Artificial Intelligence for renewable energy systems

The worldwide expansion of alternative energy sources, particularly solar photovoltaic energy, is escalating. However, solar energy solutions present challenges due to the variable nature of the solar resource. To effectively address the uncertainty associated with solar photovoltaic production, the...

Full description

Autores:
Narváez Morales, Gabriel Esteban
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/73548
Acceso en línea:
https://hdl.handle.net/1992/73548
Palabra clave:
Renewable Energy
Artificial Intelligence
Microgrid
Climate Change
Ingeniería
Rights
embargoedAccess
License
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id UNIANDES2_5d789ceebb3c30d3eb135a7a015be7d1
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/73548
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Artificial Intelligence for renewable energy systems
dc.title.alternative.fra.fl_str_mv Intelligence artificielle pour les systèmes d'énergie renouvelable
title Artificial Intelligence for renewable energy systems
spellingShingle Artificial Intelligence for renewable energy systems
Renewable Energy
Artificial Intelligence
Microgrid
Climate Change
Ingeniería
title_short Artificial Intelligence for renewable energy systems
title_full Artificial Intelligence for renewable energy systems
title_fullStr Artificial Intelligence for renewable energy systems
title_full_unstemmed Artificial Intelligence for renewable energy systems
title_sort Artificial Intelligence for renewable energy systems
dc.creator.fl_str_mv Narváez Morales, Gabriel Esteban
dc.contributor.advisor.none.fl_str_mv Giraldo Trujillo, Luis Felipe
dc.contributor.author.none.fl_str_mv Narváez Morales, Gabriel Esteban
dc.contributor.jury.none.fl_str_mv Quijano Silva, Nicanor
Poggi, Philippe
Agbossou, Kodjo
Quijano, M. Nicanor
Alonso, Corinne
GIiraldo Trujillo, M. Luis Felipe
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ingeniería::GIAP
dc.subject.keyword.eng.fl_str_mv Renewable Energy
Artificial Intelligence
Microgrid
Climate Change
topic Renewable Energy
Artificial Intelligence
Microgrid
Climate Change
Ingeniería
dc.subject.themes.spa.fl_str_mv Ingeniería
description The worldwide expansion of alternative energy sources, particularly solar photovoltaic energy, is escalating. However, solar energy solutions present challenges due to the variable nature of the solar resource. To effectively address the uncertainty associated with solar photovoltaic production, the implementation of an optimal management system is essential. This management system must not only handle energy storage systems or alternate available sources in off-grid systems but also effectively manage the connection to the power grid in on-grid solutions. This is where the application of artificial intelligence techniques becomes crucial, enabling the construction of precise models for optimal management. Therefore, this thesis proposes the implementation of artificial intelligence techniques to address the challenges of renewable energy systems with a focus on solar photovoltaic energy, exploring current solutions, proposing new ones, and discussing future directions. In particular, we focus on three main problems: data analytics, data processing, and optimal management in renewable energy systems. Data analytics involves gathering meteorological data, integrating both in-situ and historical satellite data along with climate change scenarios. After cleaning and validating the collected data, an analysis of the photovoltaic potential is carried out. Data processing focuses on improving the historical data by combining the best of in-situ and satellite data through site-adaptation techniques. The improved database feeds a solar irradiance forecasting model. Finally, the irradiance forecasting model and optimal battery scheduling are combined to achieve the optimal management of renewable energy systems. The research presented in this thesis is the result of joint work between the Universidad de los Andes and the Laboratory for Analysis and Architecture of Systems (LAAS-CNRS), aiming to contribute to the development of a sustainable and clean energy future.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-01-29T15:10:18Z
dc.date.issued.none.fl_str_mv 2024-01-18
dc.date.accepted.none.fl_str_mv 2024-01-24
dc.date.available.none.fl_str_mv 2025-01-01
