Artificial Intelligence for renewable energy systems
The worldwide expansion of alternative energy sources, particularly solar photovoltaic energy, is escalating. However, solar energy solutions present challenges due to the variable nature of the solar resource. To effectively address the uncertainty associated with solar photovoltaic production, the...
- Autores:
-
Narváez Morales, Gabriel Esteban
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/73548
- Acceso en línea:
- https://hdl.handle.net/1992/73548
- Palabra clave:
- Renewable Energy
Artificial Intelligence
Microgrid
Climate Change
Ingeniería
- Rights
- embargoedAccess
- License
- https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id |
UNIANDES2_5d789ceebb3c30d3eb135a7a015be7d1 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/73548 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Artificial Intelligence for renewable energy systems |
dc.title.alternative.fra.fl_str_mv |
Intelligence artificielle pour les systèmes d'énergie renouvelable |
title |
Artificial Intelligence for renewable energy systems |
spellingShingle |
Artificial Intelligence for renewable energy systems Renewable Energy Artificial Intelligence Microgrid Climate Change Ingeniería |
title_short |
Artificial Intelligence for renewable energy systems |
title_full |
Artificial Intelligence for renewable energy systems |
title_fullStr |
Artificial Intelligence for renewable energy systems |
title_full_unstemmed |
Artificial Intelligence for renewable energy systems |
title_sort |
Artificial Intelligence for renewable energy systems |
dc.creator.fl_str_mv |
Narváez Morales, Gabriel Esteban |
dc.contributor.advisor.none.fl_str_mv |
Giraldo Trujillo, Luis Felipe |
dc.contributor.author.none.fl_str_mv |
Narváez Morales, Gabriel Esteban |
dc.contributor.jury.none.fl_str_mv |
Quijano Silva, Nicanor Poggi, Philippe Agbossou, Kodjo Quijano, M. Nicanor Alonso, Corinne GIiraldo Trujillo, M. Luis Felipe |
dc.contributor.researchgroup.none.fl_str_mv |
Facultad de Ingeniería::GIAP |
dc.subject.keyword.eng.fl_str_mv |
Renewable Energy Artificial Intelligence Microgrid Climate Change |
topic |
Renewable Energy Artificial Intelligence Microgrid Climate Change Ingeniería |
dc.subject.themes.spa.fl_str_mv |
Ingeniería |
description |
The worldwide expansion of alternative energy sources, particularly solar photovoltaic energy, is escalating. However, solar energy solutions present challenges due to the variable nature of the solar resource. To effectively address the uncertainty associated with solar photovoltaic production, the implementation of an optimal management system is essential. This management system must not only handle energy storage systems or alternate available sources in off-grid systems but also effectively manage the connection to the power grid in on-grid solutions. This is where the application of artificial intelligence techniques becomes crucial, enabling the construction of precise models for optimal management. Therefore, this thesis proposes the implementation of artificial intelligence techniques to address the challenges of renewable energy systems with a focus on solar photovoltaic energy, exploring current solutions, proposing new ones, and discussing future directions. In particular, we focus on three main problems: data analytics, data processing, and optimal management in renewable energy systems. Data analytics involves gathering meteorological data, integrating both in-situ and historical satellite data along with climate change scenarios. After cleaning and validating the collected data, an analysis of the photovoltaic potential is carried out. Data processing focuses on improving the historical data by combining the best of in-situ and satellite data through site-adaptation techniques. The improved database feeds a solar irradiance forecasting model. Finally, the irradiance forecasting model and optimal battery scheduling are combined to achieve the optimal management of renewable energy systems. The research presented in this thesis is the result of joint work between the Universidad de los Andes and the Laboratory for Analysis and Architecture of Systems (LAAS-CNRS), aiming to contribute to the development of a sustainable and clean energy future. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-01-29T15:10:18Z |
dc.date.issued.none.fl_str_mv |
2024-01-18 |
dc.date.accepted.none.fl_str_mv |
2024-01-24 |
