Chemical synthesis and characterization of silver nanorods with various protecting agents and their antimicrobial properties against gram positive and negative bacteria
Silver nanorod suspensions were synthesized by a simple chemical soft template method. This same synthesis procedure was then modified to include a change in the protecting agent from CTAB to l-cysteine and 4-aminotiophenol. The prepared nanorods qualitatively displayed differing morphologies and si...
- Autores:
-
Ardila Fernández, Santiago Andrés
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/73759
- Acceso en línea:
- https://hdl.handle.net/1992/73759
- Palabra clave:
- Nanobarras de plata
Agente protector
L-cisteína
4-aminotiofenol
Actividad antimicrobiana
Química
- Rights
- openAccess
- License
- Attribution 4.0 International
id |
UNIANDES2_5ab7a62b98d6bff5ee736154c64bc594 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/73759 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Chemical synthesis and characterization of silver nanorods with various protecting agents and their antimicrobial properties against gram positive and negative bacteria |
dc.title.alternative.eng.fl_str_mv |
Síntesis química y caracterización de nanobarras de plata con diversos agentes protectores y sus propiedades antimicrobianas contra bacterias gram positivo y negativo |
title |
Chemical synthesis and characterization of silver nanorods with various protecting agents and their antimicrobial properties against gram positive and negative bacteria |
spellingShingle |
Chemical synthesis and characterization of silver nanorods with various protecting agents and their antimicrobial properties against gram positive and negative bacteria Nanobarras de plata Agente protector L-cisteína 4-aminotiofenol Actividad antimicrobiana Química |
title_short |
Chemical synthesis and characterization of silver nanorods with various protecting agents and their antimicrobial properties against gram positive and negative bacteria |
title_full |
Chemical synthesis and characterization of silver nanorods with various protecting agents and their antimicrobial properties against gram positive and negative bacteria |
title_fullStr |
Chemical synthesis and characterization of silver nanorods with various protecting agents and their antimicrobial properties against gram positive and negative bacteria |
title_full_unstemmed |
Chemical synthesis and characterization of silver nanorods with various protecting agents and their antimicrobial properties against gram positive and negative bacteria |
title_sort |
Chemical synthesis and characterization of silver nanorods with various protecting agents and their antimicrobial properties against gram positive and negative bacteria |
dc.creator.fl_str_mv |
Ardila Fernández, Santiago Andrés |
dc.contributor.advisor.none.fl_str_mv |
Reiber, Andreas |
dc.contributor.author.none.fl_str_mv |
Ardila Fernández, Santiago Andrés |
dc.contributor.jury.none.fl_str_mv |
Hurtado Belalcazar, John Jady Cortés Montañez, María Teresa Macías López, Mario Alberto |
dc.contributor.researchgroup.none.fl_str_mv |
Facultad de Ciencias::La Química de la Interfase Inorganica-Organica (Quinorg) |
dc.subject.keyword.spa.fl_str_mv |
Nanobarras de plata Agente protector L-cisteína 4-aminotiofenol Actividad antimicrobiana |
topic |
Nanobarras de plata Agente protector L-cisteína 4-aminotiofenol Actividad antimicrobiana Química |
dc.subject.themes.spa.fl_str_mv |
Química |
description |
Silver nanorod suspensions were synthesized by a simple chemical soft template method. This same synthesis procedure was then modified to include a change in the protecting agent from CTAB to l-cysteine and 4-aminotiophenol. The prepared nanorods qualitatively displayed differing morphologies and sizes according to UV-Visible electronic absorption spectra and the colors of the dispersions. The effects of Ostwald ripening were evaluated on one of the nanorod suspensions so as to explain the formation of nanorods and a gradient in morphology and size for a specific temperaturas. Finally, a disk-diffusion test was performed to evaluate the antimicrobial activity of these silver nanorod dispersions. It was found that the amount of seed solution added to the growth solution in which the nanorods are synthesized greatly affects the morphology and size of these. The change in protecting agent was confirmed via UV-Vis spectroscopy. The antimicrobial assays afforded a huge activity (24.71-52.86%) for all dispersions in comparison with a positive gentamicin control at a concentration 4180x higher. The largest activity was found in the l-cysteine protected rod dispersion. |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-06-05 |