dc.type.none.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv https://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/73548
dc.identifier.doi.none.fl_str_mv 10.57784/1992/73548
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/73548
identifier_str_mv 10.57784/1992/73548
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.uri.none.fl_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.none.fl_str_mv 183 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Doctorado en Ingeniería
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/ad65817d-5211-4a2e-a184-fe64fe63f963/download
https://repositorio.uniandes.edu.co/bitstreams/c696f593-c751-452a-9510-967a19d53e68/download
https://repositorio.uniandes.edu.co/bitstreams/0b685511-ab8a-408a-af7c-de53abb5ca24/download
https://repositorio.uniandes.edu.co/bitstreams/efce312a-2acf-4cb6-8696-5e278880995d/download
https://repositorio.uniandes.edu.co/bitstreams/c48da3a9-f345-4dba-ae2b-77dd9c77d6fe/download
https://repositorio.uniandes.edu.co/bitstreams/95448495-20d3-4141-9c80-5f562d62756b/download
https://repositorio.uniandes.edu.co/bitstreams/fddb2df7-63b2-4804-83b2-fa553968b771/download
bitstream.checksum.fl_str_mv a5c847f612cf5edcb08443c01b1a5add
df198d6912807f85bc56128bf97e299c
ae9e573a68e7f92501b6913cc846c39f
3f3cd93261adc29d36f2885be592cf04
2333772a2eacdf77d6dfbdd0f3ffb4e7
63b2de3dd16a4e269727b62b09a215d3
cd4de171e8c191d42ec57dac75b5b673
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134073969147904
spelling Giraldo Trujillo, Luis FelipeNarváez Morales, Gabriel EstebanQuijano Silva, Nicanorvirtual::173-1Poggi, PhilippeAgbossou, KodjoQuijano, M. NicanorAlonso, CorinneGIiraldo Trujillo, M. Luis FelipeFacultad de Ingeniería::GIAP2024-01-29T15:10:18Z2025-01-012024-01-182024-01-24https://hdl.handle.net/1992/7354810.57784/1992/73548instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The worldwide expansion of alternative energy sources, particularly solar photovoltaic energy, is escalating. However, solar energy solutions present challenges due to the variable nature of the solar resource. To effectively address the uncertainty associated with solar photovoltaic production, the implementation of an optimal management system is essential. This management system must not only handle energy storage systems or alternate available sources in off-grid systems but also effectively manage the connection to the power grid in on-grid solutions. This is where the application of artificial intelligence techniques becomes crucial, enabling the construction of precise models for optimal management. Therefore, this thesis proposes the implementation of artificial intelligence techniques to address the challenges of renewable energy systems with a focus on solar photovoltaic energy, exploring current solutions, proposing new ones, and discussing future directions. In particular, we focus on three main problems: data analytics, data processing, and optimal management in renewable energy systems. Data analytics involves gathering meteorological data, integrating both in-situ and historical satellite data along with climate change scenarios. After cleaning and validating the collected data, an analysis of the photovoltaic potential is carried out. Data processing focuses on improving the historical data by combining the best of in-situ and satellite data through site-adaptation techniques. The improved database feeds a solar irradiance forecasting model. Finally, the irradiance forecasting model and optimal battery scheduling are combined to achieve the optimal management of renewable energy systems. The research presented in this thesis is the result of joint work between the Universidad de los Andes and the Laboratory for Analysis and Architecture of Systems (LAAS-CNRS), aiming to contribute to the development of a sustainable and clean energy future.L'expansion mondiale des sources d'énergie alternatives, en particulier de l'énergie solaire photovoltaïque, est en plein essor. Cependant, les solutions d'énergie solaire présentent des défis en raison de la nature variable de la ressource solaire. Pour répondre efficacement à l'incertitude associée à la production d'énergie solaire photovoltaïque, la mise en œuvre d'un système de gestion optimal est essentielle. Ce système de gestion doit non seulement gérer les systèmes de stockage d'énergie ou les sources alternatives disponibles dans les systèmes hors réseau, mais aussi gérer