dc.date.available.none.fl_str_mv |
2025-01-01 |
dc.type.none.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/73548 |
dc.identifier.doi.none.fl_str_mv |
10.57784/1992/73548 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/73548 |
identifier_str_mv |
10.57784/1992/73548 instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.none.fl_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.none.fl_str_mv |
183 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Doctorado en Ingeniería |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/ad65817d-5211-4a2e-a184-fe64fe63f963/download https://repositorio.uniandes.edu.co/bitstreams/c696f593-c751-452a-9510-967a19d53e68/download https://repositorio.uniandes.edu.co/bitstreams/0b685511-ab8a-408a-af7c-de53abb5ca24/download https://repositorio.uniandes.edu.co/bitstreams/efce312a-2acf-4cb6-8696-5e278880995d/download https://repositorio.uniandes.edu.co/bitstreams/c48da3a9-f345-4dba-ae2b-77dd9c77d6fe/download https://repositorio.uniandes.edu.co/bitstreams/95448495-20d3-4141-9c80-5f562d62756b/download https://repositorio.uniandes.edu.co/bitstreams/fddb2df7-63b2-4804-83b2-fa553968b771/download |
bitstream.checksum.fl_str_mv |
a5c847f612cf5edcb08443c01b1a5add df198d6912807f85bc56128bf97e299c ae9e573a68e7f92501b6913cc846c39f 3f3cd93261adc29d36f2885be592cf04 2333772a2eacdf77d6dfbdd0f3ffb4e7 63b2de3dd16a4e269727b62b09a215d3 cd4de171e8c191d42ec57dac75b5b673 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812134073969147904 |
spelling |
Giraldo Trujillo, Luis FelipeNarváez Morales, Gabriel EstebanQuijano Silva, Nicanorvirtual::173-1Poggi, PhilippeAgbossou, KodjoQuijano, M. NicanorAlonso, CorinneGIiraldo Trujillo, M. Luis FelipeFacultad de Ingeniería::GIAP2024-01-29T15:10:18Z2025-01-012024-01-182024-01-24https://hdl.handle.net/1992/7354810.57784/1992/73548instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The worldwide expansion of alternative energy sources, particularly solar photovoltaic energy, is escalating. However, solar energy solutions present challenges due to the variable nature of the solar resource. To effectively address the uncertainty associated with solar photovoltaic production, the implementation of an optimal management system is essential. This management system must not only handle energy storage systems or alternate available sources in off-grid systems but also effectively manage the connection to the power grid in on-grid solutions. This is where the application of artificial intelligence techniques becomes crucial, enabling the construction of precise models for optimal management. Therefore, this thesis proposes the implementation of artificial intelligence techniques to address the challenges of renewable energy systems with a focus on solar photovoltaic energy, exploring current solutions, proposing new ones, and discussing future directions. In particular, we focus on three main problems: data analytics, data processing, and optimal management in renewable energy systems. Data analytics involves gathering meteorological data, integrating both in-situ and historical satellite data along with climate change scenarios. After cleaning and validating the collected data, an analysis of the photovoltaic potential is carried out. Data processing focuses on improving the historical data by combining the best of in-situ and satellite data through site-adaptation techniques. The improved database feeds a solar irradiance forecasting model. Finally, the irradiance forecasting model and optimal battery scheduling are combined to achieve the optimal management of renewable energy systems. The research presented in this thesis is the result of joint work between the Universidad de los Andes and the Laboratory for Analysis and Architecture of Systems (LAAS-CNRS), aiming to contribute to the development of a sustainable and clean energy future.L'expansion mondiale des sources d'énergie alternatives, en particulier de l'énergie solaire photovoltaïque, est en plein essor. Cependant, les solutions d'énergie solaire présentent des défis en raison de la nature variable de la ressource solaire. Pour répondre efficacement à l'incertitude associée à la production d'énergie solaire photovoltaïque, la mise en œuvre d'un système de gestion optimal est essentielle. Ce système de gestion doit non seulement gérer les systèmes de stockage d'énergie ou les sources alternatives disponibles dans les systèmes hors réseau, mais