Modelo de redes bayesianas para el diagnóstico de sistemas eléctricos industriales

Este proyecto presenta un modelo para el diagnóstico de sistemas eléctricos industriales mediante el uso de redes bayesianas y análisis de sags. La construcción de la red bayesiana propuesta se fundamenta en modelos teóricos, datos históricos y la experiencia de expertos. Se llevará a cabo la implem...

Full description

Autores:
Rios Andrade, Cristian Alejandro
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/73576
Acceso en línea:
https://hdl.handle.net/1992/73576
Palabra clave:
Diagnóstico
Red bayesiana
Inferencia causal
Sistemas eléctricos industriales
Calidad de la potencia
Ingeniería
Rights
openAccess
License
Attribution 4.0 International
id UNIANDES2_5ff812c2357a2d358ca8f71b71b611c2
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/73576
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.spa.fl_str_mv Modelo de redes bayesianas para el diagnóstico de sistemas eléctricos industriales
title Modelo de redes bayesianas para el diagnóstico de sistemas eléctricos industriales
spellingShingle Modelo de redes bayesianas para el diagnóstico de sistemas eléctricos industriales
Diagnóstico
Red bayesiana
Inferencia causal
Sistemas eléctricos industriales
Calidad de la potencia
Ingeniería
title_short Modelo de redes bayesianas para el diagnóstico de sistemas eléctricos industriales
title_full Modelo de redes bayesianas para el diagnóstico de sistemas eléctricos industriales
title_fullStr Modelo de redes bayesianas para el diagnóstico de sistemas eléctricos industriales
title_full_unstemmed Modelo de redes bayesianas para el diagnóstico de sistemas eléctricos industriales
title_sort Modelo de redes bayesianas para el diagnóstico de sistemas eléctricos industriales
dc.creator.fl_str_mv Rios Andrade, Cristian Alejandro
dc.contributor.advisor.none.fl_str_mv Ramos López, Gustavo Andrés
dc.contributor.author.none.fl_str_mv Rios Andrade, Cristian Alejandro
dc.contributor.jury.none.fl_str_mv Ríos Mesías, Mario Alberto
dc.subject.keyword.spa.fl_str_mv Diagnóstico
Red bayesiana
Inferencia causal
Sistemas eléctricos industriales
Calidad de la potencia
topic Diagnóstico
Red bayesiana
Inferencia causal
Sistemas eléctricos industriales
Calidad de la potencia
Ingeniería
dc.subject.themes.spa.fl_str_mv Ingeniería
description Este proyecto presenta un modelo para el diagnóstico de sistemas eléctricos industriales mediante el uso de redes bayesianas y análisis de sags. La construcción de la red bayesiana propuesta se fundamenta en modelos teóricos, datos históricos y la experiencia de expertos. Se llevará a cabo la implementación de esta red bayesiana en Python, seguida de una exhaustiva caracterización para verificar su correcto funcionamiento y resiliencia.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-01-29T20:13:24Z
dc.date.available.none.fl_str_mv 2024-01-29T20:13:24Z
dc.date.issued.none.fl_str_mv 2024-01-12
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/73576
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/73576
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv "Ieee recommended practice for monitoring electric power quality," IEEE Std 1159-1995, pp. 1–80, 1995.
M. H. Bollen, Understanding power quality problems, vol. 3. IEEE press New York, 2000.
R. C. Dugan, Electrical power system quality. The McGraw Hill Companies,, 2000.
A. Baggini, Handbook of power quality. John Wiley & Sons, 2008.
A. K. Goswami, C. P. Gupta, and G. K. Singh, “Assessment of financial losses due to voltage sags in an Indian distribution system,” in 2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems, pp. 1–6, IEEE, 2008.
D. Montenegro and G. Ramos, “Smart diagnosis of power quality disturbances using bayesian networks,” in 2012 Sixth IEEE/PES Transmission and Distribution: Latin America Conference and Exposition (T&D-LA), pp. 1–5, IEEE, 2012.
G. A. Ramos López et al., “Análisis de la seguridad de los sistemas eléctricos industriales,” 2008.
C. P. Gupta and J. Milanovic, “Costs of voltage sags: Comprehensive assessment procedure,” in 2005 IEEE Russia Power Tech, pp. 1–7, IEEE, 2005.
A. Torres, M. T. Rueda, and D. Reyes, “Bayesian networks for power quality analysis in the industrial sector,” in 2006 International Conference on Probabilistic Methods Applied to Power Systems, pp. 1–7, IEEE, 2006.
K. Srinath, “Python–the fastest growing programming language,” International Research Journal of Engineering and Technology, vol. 4, no. 12, pp. 354–357, 2017.
J. M. E. Forero, G. Ramos, and A. Ovalle, “Decision making methodology based on expert systems for minimizing economic impact of voltage sags in industrial power systems,” in 2013 IEEE Grenoble Conference, pp. 1–6, IEEE, 2013.
G. Ramos, A. Torres, and M. Rios, “Analysis of electrical industrial systems using probabilistic networks,” IEEE Latin America Transactions, vol. 8, no. 5, pp. 505–511, 2010.