dc.date.accessioned.none.fl_str_mv |
2024-02-01T16:36:10Z |
dc.date.available.none.fl_str_mv |
2024-02-01T16:36:10Z |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/73759 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/73759 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
Ravindran, A.; Chandran, P.; Khan, S. S. Biofunctionalized Silver Nanoparticles:Advances and Prospects.Colloids and Surfaces B: Biointerfaces 2013, 105, 342–352. https://doi.org/10.1016/j.colsurfb.2012.07.036. Abou El-Nour, K. M. M.; Eftaiha, A.; Al-Warthan, A.; Ammar, R. A. A. Synthesis and Applications of Silver Nanoparticles. Arabian Journal of Chemistry 2010, 3 (3), 35–140. https://doi.org/10.1016/j.arabjc.2010.04.008. Das, R.; Nath, S. S.; Chakdar, D.; Gope, G.; Bhattacharjee, R. Synthesis of Silver Nanoparticles and Their Optical Properties. Journal of Experimental Nanoscience 2010, 5 (4), 357–362. https://doi.org/10.1080/17458080903583915. Shenashen, M. A.; El-Safty, S. A.; Elshehy, E. A. Synthesis, Morphological Control, and Properties of Silver Nanoparticles in Potential Applications. Part. Part. Syst. Charact. 2014, 31 (3), 293–316. https://doi.org/10.1002/ppsc.201300181. Hu, J.-Q.; Chen, Q.; Xie, Z.-X.; Han, G.-B.; Wang, R.-H.; Ren, B.; Zhang, Y.; Yang, Z.-L.; Tian, Z.-Q. A Simple and Effective Route for the Synthesis of Crystalline Silver Nanorods and Nanowires. Adv. Funct. Mater. 2004, 14 (2), 183–189. https://doi.org/10.1002/adfm.200304421. Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Gold Nanorods: Synthesis, Characterization and Applications. Coordination chemistry reviews 2005, 249 (17–18), 1870–1901. Nicoletti, O.; Wubs, M.; Mortensen, N. A.; Sigle, W.; Van Aken, P. A.; Midgley, P. A. Surface Plasmon Modes of a Single Silver Nanorod: An Electron Energy Loss Study. Optics Express 2011, 19 (16), 15371–15379. (8) Zhuo, X.; Henriksen-Lacey, M.; Jimenez de Aberasturi, D.; Sánchez-Iglesias, A.; Liz-Marzán, L. M. Shielded Silver Nanorods for Bioapplications. Chem. Mater. 2020, 32 (13), 5879–5889. https://doi.org/10.1021/acs.chemmater.0c01995. Ojha, A. K.; Forster, S.; Kumar, S.; Vats, S.; Negi, S.; Fischer, I. Synthesis of Well– Dispersed Silver Nanorods of Different Aspect Ratios and Their Antimicrobial Properties against Gram Positive and Negative Bacterial Strains. J Nanobiotechnol 2013, 11 (1), 42. https://doi.org/10.1186/1477-3155-11-42. Iftekhar Hossain, Md.; Edwards, J.; Tyler, J.; Anderson, J.; Bandyopadhyay, S. Antimicrobial Properties of Nanorods: Killing Bacteria via Impalement. IET nanobiotechnol. 2017, 11 (5), 501–505. https://doi.org/10.1049/iet-nbt.2016.0129. Rekha, C. R.; Nayar, V. U.; Gopchandran, K. G. Synthesis of Highly Stable Silver Nanorods and Their Application as SERS Substrates. Journal of Science: Advanced Materials and Devices 2018, 3 (2), 196–205. https://doi.org/10.1016/j.jsamd.2018.03.003. Jana, N. R.; Gearheart, L.; Murphy, C. J. Wet Chemical Synthesis of Silver Nanorods and Nanowires of Controllable Aspect Ratio. Chem. Commun. 2001, No. 7, 617–618. https://doi.org/10.1039/b100521i. Miranda, O. R.; Dollahon, N. R.; Ahmadi, T. S. Critical Concentrations and Role of Ascorbic Acid (Vitamin C) in the Crystallization of Gold Nanorods within hexadecyltrimethyl Ammonium Bromide (CTAB)/Tetraoctyl Ammonium Bromide (TOAB) Micelles. Crystal Growth & Design 2006 6 (12), 2747-2753. https://doi.org/10.1021/cg060455l. Zou, R.; Zhang, Q.; Zhao, Q.; Peng, F.; Wang, H.; Yu, H.; Yang, J. Thermal Stability of Gold Nanorods in an Aqueous Solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010, 372 (1–3), 177–181. https://doi.org/10.1016/j.colsurfa.2010.10.012. Tebbe, M.; Kuttner, C.; Männel, M.; Fery, A.; Chanana, M. Colloidally Stable and Surfactant-Free Protein-Coated Gold Nanorods in Biological Media. ACS Appl. Mater. Interfaces 2015, 7 (10), 5984–5991. https://doi.org/10.1021/acsami.5b00335. |
dc.rights.en.fl_str_mv |
Attribution 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
14 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Química |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Química |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/ef6603c4-1f1b-42d9-b89e-789fa19f46a5/download https://repositorio.uniandes.edu.co/bitstreams/48101a0e-67e2-4e35-95fc-ee972ee070f0/download https://repositorio.uniandes.edu.co/bitstreams/4ffb69b6-120e-4cd8-8af8-ae21d416a10c/download https://repositorio.uniandes.edu.co/bitstreams/91471802-addd-4404-a4b9-47e5ad048705/download https://repositorio.uniandes.edu.co/bitstreams/e2ed8203-dd15-4064-96ea-ec2edaca8d44/download https://repositorio.uniandes.edu.co/bitstreams/e6701503-87ea-4925-a56a-2fb4102077fa/download https://repositorio.uniandes.edu.co/bitstreams/ede0407b-2fb1-4045-84e8-a613fb484651/download https://repositorio.uniandes.edu.co/bitstreams/bf06c952-dc06-4117-83b8-8f8d0857a5cc/download |