aussi gérer efficacement la connexion au réseau électrique dans les solutions en réseau. C'est là que l'application de techniques d'intelligence artificielle devient cruciale, permettant la construction de modèles précis pour une gestion optimale. Par conséquent, cette thèse propose la mise en œuvre de techniques d'intelligence artificielle pour relever les défis des systèmes d'énergie renouvelable en mettant l'accent sur l'énergie solaire photovoltaïque, en explorant les solutions actuelles, en proposant de nouvelles solutions et en discutant des orientations futures. En particulier, nous nous concentrons sur trois problèmes principaux : l'analyse des données, le traitement des données et la gestion optimale des systèmes d'énergie renouvelable. L'analyse des données implique la collecte de données météorologiques, l'intégration de données satellitaires in situ et historiques ainsi que des scénarios de changement climatique. Après avoir nettoyé et validé les données collectées, une analyse du potentiel photovoltaïque est effectuée. Le traitement des données se concentre sur l'amélioration des données historiques en combinant le meilleur des données in-situ et satellitaires grâce à des techniques d'adaptation au site. La base de données améliorée alimente un modèle de prévision de l'irradiation solaire. Enfin, le modèle de prévision de l'irradiation et la programmation optimale des batteries sont combinés pour parvenir à une gestion optimale des systèmes d'énergie renouvelable. La recherche présentée dans cette thèse est le résultat d'un travail conjoint entre l'Universidad de los Andes et le Laboratoire d'analyse et d'architecture des systèmes (LAAS-CNRS), visant à contribuer au développement d'un avenir énergétique durable et propre.Doctor en IngenieríaDoctorado183 páginasapplication/pdfengUniversidad de los AndesDoctorado en IngenieríaFacultad de Ingenieríahttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfArtificial Intelligence for renewable energy systemsIntelligence artificielle pour les systèmes d'énergie renouvelableTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDRenewable EnergyArtificial IntelligenceMicrogridClimate ChangeIngeniería201525434Publicationhttps://scholar.google.es/citations?user=xu0jdYAAAAAJvirtual::173-10000-0002-8688-3195virtual::173-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000849669virtual::173-1698e35fc-6e9e-4c84-8960-ae30da9bc64avirtual::173-1698e35fc-6e9e-4c84-8960-ae30da9bc64avirtual::173-1ORIGINALArtificial Intelligence for Renewable Energy Systems.pdfArtificial Intelligence for Renewable Energy Systems.pdfRestricción de acceso hasta el año 2025. Esta es una tesis en cotutela y el documento debe esperar hasta estar publicado en ambas institucionesapplication/pdf33219433https://repositorio.uniandes.edu.co/bitstreams/ad65817d-5211-4a2e-a184-fe64fe63f963/downloada5c847f612cf5edcb08443c01b1a5addMD52autorizacion tesis_LF.pdfautorizacion tesis_LF.pdfHIDEapplication/pdf311398https://repositorio.uniandes.edu.co/bitstreams/c696f593-c751-452a-9510-967a19d53e68/downloaddf198d6912807f85bc56128bf97e299cMD56LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/0b685511-ab8a-408a-af7c-de53abb5ca24/downloadae9e573a68e7f92501b6913cc846c39fMD55TEXTArtificial Intelligence for Renewable Energy Systems.pdf.txtArtificial Intelligence for Renewable Energy Systems.pdf.txtExtracted texttext/plain100282https://repositorio.uniandes.edu.co/bitstreams/efce312a-2acf-4cb6-8696-5e278880995d/download3f3cd93261adc29d36f2885be592cf04MD57autorizacion tesis_LF.pdf.txtautorizacion tesis_LF.pdf.txtExtracted texttext/plain1971https://repositorio.uniandes.edu.co/bitstreams/c48da3a9-f345-4dba-ae2b-77dd9c77d6fe/download2333772a2eacdf77d6dfbdd0f3ffb4e7MD59THUMBNAILArtificial Intelligence for Renewable Energy Systems.pdf.jpgArtificial Intelligence for Renewable Energy Systems.pdf.jpgGenerated Thumbnailimage/jpeg13744https://repositorio.uniandes.edu.co/bitstreams/95448495-20d3-4141-9c80-5f562d62756b/download63b2de3dd16a4e269727b62b09a215d3MD58autorizacion tesis_LF.pdf.jpgautorizacion tesis_LF.pdf.jpgGenerated Thumbnailimage/jpeg11029https://repositorio.uniandes.edu.co/bitstreams/fddb2df7-63b2-4804-83b2-fa553968b771/downloadcd4de171e8c191d42ec57dac75b5b673MD5101992/73548oai:repositorio.uniandes.edu.co:1992/735482024-08-26 15:27:01.72https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfembargohttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |