Desarrollo de un dispositivo wearable para la mano con sensores triboeléctricos

Este estudio aborda el diseño, fabricación y evaluación de un dispositivo wearable (Tribosense) basado en nanogeneradores triboeléctricos (TENG) para medir niveles de presión en las yemas de los dedos y ángulos de flexión en la articulación PIP de la mano humana adulta. El proyecto comprende cuatro...

Full description

Autores:
Ramirez Cepeda, Yaisa Catalina
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2025
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/75343
Acceso en línea:
https://hdl.handle.net/1992/75343
Palabra clave:
Dispositivo wearable
Flexión
Interfaz
PTFE
Sensor TENG
Silicona
Tacto
Ingeniería
Rights
openAccess
License
Attribution-NonCommercial 4.0 International
id UNIANDES2_5c6ad7a3a363e2324bbb4d507ab3d403
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/75343
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.spa.fl_str_mv Desarrollo de un dispositivo wearable para la mano con sensores triboeléctricos
title Desarrollo de un dispositivo wearable para la mano con sensores triboeléctricos
spellingShingle Desarrollo de un dispositivo wearable para la mano con sensores triboeléctricos
Dispositivo wearable
Flexión
Interfaz
PTFE
Sensor TENG
Silicona
Tacto
Ingeniería
title_short Desarrollo de un dispositivo wearable para la mano con sensores triboeléctricos
title_full Desarrollo de un dispositivo wearable para la mano con sensores triboeléctricos
title_fullStr Desarrollo de un dispositivo wearable para la mano con sensores triboeléctricos
title_full_unstemmed Desarrollo de un dispositivo wearable para la mano con sensores triboeléctricos
title_sort Desarrollo de un dispositivo wearable para la mano con sensores triboeléctricos
dc.creator.fl_str_mv Ramirez Cepeda, Yaisa Catalina
dc.contributor.advisor.none.fl_str_mv Ávila Bernal, Alba Graciela
dc.contributor.author.none.fl_str_mv Ramirez Cepeda, Yaisa Catalina
dc.contributor.jury.none.fl_str_mv Segura Quijano, Fredy Enrique
dc.subject.keyword.spa.fl_str_mv Dispositivo wearable
topic Dispositivo wearable
Flexión
Interfaz
PTFE
Sensor TENG
Silicona
Tacto
Ingeniería
dc.subject.keyword.none.fl_str_mv Flexión
Interfaz
PTFE
Sensor TENG
Silicona
Tacto
dc.subject.themes.spa.fl_str_mv Ingeniería
description Este estudio aborda el diseño, fabricación y evaluación de un dispositivo wearable (Tribosense) basado en nanogeneradores triboeléctricos (TENG) para medir niveles de presión en las yemas de los dedos y ángulos de flexión en la articulación PIP de la mano humana adulta. El proyecto comprende cuatro etapas clave: sensado, acondicionamiento, procesamiento y visualización en una interfaz móvil. En estas fases se demostró la viabilidad de sensores de bajo costo (menos de 0,5 USD), para detectar fuerzas entre 0 y 5 N, así como ángulos de flexión de 0° a 90°. Entre las configuraciones evaluadas, la combinación de silicona-PTFE destacó con variaciones de voltaje de hasta 1,4 V. Los sensores se integraron en un circuito de acondicionamiento montado en una PCB portátil ubicada en la muñeca del usuario. La información capturada se visualizó en una interfaz móvil con un desfase inferior a 0.5s, mostrando tanto las salidas de voltaje como su interpretación en estados de presión y flexión. Se identificaron oportunidades de mejora, particularmente en la optimización del diseño del guante para minimizar pérdidas de señal que dificultaron la detección de estados en los sensores de flexión. Los resultados incluyen la detección de estímulos reflejados en la interfaz móvil, lo que demuestra el potencial del dispositivo para aplicaciones en tecnología asistencial e interfaces humano-máquina.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-01-10T20:42:57Z
dc.date.available.none.fl_str_mv 2025-01-10T20:42:57Z
dc.date.issued.none.fl_str_mv 2025-01-10
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/75343
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/75343
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Xianjie Pu et al. “Wearable Triboelectric Sensors for Biomedical Monitoring and Human-Machine Interface”. En: iScience 24.1 (2021), pag. 102027. doi:10.1016/j.isci.2020.102027. url: https://doi.org/10.1016/j.isci.2020.102027.