M. H. Bollen and L. Zhang, “Different methods for classification of three-phase unbalanced voltage dips due to faults,” Electric power systems research, vol. 66, no. 1, pp. 59–69, 2003.
J. A. Gámez, S. Moral, and A. S. Cerdan, Advances in Bayesian networks, vol. 146. Springer, 2013.
D. Koller and N. Friedman, Probabilistic graphical models: principles and techniques. MIT press, 2009.
"Ieee recommended practice for the design of reliable industrial and commercial power systems (gold book)," IEEE Std 493-1997 [IEEE Gold Book], pp. 1–464, 1998.
P. Brief, “7: Undervoltage ride-through performance of off-the-shelf personal computers,” EPRI Power Electronics Application Centre, Knoxville, TN, 1994.
Y. Sekine, “Present state of momentary voltage dip interferences and the countermeasures in japan,” CIGRE 1992, 1992.
T. Colliau, G. Rogers, Z. Hughes, and C. Ozgur, “Matlab vs. python vs. r,” Journal of Data Science, vol. 15, no. 3, 2017.
A. Ankan and A. Panda, “pgmpy: Probabilistic graphical models using python,” in Proceedings of the 14th Python in Science Conference (SCIPY 2015), Citeseer, 2015.
M. Scutari, “Dirichlet bayesian network scores and the maximum relative entropy principle,” Behaviormetrika, vol. 45, pp. 337–362, 2018.
dc.rights.en.fl_str_mv Attribution 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 46 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Ingeniería Eléctrica
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.department.none.fl_str_mv Departamento de Ingeniería Eléctrica y Electrónica
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/49256d85-e505-4dc0-ad9f-5891fc526cf5/download
https://repositorio.uniandes.edu.co/bitstreams/b3fc770c-b2cf-4065-9fb6-30ebb5428bc6/download
https://repositorio.uniandes.edu.co/bitstreams/2d141712-2cb4-4fd0-986e-c57b305fdc54/download
https://repositorio.uniandes.edu.co/bitstreams/792d044d-331f-4235-8132-166b50390177/download
https://repositorio.uniandes.edu.co/bitstreams/9e5ccc9f-ab55-49a5-88cc-f06c93c08bf1/download
https://repositorio.uniandes.edu.co/bitstreams/6216f6f0-de2f-46c3-bc80-62541229951e/download
https://repositorio.uniandes.edu.co/bitstreams/7c44eae3-f816-4848-b042-5c5c021be82e/download
https://repositorio.uniandes.edu.co/bitstreams/223419d5-cea5-4ecc-9549-3212d197daaf/download
bitstream.checksum.fl_str_mv 365f343968bea583b35aceabb5f3a359
089fe82548bde09124e79c55b0975812
0175ea4a2d4caec4bbcc37e300941108
ae9e573a68e7f92501b6913cc846c39f
b89af1ee98cd7f4e4d711289b349b7da
714f882ac4308bb7a985c80aa05c394c
043728a8652d4634e2157630f1767cce
a308fea6f5fd210b6558685ccbba619d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133924481007616
spelling Ramos López, Gustavo AndrésRios Andrade, Cristian AlejandroRíos Mesías, Mario Alberto2024-01-29T20:13:24Z2024-01-29T20:13:24Z2024-01-12https://hdl.handle.net/1992/73576instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Este proyecto presenta un modelo para el diagnóstico de sistemas eléctricos industriales mediante el uso de redes bayesianas y análisis de sags. La construcción de la red bayesiana propuesta se fundamenta en modelos teóricos, datos históricos y la experiencia de expertos. Se llevará a cabo la implementación de esta red bayesiana en Python, seguida de una exhaustiva caracterización para verificar su correcto funcionamiento y resiliencia.Ingeniero EléctricoPregrado46 páginasapplication/pdfspaUniversidad de los AndesIngeniería EléctricaFacultad de IngenieríaDepartamento de Ingeniería Eléctrica y ElectrónicaAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Modelo de redes bayesianas para el diagnóstico de sistemas eléctricos industrialesTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPDiagnósticoRed bayesianaInferencia causalSistemas eléctricos industrialesCalidad de la potenciaIngeniería"Ieee recommended practice for monitoring electric power quality," IEEE Std 1159-1995, pp. 1–80, 1995.M. H. Bollen, Understanding power quality problems, vol. 3. IEEE press New York, 2000.R. C. Dugan, Electrical power system quality. The McGraw Hill Companies,, 2000.A. Baggini, Handbook of power quality. John Wiley & Sons, 2008.A. K. Goswami, C. P. Gupta, and G. K. Singh, “Assessment of financial losses due to voltage sags in an Indian distribution system,” in 2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems, pp. 1–6, IEEE, 2008.D. Montenegro and G. Ramos, “Smart diagnosis of power quality disturbances using bayesian networks,” in 2012 Sixth IEEE/PES Transmission and