efficacement la connexion au réseau électrique dans les solutions en réseau. C'est là que l'application de techniques d'intelligence artificielle devient cruciale, permettant la construction de modèles précis pour une gestion optimale. Par conséquent, cette thèse propose la mise en œuvre de techniques d'intelligence artificielle pour relever les défis des systèmes d'énergie renouvelable en mettant l'accent sur l'énergie solaire photovoltaïque, en explorant les solutions actuelles, en proposant de nouvelles solutions et en discutant des orientations futures. En particulier, nous nous concentrons sur trois problèmes principaux : l'analyse des données, le traitement des données et la gestion optimale des systèmes d'énergie renouvelable. L'analyse des données implique la collecte de données météorologiques, l'intégration de données satellitaires in situ et historiques ainsi que des scénarios de changement climatique. Après avoir nettoyé et validé les données collectées, une analyse du potentiel photovoltaïque est effectuée. Le traitement des données se concentre sur l'amélioration des données historiques en combinant le meilleur des données in-situ et satellitaires grâce à des techniques d'adaptation au site. La base de données améliorée alimente un modèle de prévision de l'irradiation solaire. Enfin, le modèle de prévision de l'irradiation et la programmation optimale des batteries sont combinés pour parvenir à une gestion optimale des systèmes d'énergie renouvelable. La recherche présentée dans cette thèse est le résultat d'un travail conjoint entre l'Universidad de los Andes et le Laboratoire d'analyse et d'architecture des systèmes (LAAS-CNRS), visant à contribuer au développement d'un avenir énergétique durable et propre.Doctor en IngenieríaDoctorado183 páginasapplication/pdfengUniversidad de los AndesDoctorado en IngenieríaFacultad de Ingenieríahttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfArtificial Intelligence for renewable energy systemsIntelligence artificielle pour les systèmes d'énergie renouvelableTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDRenewable EnergyArtificial IntelligenceMicrogridClimate ChangeIngeniería201525434Publicationhttps://scholar.google.es/citations?user=xu0jdYAAAAAJvirtual::173-10000-0002-8688-3195virtual::173-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000849669virtual::173-1698e35fc-6e9e-4c84-8960-ae30da9bc64avirtual::173-1698e35fc-6e9e-4c84-8960-ae30da9bc64avirtual::173-1ORIGINALArtificial Intelligence for Renewable Energy Systems.pdfArtificial Intelligence for Renewable Energy Systems.pdfRestricción de acceso hasta el año 2025. Esta es una tesis en cotutela y el documento debe esperar hasta estar publicado en ambas institucionesapplication/pdf33219433https://repositorio.uniandes.edu.co/bitstreams/ad65817d-5211-4a2e-a184-fe64fe63f963/downloada5c847f612cf5edcb08443c01b1a5addMD52autorizacion tesis_LF.pdfautorizacion tesis_LF.pdfHIDEapplication/pdf311398https://repositorio.uniandes.edu.co/bitstreams/c696f593-c751-452a-9510-967a19d53e68/downloaddf198d6912807f85bc56128bf97e299cMD56LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/0b685511-ab8a-408a-af7c-de53abb5ca24/downloadae9e573a68e7f92501b6913cc846c39fMD55TEXTArtificial Intelligence for Renewable Energy Systems.pdf.txtArtificial Intelligence for Renewable Energy Systems.pdf.txtExtracted texttext/plain100282https://repositorio.uniandes.edu.co/bitstreams/efce312a-2acf-4cb6-8696-5e278880995d/download3f3cd93261adc29d36f2885be592cf04MD57autorizacion tesis_LF.pdf.txtautorizacion tesis_LF.pdf.txtExtracted texttext/plain1971https://repositorio.uniandes.edu.co/bitstreams/c48da3a9-f345-4dba-ae2b-77dd9c77d6fe/download2333772a2eacdf77d6dfbdd0f3ffb4e7MD59THUMBNAILArtificial Intelligence for Renewable Energy Systems.pdf.jpgArtificial Intelligence for Renewable Energy Systems.pdf.jpgGenerated Thumbnailimage/jpeg13744https://repositorio.uniandes.edu.co/bitstreams/95448495-20d3-4141-9c80-5f562d62756b/download63b2de3dd16a4e269727b62b09a215d3MD58autorizacion tesis_LF.pdf.jpgautorizacion tesis_LF.pdf.jpgGenerated Thumbnailimage/jpeg11029https://repositorio.uniandes.edu.co/bitstreams/fddb2df7-63b2-4804-83b2-fa553968b771/downloadcd4de171e8c191d42ec57dac75b5b673MD5101992/73548oai:repositorio.uniandes.edu.co:1992/735482024-08-26 15:27:01.72https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfembargohttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K