Yang Luo et al. “Triboelectric bending sensor based smart glove towards intuitive multi-dimensional human-machine interfaces”. En: NanoEnergy 89 (2021), pag. 106330. issn: 2211-2855. doi: https://doi.org/10.1016/j.nanoen.2021.106330. url: https://www.sciencedirect.com/science/article/pii/S2211285521005851.
Manuel Caeiro-Rodr´ıguez et al. “A Systematic Review of Commercial Smart Gloves: Current Status and Applications”. En: Sensors 21.8(2021). issn: 1424-8220. doi: 10.3390/s21082667. url: https://www.mdpi.com/1424-8220/21/8/2667.
Ruiyang Yin et al. “Wearable Sensors-Enabled Human–Machine Interaction Systems: From Design to Application”. En: Advanced Functional Materials 31.11 (2021), pag. 2008936. doi: https://doiorg.ezproxy.uniandes.edu.co/10.1002/adfm.202008936. eprint: https://onlinelibrary-wiley-com.ezproxy.uniandes.edu.co/ doi/pdf/10.1002/adfm.202008936. url: https://onlinelibrarywiley-com.ezproxy.uniandes.edu.co/doi/abs/10.1002/adfm.202008936.
Nathan W Moon, Paul MA Baker y Kenneth Goughnour. “Designing wearable technologies for users with disabilities: Accessibility, usability, and connectivity factors”. En: Journal of Rehabilitation and Assistive Technologies Engineering 6 (2019). PMID: 35186318, p´ ag. 2055668319862137. doi: 10.1177/2055668319862137. eprint: https://doi.org/10.1177/2055668319862137. url: https://doi.org/10.1177/2055668319862137.
Xiong Pu, Chi Zhang y Zhong Lin Wang. “Triboelectric nanogenerators as wearable power sources and self-powered sensors”. En: National Science Review 10.1 (ago. de 2022), nwac170. issn: 2095-5138. doi:4410.1093/nsr/nwac170. eprint: https://academic.oup.com/nsr/article-pdf/10/1/nwac170/48728046/nwac170.pdf. url: https: //doi.org/10.1093/nsr/nwac170.
Manuel Caeiro-Rodriguez et al. “A Systematic Review of Commercial Smart Gloves: Current Status and Applications”. En: Sensors 21.8(2021). issn: 1424-8220. doi: 10.3390/s21082667. url: https:// www.mdpi.com/1424-8220/21/8/2667
F. Wen, Z. Zhang, T. He et al. “AI enabled sign language recognition and VR space bidirectional communication using triboelectric smart glove”. En: Nature Communications 12.5378 (2021). doi: 10.1038/ s41467-021-25637-w. url: https://doi.org/10.1038/s41467021-25637-w.
Jeong Ho Kim et al. “Differences in typing forces, muscle activity, comfort, and typing performance among virtual, notebook, and desktop keyboards”. En: Applied Ergonomics 45.6 (2014), p´ags. 1406-1413. issn: 0003-6870. doi: https://doi.org/10.1016/j.apergo.2014. 04.001. url: https://www.sciencedirect.com/science/article/pii/S000368701400043X.
J. N. Leijnse, P. M. Quesada y C. W. Spoor. “Kinematic evaluation of the finger’s interphalangeal joints coupling mechanism–variability, flexion-extension differences, triggers, locking swanneck deformities, anthropometric correlations”. En: Journal of Biomechanics 43.12 (2010), pags. 2381-2393. doi: 10.1016/j.jbiomech.2010.04.021. url: https://doi.org/10.1016/j.jbiomech.2010.04.021.
Deanna S. Asakawa et al. “Fingertip forces and completion time for index finger and thumb touchscreen gestures”. En: Journal of Electromyography and Kinesiology 34 (2017), p´ ags. 6-13. issn: 1050-6411. doi: https://doi.org/10.1016/j.jelekin.2017.02.007. url:https://www.sciencedirect.com/science/article/pii/S1050641116301225.
Zhong Lin Wang. “Triboelectric nanogenerators as new energy technology and self-powered sensors– Principles, problems and perspectives”. En: Faraday Discuss. 176 (0 2014), p´ ags. 447-458. doi: 10.1039/ C4FD00159A. url: http://dx.doi.org/10.1039/C4FD00159A.
