithm, Journal of Cleaner Production, 2020.
M. S. Wasim, S. H. Muhammad Amjad and, M. A. Abbasi, A. R. Bhatti, and S. Muyeen, A critical review and performance comparisons of swarm-based optimization algorithms in maximum power point tracking of photovoltaic systems under partial shading conditions, Energy Reports, 2022.
M. A. Zeddini, M. Turki, and M. F. Mimouni, Optimization of pv energy conversion system using reinforcement learning algorithm, Sciences and Techniques of Automatic control computer engineering, 2020.
B. C. Phan, Y.-C. Lai, and C. E. Lin, A deep reinforcement learning-based mppt control for pv systems under partial shading condition, Sensors, 2020.
L. Avila, M. D. Paula, M. Trimboli, and I. Carlucho, Deep reinforcement learning approach for mppt control of partially shaded pv systems in smart grids, Applied Soft Computing Journal, 2020.
M. Alqarni and M. K. Darwish, Maximum power point tracking for photovoltaic system: Modified perturb and observe algorithm, 47th International Universities Power Engineering Conference (UPEC), 2012.
J. P. Ara ujo, M. A. Figueiredo, and M. A. Botto, Control with adaptive q-learning: A comparison for two classical control problems, Engineering Applications of Artificial Intelligence, 2022.
Deep q-network agents. https://la.mathworks.com/help/reinforcement-learning/ug/dqn-agents.html. Accessed: 2022-05-20.
M. K. Giri and S. Majumder, Deep q-learning based optimal resource allocation method for energy harvested cognitive radio networks, Physical Communication, 2022.
K. Wang, D. Hong, J. Ma, K. L. Man, K. Huang, and X. Huang, Maximum power point tracking of photovoltaic systems using deep q-networks, IEEE 18th International Conference on Industrial Informatics, 2020.
Solmetric, Pva-1000s pv analyzer kit. https://sep.yimg.com/ty/cdn/yhst-77580361692593/PVA1500_ProductSheet_sm3.pdf?t=1656620570&.
J. F. Gaviria, G. Narváez, C. Guillen, L. F. Giraldo, and M. Bressan, Machine learning in photovoltaic systems: A review.
T. Instruments, Tl494 pulse-width-modulation control circuits. https://www.ti.com/lit/gpn/tl494.
dc.rights.license.spa.fl_str_mv Attribution-NoDerivatives 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 44 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Ingeniería Electrónica
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ingeniería
dc.publisher.department.es_CO.fl_str_mv Departamento de Ingeniería Eléctrica y Electrónica
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/9bb1b89e-c4e9-4851-872e-f61b2b95eb4b/download
https://repositorio.uniandes.edu.co/bitstreams/ec5bd931-8fd9-4f5c-abbc-5aa7d1a1ae4d/download
https://repositorio.uniandes.edu.co/bitstreams/4eab3f29-7f2a-49ec-8880-18ef0c9dbce8/download
https://repositorio.uniandes.edu.co/bitstreams/7949873c-9815-43da-9e2d-5d521671f8cc/download
https://repositorio.uniandes.edu.co/bitstreams/ea4a001d-742f-4744-b01a-714ab309fd71/download
https://repositorio.uniandes.edu.co/bitstreams/74c3be8c-95bf-45cf-93a8-8d0b5d5917a3/download
https://repositorio.uniandes.edu.co/bitstreams/1d13071a-ceba-46fe-b331-045e585f3e41/download
https://repositorio.uniandes.edu.co/bitstreams/13ad0f55-c7f0-44b5-a99a-018e8377d4d5/download
bitstream.checksum.fl_str_mv 5aa5c691a1ffe97abd12c2966efcb8d6
df14d6dab6b0412f94897bea371e9ba8
4491fe1afb58beaaef41a73cf7ff2e27
4810852bb5752100b7d4f240b92b2c3d
58436457a36c542108a1bb2953499ea1
f7d494f61e544413a13e6ba1da2089cd
47b1b679734c6a507d5bb9990034cb0b
9edb3af090c0ede324d7b3b99a5ce227
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133841331027968