Distribution: Latin America Conference and Exposition (T&D-LA), pp. 1–5, IEEE, 2012.G. A. Ramos López et al., “Análisis de la seguridad de los sistemas eléctricos industriales,” 2008.C. P. Gupta and J. Milanovic, “Costs of voltage sags: Comprehensive assessment procedure,” in 2005 IEEE Russia Power Tech, pp. 1–7, IEEE, 2005.A. Torres, M. T. Rueda, and D. Reyes, “Bayesian networks for power quality analysis in the industrial sector,” in 2006 International Conference on Probabilistic Methods Applied to Power Systems, pp. 1–7, IEEE, 2006.K. Srinath, “Python–the fastest growing programming language,” International Research Journal of Engineering and Technology, vol. 4, no. 12, pp. 354–357, 2017.J. M. E. Forero, G. Ramos, and A. Ovalle, “Decision making methodology based on expert systems for minimizing economic impact of voltage sags in industrial power systems,” in 2013 IEEE Grenoble Conference, pp. 1–6, IEEE, 2013.G. Ramos, A. Torres, and M. Rios, “Analysis of electrical industrial systems using probabilistic networks,” IEEE Latin America Transactions, vol. 8, no. 5, pp. 505–511, 2010.M. H. Bollen and L. Zhang, “Different methods for classification of three-phase unbalanced voltage dips due to faults,” Electric power systems research, vol. 66, no. 1, pp. 59–69, 2003.J. A. Gámez, S. Moral, and A. S. Cerdan, Advances in Bayesian networks, vol. 146. Springer, 2013.D. Koller and N. Friedman, Probabilistic graphical models: principles and techniques. MIT press, 2009."Ieee recommended practice for the design of reliable industrial and commercial power systems (gold book)," IEEE Std 493-1997 [IEEE Gold Book], pp. 1–464, 1998.P. Brief, “7: Undervoltage ride-through performance of off-the-shelf personal computers,” EPRI Power Electronics Application Centre, Knoxville, TN, 1994.Y. Sekine, “Present state of momentary voltage dip interferences and the countermeasures in japan,” CIGRE 1992, 1992.T. Colliau, G. Rogers, Z. Hughes, and C. Ozgur, “Matlab vs. python vs. r,” Journal of Data Science, vol. 15, no. 3, 2017.A. Ankan and A. Panda, “pgmpy: Probabilistic graphical models using python,” in Proceedings of the 14th Python in Science Conference (SCIPY 2015), Citeseer, 2015.M. Scutari, “Dirichlet bayesian network scores and the maximum relative entropy principle,” Behaviormetrika, vol. 45, pp. 337–362, 2018.201915798PublicationORIGINALautorizacion tesis electrica-CAR.pdfautorizacion tesis electrica-CAR.pdfHIDEapplication/pdf361674https://repositorio.uniandes.edu.co/bitstreams/49256d85-e505-4dc0-ad9f-5891fc526cf5/download365f343968bea583b35aceabb5f3a359MD51Modelo de redes bayesianas para el diagnóstico de sistemas eléctricos industriales.pdfModelo de redes bayesianas para el diagnóstico de sistemas eléctricos industriales.pdfapplication/pdf1410614https://repositorio.uniandes.edu.co/bitstreams/b3fc770c-b2cf-4065-9fb6-30ebb5428bc6/download089fe82548bde09124e79c55b0975812MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/2d141712-2cb4-4fd0-986e-c57b305fdc54/download0175ea4a2d4caec4bbcc37e300941108MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/792d044d-331f-4235-8132-166b50390177/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTautorizacion tesis electrica-CAR.pdf.txtautorizacion tesis electrica-CAR.pdf.txtExtracted texttext/plain1993https://repositorio.uniandes.edu.co/bitstreams/9e5ccc9f-ab55-49a5-88cc-f06c93c08bf1/downloadb89af1ee98cd7f4e4d711289b349b7daMD55Modelo de redes bayesianas para el diagnóstico de sistemas eléctricos industriales.pdf.txtModelo de redes bayesianas para el diagnóstico de sistemas eléctricos industriales.pdf.txtExtracted texttext/plain82543https://repositorio.uniandes.edu.co/bitstreams/6216f6f0-de2f-46c3-bc80-62541229951e/download714f882ac4308bb7a985c80aa05c394cMD57THUMBNAILautorizacion tesis electrica-CAR.pdf.jpgautorizacion tesis electrica-CAR.pdf.jpgGenerated Thumbnailimage/jpeg10883https://repositorio.uniandes.edu.co/bitstreams/7c44eae3-f816-4848-b042-5c5c021be82e/download043728a8652d4634e2157630f1767cceMD56Modelo de redes bayesianas para el diagnóstico de sistemas eléctricos industriales.pdf.jpgModelo de redes bayesianas para el diagnóstico de sistemas eléctricos industriales.pdf.jpgGenerated Thumbnailimage/jpeg10036https://repositorio.uniandes.edu.co/bitstreams/223419d5-cea5-4ecc-9549-3212d197daaf/downloada308fea6f5fd210b6558685ccbba619dMD581992/73576oai:repositorio.uniandes.edu.co:1992/735762024-04-08 10:43:14.347http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K