R.L. Bulathsinghala, W. Ding y R.D.I.G. Dharmasena. “Triboelectric nanogenerators for wearable sensing applications: A system level analysis”. En: Nano Energy 116 (2023), p´ ag. 108792. issn: 22112855. doi: https://doi.org/10.1016/j.nanoen.2023.108792. 45url: https://www.sciencedirect.com/science/article/pii/S2211285523006298
Z. Zhang, T. He, M. Zhu et al. “Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications”. En: npj Flexible Electronics 4 (2020), p´ag. 29. doi: 10.1038/s41528-02000092-7. url: https://doi.org/10.1038/s41528-020-00092-7.
Gaurav Khandelwal, Nirmal Prashanth Maria Joseph Raj y Sang-Jae Kim. “Materials Beyond Conventional Triboelectric Series for Fabrication and Applications of Triboelectric Nanogenerators”. En: Advanced Energy Materials 11.21 (2021), pag. 2101170.
Dong Liu, Linlin Zhou, Shilei Cui et al. “Standardized measurement of dielectric materials’ intrinsic triboelectric charge density through the suppression of air breakdown”. En: Nature Communications 13.6019 (2022). doi: 10.1038/s41467-022-33766-z.
Z. L. Wang et al. “Triboelectric nanogenerators: Fundamental physics and potential applications”. En: Energy Environmental Science 5.8 (2012), pags. 9285-9293. doi: 10.1039/c2ee22656e.
Yonghai Li et al. “Recent Progress in Self-Powered Wireless Sensors and Systems Based on TENG”. En: Sensors 23.3 (2023), pag. 1329. doi:10.3390/s23031329. url: https://doi.org/10.3390/s23031329.
Fifth Dimension Technologies. 5DT Data Glove Ultra. 5DT. [Online]. Available: https://5dt.com/5dt-data-glove-ultra/. [Accessed: 30-May2024]. 2024.
Shutang Wang et al. “Stretchable and Wearable Triboelectric Nanogenerator Based on Kinesio Tape for Self-Powered Human Motion Sensing”. En: Nanomaterials 8.9 (2018). issn: 2079-4991. doi: 10.3390/nano8090657. url: https://www.mdpi.com/2079-4991/8/9/657.
Haixu Wang et al. “Bioinspired Engineering towards Tailoring Advanced Lignin/Rubber Elastomers”. En: Polymers 10 (sep. de 2018),pag. 1033. doi: 10.3390/polym10091033.
Smooth-On. Ecoflex Series Technical Bulletin. https://www.smoothon.com/tb/files/ECOFLEX_SERIES_TB.pdf. Accessed: 2024-11-14.
Jinhao Si et al. “Recent Progress Regarding Materials and Structures of Triboelectric Nanogenerators for AR and VR”. En: Nanomaterials 12.8 (2022), p´ ag. 1385. doi: 10.3390/nano12081385. url: https: //doi.org/10.3390/nano12081385.
Renyun Zhang y H˚ akan Olin. “Material choices for triboelectric nanogenerators: A critical review”. En: EcoMat 2.4 (2020), e12062. doi: 10.1002/eom2.12062.46
Jung-Hoon Noh. “Frequency-Response Analysis and Design Rules for Capacitive Feedback Transimpedance Amplifier”. En: IEEE Transactions on Instrumentation and Measurement 69.12 (2020), pags. 9408-9416. doi: 10.1109/TIM.2020.3006325.
Microchip Technology Inc. MCP6021/2/3/4 Data Sheet: 10 MHz, Low Power Op Amp. Accessed: 2024-11-07. Sep. de 2007. url: https:// ww1.microchip.com/downloads/en/DeviceDoc/20001685E.pdf.
Texas Instruments. ADS1113, ADS1114, ADS1115 Ultra-Small, Low Power, 16-Bit Analog-to-Digital Converter with Internal Reference Datasheet. Accessed: Sep. 19, 2024. 2022. url: https://www.ti.com/lit/ds/symlink/ads1115.pdf.
Ryan Walden et al. “Textile-Triboelectric nanogenerators (T-TENGs) for wearable energy harvesting devices”. En: Chemical Engineering Journal 451 (2023), pag. 138741. issn: 1385-8947. doi: https:// doi.org/10.1016/j.cej.2022.138741. url: https://www.sciencedirect.com/science/article/pii/S138589472204222X.