spelling Attribution-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Bressan, Michaelvirtual::2970-1Torres Villamizar, María Isabella1053c544-2d85-4656-ba80-a5c50d707cfc600Giraldo Trujillo, Luis Felipe2022-07-19T20:34:01Z2022-07-19T20:34:01Z2022http://hdl.handle.net/1992/58974instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Se proponen Deep Q-Networks, un algoritmo de aprendizaje por refuerzo profundo, para hacer el control MPPT de un arreglo de paneles solares en caso de sombreado parcial. Se comprueba y compara su funcionamiento en simulaciones y en una implementación física.Ingeniero ElectrónicoPregrado44 páginasapplication/pdfspaUniversidad de los AndesIngeniería ElectrónicaFacultad de IngenieríaDepartamento de Ingeniería Eléctrica y ElectrónicaAprendizaje por refuerzo profundo para extraer la máxima transferencia de potencia para sistemas fotovoltaicos bajo el efecto de sombreado parcialDeep reinforcement learning approach for maximum power point tracking of photovoltaic system under partial shading conditions based on actor-critic agentsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPAprendizaje por refuerzo profundoDQNMPPTPaneles solaresSombreado parcialEnergía solar fotovoltaicaReinforcement learningCondición de sombreado parcialIngenieríaStatistics time series, trends in renewable energy. https://www.irena.org/Statistics/View-Data-by-Topic/Capacity-and-Generation/ Statistics-Time-Series, publisher=IRENA.K. Ishaque and Z. Salam, A deterministic particle swarm optimization maximum power point tracker for photovoltaic system under partial shading condition, IEEE Transactions on Industrial Electronics, 2012.S. K. Pandey, S. L. Patil, D. Ginoya, U. M. Chaskar, and S. B. Phadke, Robust control of mismatched buck dc dc converters by pwm-based sliding mode control schemes, Control Engineering Practice, 2019.G. Hou, Y. Ke, and C. Huang, A flexible constant power generation scheme for photovoltaic system by error-based active disturbance rejection control and perturb observe, Energy, 2021.K.-Y. Chou, S.-T. Yang, C.-S. Yang, and Y.-P. Chen, Maximum power point tracking of photovoltaic system based on reinforcement learning, Institute of Electrical and Control Engineering, 2019.V. Smil, Examining energy transitions: A dozen insights based on performance, Elservier, 2016.Energy outlook. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2022.pdf, 2020.Cuota de energías renovables en la producción de electricidad. https://datos.enerdata.net/energias-renovables/produccion-electricidad-renovable.html.S. H. Hanzaei, S. A. Gorji, and M. Ektesabi, A scheme-based review of mppt techniques with respect to input variables including solar irradiance and pv arrays¿ temperature, 2020.F. Belhachat and C. Larbes, A review of global maximum power point tracking techniques of photovoltaic system under partial shading conditions, Renewable and Sustainable Energy Reviews, 2018.F. Belhachat and C. Larbes, Comprehensive review on global maximum power point tracking techniques for pv systems subjected to partial shading conditions, Solar Energy, 2019.H. Rezk, A. Fathy, and A. Y. Abdelaziz, A comparison of different global mppt techniques based on meta-heuristic algorithms for photovoltaic system subjected to partial shading conditions, Renewable and Sustainable Energy Reviews, 2017.S. Motahhira, A. E. Hammoumib, and A. E. Ghzizalb, The most used mppt algorithms: Review and the suitable low-cost embedded board for each algorithm, Journal of Cleaner Production, 2020.M. S. Wasim, S. H. Muhammad Amjad and, M. A. Abbasi, A. R. Bhatti, and S. Muyeen, A critical review and performance comparisons of swarm-based optimization algorithms in maximum power point tracking of photovoltaic systems under partial shading conditions, Energy Reports, 2022.M. A. Zeddini, M. Turki, and M. F. Mimouni, Optimization of pv energy conversion system using reinforcement learning algorithm, Sciences and Techniques of Automatic control computer engineering, 2020.B. C. Phan, Y.