Omitting types and w-categoricity for linear kripke sheaves

"Kripke semantics constitutes a correct and complete system for intuitionistic logic (concretely for Heyting's calculus), nevertheless there are few approaches exploring model theoretical questions in this context. Based on a new proof of completeness for Kripke models over linearly ordere...

Full description

Autores:
Dávila Castellar, Kevin Omar
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/34187
Acceso en línea:
http://hdl.handle.net/1992/34187
Palabra clave:
Matemáticas intuicionistas
Matemáticas
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UNIANDES2_5fd484960b444d7f5d736abcdc96e625
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/34187
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Caicedo Ferrer, Xaviervirtual::16094-1Dávila Castellar, Kevin Omar71f871d9-1401-4e79-bf45-ae6c0669bc185002020-06-10T08:59:20Z2020-06-10T08:59:20Z2017http://hdl.handle.net/1992/34187u794844.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/"Kripke semantics constitutes a correct and complete system for intuitionistic logic (concretely for Heyting's calculus), nevertheless there are few approaches exploring model theoretical questions in this context. Based on a new proof of completeness for Kripke models over linearly ordered sets we prove an omitting types theorem which permits some versions of Ryll Nardzewski theorem for the corresponding logic". -- Tomado del Formato de Documento de Grado."La semántica de Kripke constituye un sistema correcto y completo para la lógica intuicionista (más concretamente para el cálculo de Heyting), sin embargo, hay pocos enfoques que exploren preguntas modelo-teóricas en este contexto. Basados en una prueba de carácter semántico de la completitud para modelos de Kripke sobre ordenes lineales probamos un teorema de omisión de tipos que permite que valgan algunas versiones del theorema de Ryll Nardzewski para la lógica correspondiente". -- Tomado del Formato de Documento de Grado.Magíster en MatemáticasMaestría45 hojasapplication/pdfengUniandesMaestría en MatemáticasFacultad de CienciasDepartamento de Matemáticasinstname:Universidad de los Andesreponame:Repositorio Institucional SénecaOmitting types and w-categoricity for linear kripke sheavesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMMatemáticas intuicionistasMatemáticasPublication121813f3-5233-44f4-becd-1189c3e14fddvirtual::16094-1121813f3-5233-44f4-becd-1189c3e14fddvirtual::16094-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000250821virtual::16094-1ORIGINALu794844.pdfapplication/pdf956820https://repositorio.uniandes.edu.co/bitstreams/6eef2ca9-143a-4641-bf5f-28744d3e066e/downloadb9b42180b4c4a66fe01956c0ef68d017MD51THUMBNAILu794844.pdf.jpgu794844.pdf.jpgIM Thumbnailimage/jpeg4619https://repositorio.uniandes.edu.co/bitstreams/d32cad30-cb66-4dfc-9e66-1b0435455361/download340b2c67407f329f1a1d9641d08ad151MD55TEXTu794844.pdf.txtu794844.pdf.txtExtracted texttext/plain94370https://repositorio.uniandes.edu.co/bitstreams/cb4781b8-5607-43db-82f3-4df9482daa94/downloadc93d3b533a085dc24cf224aeec28cc9cMD541992/34187oai:repositorio.uniandes.edu.co:1992/341872024-03-13 15:38:01.039http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co
dc.title.es_CO.fl_str_mv Omitting types and w-categoricity for linear kripke sheaves
title Omitting types and w-categoricity for linear kripke sheaves
spellingShingle Omitting types and w-categoricity for linear kripke sheaves
Matemáticas intuicionistas
Matemáticas
title_short Omitting types and w-categoricity for linear kripke sheaves
title_full Omitting types and w-categoricity for linear kripke sheaves
title_fullStr Omitting types and w-categoricity for linear kripke sheaves
title_full_unstemmed Omitting types and w-categoricity for linear kripke sheaves
title_sort Omitting types and w-categoricity for linear kripke sheaves
dc.creator.fl_str_mv Dávila Castellar, Kevin Omar
dc.contributor.advisor.none.fl_str_mv Caicedo Ferrer, Xavier
dc.contributor.author.none.fl_str_mv Dávila Castellar, Kevin Omar
dc.subject.keyword.es_CO.fl_str_mv Matemáticas intuicionistas
topic Matemáticas intuicionistas
Matemáticas
dc.subject.themes.none.fl_str_mv Matemáticas
description "Kripke semantics constitutes a correct and complete system for intuitionistic logic (concretely for Heyting's calculus), nevertheless there are few approaches exploring model theoretical questions in this context. Based on a new proof of completeness for Kripke models over linearly ordered sets we prove an omitting types theorem which permits some versions of Ryll Nardzewski theorem for the corresponding logic". -- Tomado del Formato de Documento de Grado.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2020-06-10T08:59:20Z
dc.date.available.none.fl_str_mv 2020-06-10T08:59:20Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/34187
dc.identifier.pdf.none.fl_str_mv u794844.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/34187
identifier_str_mv u794844.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 45 hojas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Uniandes
dc.publisher.program.es_CO.fl_str_mv Maestría en Matemáticas
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Matemáticas
dc.source.es_CO.fl_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
instname_str Universidad de los Andes
institution Universidad de los Andes
reponame_str Repositorio Institucional Séneca
collection Repositorio Institucional Séneca
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/6eef2ca9-143a-4641-bf5f-28744d3e066e/download
https://repositorio.uniandes.edu.co/bitstreams/d32cad30-cb66-4dfc-9e66-1b0435455361/download
https://repositorio.uniandes.edu.co/bitstreams/cb4781b8-5607-43db-82f3-4df9482daa94/download
bitstream.checksum.fl_str_mv b9b42180b4c4a66fe01956c0ef68d017
340b2c67407f329f1a1d9641d08ad151
c93d3b533a085dc24cf224aeec28cc9c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134055365312512