A. Nawaz, H.W. Choi, N. Sarwar et al. “Characterizing graphite-based pencil material for mechanical energy harvesting and sensing application”. En: Journal of Materials Science: Materials in Electronics 34 (2023), p´ag. 222. doi: 10.1007/s10854-022-09640-5. url: https: //doi.org/10.1007/s10854-022-09640-5.
Kai-Hong Ke, Lin Lin y Chen-Kuei Chung. “Low-cost micro-graphite doped polydimethylsiloxane composite film for enhancement of mechanical to-electrical energy conversion with aluminum and its application”. En: Journal of the Taiwan Institute of Chemical Engineers 135 (2022),pag. 104388. issn: 1876-1070. doi: https://doi.org/10.1016/ j.jtice.2022.104388. url: https://www.sciencedirect.com/science/article/pii/S1876107022001857
dc.rights.en.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial 4.0 International
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 49 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Ingeniería Electrónica
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.department.none.fl_str_mv Departamento de Ingeniería Eléctrica y Electrónica
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/be77d86d-3172-446a-a861-28ecbf2337d8/download
https://repositorio.uniandes.edu.co/bitstreams/1a295904-49af-40dd-bdea-1248ba347134/download
https://repositorio.uniandes.edu.co/bitstreams/bccd206a-4adf-4ec0-957e-99585cc0d488/download
https://repositorio.uniandes.edu.co/bitstreams/586f7269-69df-4617-98e9-80f4f1731c41/download
https://repositorio.uniandes.edu.co/bitstreams/5570a564-d8fb-4819-bf2a-059f89816eef/download
https://repositorio.uniandes.edu.co/bitstreams/6f466116-599c-4525-a7e6-675a22f1069d/download
https://repositorio.uniandes.edu.co/bitstreams/aaaf9509-9810-4df6-b699-cacf8609c87d/download
https://repositorio.uniandes.edu.co/bitstreams/595cdd8f-a328-4bad-b50e-3e5b8cc1beaf/download
bitstream.checksum.fl_str_mv 90dc90d2c7e26613cfd142476d9ccd46
69282a1e8741a1a7c5c81a4252b7834e
24013099e9e6abb1575dc6ce0855efd5
ae9e573a68e7f92501b6913cc846c39f
bd202288f7e6b06b7d03bacdb3ca1dd2
14de3d8034cdd8004eea8c1bf0eb7c49
fd5d9ea5c1183365f8f383b0cbc25ea3
2848bfe54fe4bd5ebf1d06db03607c3f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1831927678281711616
spelling Ávila Bernal, Alba Gracielavirtual::21963-1Ramirez Cepeda, Yaisa CatalinaSegura Quijano, Fredy Enrique2025-01-10T20:42:57Z2025-01-10T20:42:57Z2025-01-10https://hdl.handle.net/1992/75343instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Este estudio aborda el diseño, fabricación y evaluación de un dispositivo wearable (Tribosense) basado en nanogeneradores triboeléctricos (TENG) para medir niveles de presión en las yemas de los dedos y ángulos de flexión en la articulación PIP de la mano humana adulta. El proyecto comprende cuatro etapas clave: sensado, acondicionamiento, procesamiento y visualización en una interfaz móvil. En estas fases se demostró la viabilidad de sensores de bajo costo (menos de 0,5 USD), para detectar fuerzas entre 0 y 5 N, así como ángulos de flexión de 0° a 90°. Entre las configuraciones evaluadas, la combinación de silicona-PTFE destacó con variaciones de voltaje de hasta 1,4 V. Los sensores se integraron en un circuito de acondicionamiento montado en una PCB portátil ubicada en la muñeca del usuario. La información capturada se visualizó en una interfaz móvil con un desfase inferior a 0.5s, mostrando tanto las salidas de voltaje como su interpretación en estados de presión y flexión. Se identificaron oportunidades de mejora, particularmente en la optimización del diseño del guante para minimizar pérdidas de señal que dificultaron la detección de estados en los sensores de flexión. Los resultados incluyen la detección de estímulos