Omitting types and w-categoricity for linear kripke sheaves
"Kripke semantics constitutes a correct and complete system for intuitionistic logic (concretely for Heyting's calculus), nevertheless there are few approaches exploring model theoretical questions in this context. Based on a new proof of completeness for Kripke models over linearly ordere...
- Autores:
-
Dávila Castellar, Kevin Omar
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/34187
- Acceso en línea:
- http://hdl.handle.net/1992/34187
- Palabra clave:
- Matemáticas intuicionistas
Matemáticas
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
UNIANDES2_5fd484960b444d7f5d736abcdc96e625 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/34187 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Caicedo Ferrer, Xaviervirtual::16094-1Dávila Castellar, Kevin Omar71f871d9-1401-4e79-bf45-ae6c0669bc185002020-06-10T08:59:20Z2020-06-10T08:59:20Z2017http://hdl.handle.net/1992/34187u794844.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/"Kripke semantics constitutes a correct and complete system for intuitionistic logic (concretely for Heyting's calculus), nevertheless there are few approaches exploring model theoretical questions in this context. Based on a new proof of completeness for Kripke models over linearly ordered sets we prove an omitting types theorem which permits some versions of Ryll Nardzewski theorem for the corresponding logic". -- Tomado del Formato de Documento de Grado."La semántica de Kripke constituye un sistema correcto y completo para la lógica intuicionista (más concretamente para el cálculo de Heyting), sin embargo, hay pocos enfoques que exploren preguntas modelo-teóricas en este contexto. Basados en una prueba de carácter semántico de la completitud para modelos de Kripke sobre ordenes lineales probamos un teorema de omisión de tipos que permite que valgan algunas versiones del theorema de Ryll Nardzewski para la lógica correspondiente". -- Tomado del Formato de Documento de Grado.Magíster en MatemáticasMaestría45 hojasapplication/pdfengUniandesMaestría en MatemáticasFacultad de CienciasDepartamento de Matemáticasinstname:Universidad de los Andesreponame:Repositorio Institucional SénecaOmitting types and w-categoricity for linear kripke sheavesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMMatemáticas intuicionistasMatemáticasPublication121813f3-5233-44f4-becd-1189c3e14fddvirtual::16094-1121813f3-5233-44f4-becd-1189c3e14fddvirtual::16094-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000250821virtual::16094-1ORIGINALu794844.pdfapplication/pdf956820https://repositorio.uniandes.edu.co/bitstreams/6eef2ca9-143a-4641-bf5f-28744d3e066e/downloadb9b42180b4c4a66fe01956c0ef68d017MD51THUMBNAILu794844.pdf.jpgu794844.pdf.jpgIM Thumbnailimage/jpeg4619https://repositorio.uniandes.edu.co/bitstreams/d32cad30-cb66-4dfc-9e66-1b0435455361/download340b2c67407f329f1a1d9641d08ad151MD55TEXTu794844.pdf.txtu794844.pdf.txtExtracted texttext/plain94370https://repositorio.uniandes.edu.co/bitstreams/cb4781b8-5607-43db-82f3-4df9482daa94/downloadc93d3b533a085dc24cf224aeec28cc9cMD541992/34187oai:repositorio.uniandes.edu.co:1992/341872024-03-13 15:38:01.039http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |
dc.title.es_CO.fl_str_mv |
Omitting types and w-categoricity for linear kripke sheaves |
title |
Omitting types and w-categoricity for linear kripke sheaves |
spellingShingle |
Omitting types and w-categoricity for linear kripke sheaves Matemáticas intuicionistas Matemáticas |
title_short |
Omitting types and w-categoricity for linear kripke sheaves |
title_full |
Omitting types and w-categoricity for linear kripke sheaves |
title_fullStr |
Omitting types and w-categoricity for linear kripke sheaves |
title_full_unstemmed |
Omitting types and w-categoricity for linear kripke sheaves |
title_sort |
Omitting types and w-categoricity for linear kripke sheaves |
dc.creator.fl_str_mv |
Dávila Castellar, Kevin Omar |
dc.contributor.advisor.none.fl_str_mv |
Caicedo Ferrer, Xavier |
dc.contributor.author.none.fl_str_mv |
Dávila Castellar, Kevin Omar |
dc.subject.keyword.es_CO.fl_str_mv |
Matemáticas intuicionistas |
topic |
Matemáticas intuicionistas Matemáticas |
dc.subject.themes.none.fl_str_mv |
Matemáticas |
description |
"Kripke semantics constitutes a correct and complete system for intuitionistic logic (concretely for Heyting's calculus), nevertheless there are few approaches exploring model theoretical questions in this context. Based on a new proof of completeness for Kripke models over linearly ordered sets we prove an omitting types theorem which permits some versions of Ryll Nardzewski theorem for the corresponding logic". -- Tomado del Formato de Documento de Grado. |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2020-06-10T08:59:20Z |
dc.date.available.none.fl_str_mv |
2020-06-10T08:59:20Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/34187 |
dc.identifier.pdf.none.fl_str_mv |
u794844.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/34187 |
identifier_str_mv |
u794844.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
45 hojas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Uniandes |
dc.publisher.program.es_CO.fl_str_mv |
Maestría en Matemáticas |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Matemáticas |
dc.source.es_CO.fl_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca |
instname_str |
Universidad de los Andes |
institution |
Universidad de los Andes |
reponame_str |
Repositorio Institucional Séneca |
collection |
Repositorio Institucional Séneca |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/6eef2ca9-143a-4641-bf5f-28744d3e066e/download https://repositorio.uniandes.edu.co/bitstreams/d32cad30-cb66-4dfc-9e66-1b0435455361/download https://repositorio.uniandes.edu.co/bitstreams/cb4781b8-5607-43db-82f3-4df9482daa94/download |
bitstream.checksum.fl_str_mv |
b9b42180b4c4a66fe01956c0ef68d017 340b2c67407f329f1a1d9641d08ad151 c93d3b533a085dc24cf224aeec28cc9c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812134055365312512 |