Ehrhart theory of lattice path matroid polytopes
We study h*-vectors of lattice path matroids polytopes. Since these polytopes are alcoved, as a first step, we provide a combinatorial toolkit for the analysis of such vectors of this larger family. Based on this, we obtain a combinatorial interpretation of the h*-vector of lattice path matroids of...
- Autores:
-
Valencia Porras, Jerónimo
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/55092
- Acceso en línea:
- http://hdl.handle.net/1992/55092
- Palabra clave:
- Vectores de politopos
Matroides
Caminos reticulares
Politopos
Matemáticas
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
UNIANDES2_5e6300bbabb60559b91f0643d4d74425 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/55092 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Knauer, Kolja26b874f1-7fc5-42f8-81e8-3de35b8f4c4d500Benedetti Velásquez, Carolinavirtual::4996-1Valencia Porras, Jerónimobde33df1-0ce7-455e-9e03-a0a9864ca5b8400Bogart, TristramMorales, Alejandro2022-02-22T19:50:25Z2022-02-22T19:50:25Z2021http://hdl.handle.net/1992/5509225855.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/We study h*-vectors of lattice path matroids polytopes. Since these polytopes are alcoved, as a first step, we provide a combinatorial toolkit for the analysis of such vectors of this larger family. Based on this, we obtain a combinatorial interpretation of the h*-vector of lattice path matroids of rank 2. This yields formulas for the h*-vector and the volume of such matroid polytopes. Furthermore, we characterize Gorenstein lattice path matroids.Este trabajo contiene un estudio de h*-vectores de politopos de matroides de caminos reticulares. Dado que estos politopos son alcobados, como primer paso, se dan herramientas combionatorias para el análisis de tales vectores para esta familia. Basados en esto, se obtienen interpretaciones combinatorias para el h*-vector de politopos de matroides de caminos reticulares de rango 2. Esto da fórmulas para el h*-vector y el volumen de éstas matroides. Además se caracterizan las matroides de caminos reticulares que son Gorenstein.Magíster en MatemáticasMaestría71 páginasapplication/pdfspaUniversidad de los AndesMaestría en MatemáticasFacultad de CienciasDepartamento de MatemáticasEhrhart theory of lattice path matroid polytopesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMVectores de politoposMatroidesCaminos reticularesPolitoposMatemáticas201512556Publication8f535841-abba-4c33-9583-f841a74a4e66virtual::4996-18f535841-abba-4c33-9583-f841a74a4e66virtual::4996-1ORIGINAL25855.pdfapplication/pdf934299https://repositorio.uniandes.edu.co/bitstreams/0d549157-5cad-4528-a27f-4fdd92bf318a/downloadf5f8083765d213f7bbc2242cf69afbf9MD51THUMBNAIL25855.pdf.jpg25855.pdf.jpgIM Thumbnailimage/jpeg5877https://repositorio.uniandes.edu.co/bitstreams/3a2c0f68-1a0b-4e92-b252-278e2aea3472/download1fa552943687a35fe4b78c8a0502e6adMD53TEXT25855.pdf.txt25855.pdf.txtExtracted texttext/plain131707https://repositorio.uniandes.edu.co/bitstreams/f8594bd5-0431-43df-a43a-4622f9809156/downloadf724630e66f44d7d2547f219c667167fMD521992/55092oai:repositorio.uniandes.edu.co:1992/550922024-03-13 12:49:38.024http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |
dc.title.eng.fl_str_mv |
Ehrhart theory of lattice path matroid polytopes |
title |
Ehrhart theory of lattice path matroid polytopes |
spellingShingle |
Ehrhart theory of lattice path matroid polytopes Vectores de politopos Matroides Caminos reticulares Politopos Matemáticas |
title_short |
Ehrhart theory of lattice path matroid polytopes |
title_full |
Ehrhart theory of lattice path matroid polytopes |
title_fullStr |
Ehrhart theory of lattice path matroid polytopes |
title_full_unstemmed |
Ehrhart theory of lattice path matroid polytopes |
title_sort |
Ehrhart theory of lattice path matroid polytopes |
dc.creator.fl_str_mv |
Valencia Porras, Jerónimo |
dc.contributor.advisor.spa.fl_str_mv |
Knauer, Kolja |
dc.contributor.advisor.none.fl_str_mv |
Benedetti Velásquez, Carolina |
dc.contributor.author.spa.fl_str_mv |
Valencia Porras, Jerónimo |
dc.contributor.jury.spa.fl_str_mv |
Bogart, Tristram Morales, Alejandro |
dc.subject.keyword.none.fl_str_mv |
Vectores de politopos Matroides Caminos reticulares Politopos |
topic |
Vectores de politopos Matroides Caminos reticulares Politopos Matemáticas |
dc.subject.themes.none.fl_str_mv |
Matemáticas |
description |
We study h*-vectors of lattice path matroids polytopes. Since these polytopes are alcoved, as a first step, we provide a combinatorial toolkit for the analysis of such vectors of this larger family. Based on this, we obtain a combinatorial interpretation of the h*-vector of lattice path matroids of rank 2. This yields formulas for the h*-vector and the volume of such matroid polytopes. Furthermore, we characterize Gorenstein lattice path matroids. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-02-22T19:50:25Z |
dc.date.available.none.fl_str_mv |
2022-02-22T19:50:25Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/55092 |
dc.identifier.pdf.spa.fl_str_mv |
25855.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/55092 |
identifier_str_mv |
25855.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
71 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.spa.fl_str_mv |
Maestría en Matemáticas |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.spa.fl_str_mv |
Departamento de Matemáticas |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/0d549157-5cad-4528-a27f-4fdd92bf318a/download https://repositorio.uniandes.edu.co/bitstreams/3a2c0f68-1a0b-4e92-b252-278e2aea3472/download https://repositorio.uniandes.edu.co/bitstreams/f8594bd5-0431-43df-a43a-4622f9809156/download |
bitstream.checksum.fl_str_mv |
f5f8083765d213f7bbc2242cf69afbf9 1fa552943687a35fe4b78c8a0502e6ad f724630e66f44d7d2547f219c667167f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133875668746240 |