reflejados en la interfaz móvil, lo que demuestra el potencial del dispositivo para aplicaciones en tecnología asistencial e interfaces humano-máquina.Pregrado49 páginasapplication/pdfspaUniversidad de los AndesIngeniería ElectrónicaFacultad de IngenieríaDepartamento de Ingeniería Eléctrica y ElectrónicaAttribution-NonCommercial 4.0 Internationalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Desarrollo de un dispositivo wearable para la mano con sensores triboeléctricosTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPDispositivo wearableFlexiónInterfazPTFESensor TENGSiliconaTactoIngenieríaXianjie Pu et al. “Wearable Triboelectric Sensors for Biomedical Monitoring and Human-Machine Interface”. En: iScience 24.1 (2021), pag. 102027. doi:10.1016/j.isci.2020.102027. url: https://doi.org/10.1016/j.isci.2020.102027.Yang Luo et al. “Triboelectric bending sensor based smart glove towards intuitive multi-dimensional human-machine interfaces”. En: NanoEnergy 89 (2021), pag. 106330. issn: 2211-2855. doi: https://doi.org/10.1016/j.nanoen.2021.106330. url: https://www.sciencedirect.com/science/article/pii/S2211285521005851.Manuel Caeiro-Rodr´ıguez et al. “A Systematic Review of Commercial Smart Gloves: Current Status and Applications”. En: Sensors 21.8(2021). issn: 1424-8220. doi: 10.3390/s21082667. url: https://www.mdpi.com/1424-8220/21/8/2667.Ruiyang Yin et al. “Wearable Sensors-Enabled Human–Machine Interaction Systems: From Design to Application”. En: Advanced Functional Materials 31.11 (2021), pag. 2008936. doi: https://doiorg.ezproxy.uniandes.edu.co/10.1002/adfm.202008936. eprint: https://onlinelibrary-wiley-com.ezproxy.uniandes.edu.co/ doi/pdf/10.1002/adfm.202008936. url: https://onlinelibrarywiley-com.ezproxy.uniandes.edu.co/doi/abs/10.1002/adfm.202008936.Nathan W Moon, Paul MA Baker y Kenneth Goughnour. “Designing wearable technologies for users with disabilities: Accessibility, usability, and connectivity factors”. En: Journal of Rehabilitation and Assistive Technologies Engineering 6 (2019). PMID: 35186318, p´ ag. 2055668319862137. doi: 10.1177/2055668319862137. eprint: https://doi.org/10.1177/2055668319862137. url: https://doi.org/10.1177/2055668319862137.Xiong Pu, Chi Zhang y Zhong Lin Wang. “Triboelectric nanogenerators as wearable power sources and self-powered sensors”. En: National Science Review 10.1 (ago. de 2022), nwac170. issn: 2095-5138. doi:4410.1093/nsr/nwac170. eprint: https://academic.oup.com/nsr/article-pdf/10/1/nwac170/48728046/nwac170.pdf. url: https: //doi.org/10.1093/nsr/nwac170.Manuel Caeiro-Rodriguez et al. “A Systematic Review of Commercial Smart Gloves: Current Status and Applications”. En: Sensors 21.8(2021). issn: 1424-8220. doi: 10.3390/s21082667. url: https:// www.mdpi.com/1424-8220/21/8/2667F. Wen, Z. Zhang, T. He et al. “AI enabled sign language recognition and VR space bidirectional communication using triboelectric smart glove”. En: Nature Communications 12.5378 (2021). doi: 10.1038/ s41467-021-25637-w. url: https://doi.org/10.1038/s41467021-25637-w.Jeong Ho Kim et al. “Differences in typing forces, muscle activity, comfort, and typing performance among virtual, notebook, and desktop keyboards”. En: Applied Ergonomics 45.6 (2014), p´ags. 1406-1413. issn: 0003-6870. doi: https://doi.org/10.1016/j.apergo.2014. 