-C. Lai, and C. E. Lin, A deep reinforcement learning-based mppt control for pv systems under partial shading condition, Sensors, 2020.L. Avila, M. D. Paula, M. Trimboli, and I. Carlucho, Deep reinforcement learning approach for mppt control of partially shaded pv systems in smart grids, Applied Soft Computing Journal, 2020.M. Alqarni and M. K. Darwish, Maximum power point tracking for photovoltaic system: Modified perturb and observe algorithm, 47th International Universities Power Engineering Conference (UPEC), 2012.J. P. Ara ujo, M. A. Figueiredo, and M. A. Botto, Control with adaptive q-learning: A comparison for two classical control problems, Engineering Applications of Artificial Intelligence, 2022.Deep q-network agents. https://la.mathworks.com/help/reinforcement-learning/ug/dqn-agents.html. Accessed: 2022-05-20.M. K. Giri and S. Majumder, Deep q-learning based optimal resource allocation method for energy harvested cognitive radio networks, Physical Communication, 2022.K. Wang, D. Hong, J. Ma, K. L. Man, K. Huang, and X. Huang, Maximum power point tracking of photovoltaic systems using deep q-networks, IEEE 18th International Conference on Industrial Informatics, 2020.Solmetric, Pva-1000s pv analyzer kit. https://sep.yimg.com/ty/cdn/yhst-77580361692593/PVA1500_ProductSheet_sm3.pdf?t=1656620570&.J. F. Gaviria, G. Narváez, C. Guillen, L. F. Giraldo, and M. Bressan, Machine learning in photovoltaic systems: A review.T. Instruments, Tl494 pulse-width-modulation control circuits. https://www.ti.com/lit/gpn/tl494.201728859Publicationbc902e67-1463-4f04-b761-09e690ed62f9virtual::2970-1bc902e67-1463-4f04-b761-09e690ed62f9virtual::2970-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/9bb1b89e-c4e9-4851-872e-f61b2b95eb4b/download5aa5c691a1ffe97abd12c2966efcb8d6MD51TEXTAprendizaje por refuerzo profundo para MPPT en paneles en condición con sombreado parcial.pdf.txtAprendizaje por refuerzo profundo para MPPT en paneles en condición con sombreado parcial.pdf.txtExtracted texttext/plain59237https://repositorio.uniandes.edu.co/bitstreams/ec5bd931-8fd9-4f5c-abbc-5aa7d1a1ae4d/downloaddf14d6dab6b0412f94897bea371e9ba8MD55Autorización tesis.pdf.txtAutorización tesis.pdf.txtExtracted texttext/plain1163https://repositorio.uniandes.edu.co/bitstreams/4eab3f29-7f2a-49ec-8880-18ef0c9dbce8/download4491fe1afb58beaaef41a73cf7ff2e27MD57ORIGINALAprendizaje por refuerzo profundo para MPPT en paneles en condición con sombreado parcial.pdfAprendizaje por refuerzo profundo para MPPT en paneles en condición con sombreado parcial.pdfTrabajo de gradoapplication/pdf2661798https://repositorio.uniandes.edu.co/bitstreams/7949873c-9815-43da-9e2d-5d521671f8cc/download4810852bb5752100b7d4f240b92b2c3dMD53Autorización tesis.pdfAutorización tesis.pdfHIDEapplication/pdf201927https://repositorio.uniandes.edu.co/bitstreams/ea4a001d-742f-4744-b01a-714ab309fd71/download58436457a36c542108a1bb2953499ea1MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8799https://repositorio.uniandes.edu.co/bitstreams/74c3be8c-95bf-45cf-93a8-8d0b5d5917a3/downloadf7d494f61e544413a13e6ba1da2089cdMD52THUMBNAILAprendizaje por refuerzo profundo para MPPT en paneles en condición con sombreado parcial.pdf.jpgAprendizaje por refuerzo profundo para MPPT en paneles en condición con sombreado parcial.pdf.jpgIM Thumbnailimage/jpeg7265https://repositorio.uniandes.edu.co/bitstreams/1d13071a-ceba-46fe-b331-045e585f3e41/download47b1b679734c6a507d5bb9990034cb0bMD56Autorización tesis.pdf.jpgAutorización tesis.pdf.jpgIM Thumbnailimage/jpeg16350https://repositorio.uniandes.edu.co/bitstreams/13ad0f55-c7f0-44b5-a99a-018e8377d4d5/download9edb3af090c0ede324d7b3b99a5ce227MD581992/58974oai:repositorio.uniandes.edu.co:1992/589742024-03-13 12:19:31.359http://creativecommons.org/licenses/by-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==