04.001. url: https://www.sciencedirect.com/science/article/pii/S000368701400043X.J. N. Leijnse, P. M. Quesada y C. W. Spoor. “Kinematic evaluation of the finger’s interphalangeal joints coupling mechanism–variability, flexion-extension differences, triggers, locking swanneck deformities, anthropometric correlations”. En: Journal of Biomechanics 43.12 (2010), pags. 2381-2393. doi: 10.1016/j.jbiomech.2010.04.021. url: https://doi.org/10.1016/j.jbiomech.2010.04.021.Deanna S. Asakawa et al. “Fingertip forces and completion time for index finger and thumb touchscreen gestures”. En: Journal of Electromyography and Kinesiology 34 (2017), p´ ags. 6-13. issn: 1050-6411. doi: https://doi.org/10.1016/j.jelekin.2017.02.007. url:https://www.sciencedirect.com/science/article/pii/S1050641116301225.Zhong Lin Wang. “Triboelectric nanogenerators as new energy technology and self-powered sensors– Principles, problems and perspectives”. En: Faraday Discuss. 176 (0 2014), p´ ags. 447-458. doi: 10.1039/ C4FD00159A. url: http://dx.doi.org/10.1039/C4FD00159A.R.L. Bulathsinghala, W. Ding y R.D.I.G. Dharmasena. “Triboelectric nanogenerators for wearable sensing applications: A system level analysis”. En: Nano Energy 116 (2023), p´ ag. 108792. issn: 22112855. doi: https://doi.org/10.1016/j.nanoen.2023.108792. 45url: https://www.sciencedirect.com/science/article/pii/S2211285523006298Z. Zhang, T. He, M. Zhu et al. “Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications”. En: npj Flexible Electronics 4 (2020), p´ag. 29. doi: 10.1038/s41528-02000092-7. url: https://doi.org/10.1038/s41528-020-00092-7.Gaurav Khandelwal, Nirmal Prashanth Maria Joseph Raj y Sang-Jae Kim. “Materials Beyond Conventional Triboelectric Series for Fabrication and Applications of Triboelectric Nanogenerators”. En: Advanced Energy Materials 11.21 (2021), pag. 2101170.Dong Liu, Linlin Zhou, Shilei Cui et al. “Standardized measurement of dielectric materials’ intrinsic triboelectric charge density through the suppression of air breakdown”. En: Nature Communications 13.6019 (2022). doi: 10.1038/s41467-022-33766-z.Z. L. Wang et al. “Triboelectric nanogenerators: Fundamental physics and potential applications”. En: Energy Environmental Science 5.8 (2012), pags. 9285-9293. doi: 10.1039/c2ee22656e.Yonghai Li et al. “Recent Progress in Self-Powered Wireless Sensors and Systems Based on TENG”. En: Sensors 23.3 (2023), pag. 1329. doi:10.3390/s23031329. url: https://doi.org/10.3390/s23031329.Fifth Dimension Technologies. 5DT Data Glove Ultra. 5DT. [Online]. Available: https://5dt.com/5dt-data-glove-ultra/. [Accessed: 30-May2024]. 2024.Shutang Wang et al. “Stretchable and Wearable Triboelectric Nanogenerator Based on Kinesio Tape for Self-Powered Human Motion Sensing”. En: Nanomaterials 8.9 (2018). issn: 2079-4991. doi: 10.3390/nano8090657. url: https://www.mdpi.com/2079-4991/8/9/657.Haixu Wang et al. “Bioinspired Engineering towards Tailoring Advanced Lignin/Rubber Elastomers”. En: Polymers 10 (sep. de 2018),pag. 1033. doi: 10.3390/polym10091033.Smooth-On. Ecoflex Series Technical Bulletin. https://www.smoothon.com/tb/files/ECOFLEX_SERIES_TB.pdf. Accessed: 2024-11-14.Jinhao Si et al. “Recent Progress Regarding Materials and Structures of Triboelectric Nanogenerators for AR and VR”. En: Nanomaterials 12.8 (2022), p´ ag. 1385. doi: 10.3390/nano12081385. url: https: //doi.org/10.3390/nano12081385.Renyun Zhang y H˚ akan Olin. “Material choices for triboelectric nanogenerators: A critical review”. En: EcoMat 2.4 (2020), e12062. doi: 10.1002/eom2.12062.46Jung-Hoon Noh. “Frequency-Response Analysis and Design Rules for Capacitive Feedback Transimpedance Amplifier”. En: IEEE Transactions on Instrumentation and Measurement 69.12 (2020), pags. 9408-9416. doi: 10.1109/TIM.2020.3006325.Microchip Technology Inc. MCP6021/2/3/4 Data Sheet: 10 MHz, Low Power Op Amp. Accessed: 2024-11-07. Sep. de 2007. url: https:// ww1.microchip.com/downloads/en/DeviceDoc/20001685E.pdf.Texas Instruments. ADS1113, ADS1114, ADS1115 Ultra-Small, Low Power, 16-Bit Analog-to-Digital Converter with Internal Reference Datasheet. Accessed: Sep. 19, 2024. 2022. url: https://www.ti.com/lit/ds/symlink/ads1115.pdf.Ryan Walden et al. “Textile-Triboelectric nanogenerators (T-TENGs) for wearable energy harvesting devices”. En: Chemical Engineering Journal 451 (2023), pag. 138741. issn: 1385-8947. doi: https:// doi.org/10.1016/j.cej.2022.138741. url: https://www.sciencedirect.com/science/article/pii/S138589472204222X.A. Nawaz, H.W. Choi, N. Sarwar et al. “Characterizing graphite-based pencil material for mechanical energy harvesting and sensing application”. En: Journal of Materials Science: Materials in Electronics 34 (2023), p´ag. 222. doi: 10.1007/s10854-022-09640-5. url: https: //doi.org/10.1007/s10854-022-09640-5.Kai-Hong Ke, Lin Lin y Chen-Kuei Chung. “Low-cost micro-graphite doped polydimethylsiloxane composite film for enhancement of mechanical to-electrical energy conversion with aluminum and its application”. En: Journal of the Taiwan Institute of Chemical Engineers 135 (2022),pag. 104388. issn: 1876-1070. doi: https://doi.org/10.1016/ j.jtice.2022.104388. url: https://www.sciencedirect.com/science/article/pii/S1876107022001857202021914Publicationhttps://scholar.google.es/citations?user=129kehEAAAAJvirtual::21963-1https://scholar.google.es/citations?user=xw2k1CIAAAAJ0000-0003-1241-2080virtual::21963-10000-0001-7757-1432https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000291455virtual::21963-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00000514972c797848-319e-4e41-bff1-22879e5086d1virtual::21963-12c797848-319e-4e41-bff1-22879e5086d1virtual::21963-17684cb09-6991-4ac4-aff9-b29fe065439fORIGINALautorizacion tesisAA.pdfautorizacion tesisAA.pdfHIDEapplication/pdf273476https://repositorio.uniandes.edu.co/bitstreams/be77d86d-3172-446a-a861-28ecbf2337d8/download90dc90d2c7e26613cfd142476d9ccd46MD51Desarrollo de un dispositivo wearable para la mano con sensores triboeléctricos.pdfDesarrollo de un dispositivo wearable para la mano con sensores triboeléctricos.pdfapplication/pdf7882504https://repositorio.uniandes.edu.co/bitstreams/1a295904-49af-40dd-bdea-1248ba347134/download69282a1e8741a1a7c5c81a4252b7834eMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniandes.edu.co/bitstreams/bccd206a-4adf-4ec0-957e-99585cc0d488/download24013099e9e6abb1575dc6ce0855efd5MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/586f7269-69df-4617-98e9-80f4f1731c41/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTautorizacion tesisAA.pdf.txtautorizacion tesisAA.pdf.txtExtracted texttext/plain2036https://repositorio.uniandes.edu.co/bitstreams/5570a564-d8fb-4819-bf2a-059f89816eef/downloadbd202288f7e6b06b7d03bacdb3ca1dd2MD55Desarrollo de un dispositivo wearable para la mano con sensores triboeléctricos.pdf.txtDesarrollo de un dispositivo wearable para la mano con sensores triboeléctricos.pdf.txtExtracted texttext/plain91312https://repositorio.uniandes.edu.co/bitstreams/6f466116-599c-4525-a7e6-675a22f1069d/download14de3d8034cdd8004eea8c1bf0eb7c49MD57THUMBNAILautorizacion tesisAA.pdf.jpgautorizacion tesisAA.pdf.jpgGenerated Thumbnailimage/jpeg10841https://repositorio.uniandes.edu.co/bitstreams/aaaf9509-9810-4df6-b699-cacf8609c87d/downloadfd5d9ea5c1183365f8f383b0cbc25ea3MD56Desarrollo de un dispositivo wearable para la mano con sensores triboeléctricos.pdf.jpgDesarrollo de un dispositivo wearable para la mano con sensores triboeléctricos.pdf.jpgGenerated Thumbnailimage/jpeg5481https://repositorio.uniandes.edu.co/bitstreams/595cdd8f-a328-4bad-b50e-3e5b8cc1beaf/download2848bfe54fe4bd5ebf1d06db03607c3fMD581992/75343oai:repositorio.uniandes.edu.co:1992/753432025-01-12 03:04:55.262http://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K