bitstream.checksum.fl_str_mv |
0175ea4a2d4caec4bbcc37e300941108 ae9e573a68e7f92501b6913cc846c39f 9f77ae698cf3fd1077bfb553b8ded42b 35b33bfb903ead1986989e0491e40075 fc5c06ee211f3678eba9008a68812258 e1c06d85ae7b8b032bef47e42e4c08f9 b178cacd36600d707faadc7363cb4733 536f59de6cbc840f4bccc9f3ea2acf4e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133889177550848 |
spelling |
Reiber, Andreasvirtual::89-1Ardila Fernández, Santiago AndrésHurtado Belalcazar, John Jadyvirtual::90-1Cortés Montañez, María Teresavirtual::91-1Macías López, Mario Albertovirtual::92-1Facultad de Ciencias::La Química de la Interfase Inorganica-Organica (Quinorg)2024-02-01T16:36:10Z2024-02-01T16:36:10Z2023-06-05https://hdl.handle.net/1992/73759instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Silver nanorod suspensions were synthesized by a simple chemical soft template method. This same synthesis procedure was then modified to include a change in the protecting agent from CTAB to l-cysteine and 4-aminotiophenol. The prepared nanorods qualitatively displayed differing morphologies and sizes according to UV-Visible electronic absorption spectra and the colors of the dispersions. The effects of Ostwald ripening were evaluated on one of the nanorod suspensions so as to explain the formation of nanorods and a gradient in morphology and size for a specific temperaturas. Finally, a disk-diffusion test was performed to evaluate the antimicrobial activity of these silver nanorod dispersions. It was found that the amount of seed solution added to the growth solution in which the nanorods are synthesized greatly affects the morphology and size of these. The change in protecting agent was confirmed via UV-Vis spectroscopy. The antimicrobial assays afforded a huge activity (24.71-52.86%) for all dispersions in comparison with a positive gentamicin control at a concentration 4180x higher. The largest activity was found in the l-cysteine protected rod dispersion.Se sintetizaron suspensiones de nanobarras de plata por un método de molde suave simple. Este mismo método de síntesis se modificó para incluir un cambio en el agente protector de bromuro de hexadeciltrimetilamonio (CTAB) a L-cisteína y 4-aminotiofenol. Las nanobarras preparadas presentaron diferentes morfologías y tamaños según resultados de espectroscopía de absorción UVVisible y los colores presentados por las dispersiones. Se evaluaron los efectos de la maduración de Ostwald en una de las suspensiones de nanobarras para explicar su formación y su gradiente de morfología y tamaño a temperaturas específicas. Finalmente, se llevaron a cabo pruebas de difusión en disco (Kirby-Bauer) para evaluar la actividad antimicrobiana de las dispersiones de nanobarras de plata. Se encontró que: la cantidad de solución semilla adicionada a la solución de crecimiento en que se sintetizan las nanobarras afecta su morfología y tamaño. El cambio de agente protector se confirmó por medio de espectroscopía de absorción UV-Visible. Los ensayos de propiedad antimicrobiana proporcionaron una alta actividad (24.71%-52.86%) para todas las dispersiones en contraste con un control positivo de gentamicina en concentraciones 4180 veces mayores. La actividad más significativa fue encontrada en la dispersión de barras protegidas con L-cisteína.QuímicoPregradoNanomateriales14 páginasapplication/pdfengUniversidad de los AndesQuímicaFacultad de CienciasDepartamento de QuímicaAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Chemical synthesis and characterization of silver nanorods with various protecting agents and their antimicrobial properties against gram positive and negative bacteriaSíntesis química y caracterización de nanobarras de plata con diversos agentes protectores y sus propiedades antimicrobianas contra bacterias gram positivo y negativoTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPNanobarras de plataAgente protectorL-cisteína4-aminotiofenolActividad antimicrobianaQuímicaRavindran, A.; Chandran, P.; Khan, S. S. Biofunctionalized Silver Nanoparticles:Advances and Prospects.Colloids and Surfaces B: Biointerfaces 2013, 105, 342–352. https://doi.org/10.1016/j.colsurfb.2012.07.036.Abou El-Nour, K. M. M.; Eftaiha, A.; Al-Warthan, A.; Ammar, R. A. A. Synthesis and Applications of Silver Nanoparticles. Arabian Journal of Chemistry 2010, 3 (3), 35–140. https://doi.org/10.1016/j.arabjc.2010.04.008.Das, R.; Nath, S. S.; Chakdar, D.; Gope, G.; Bhattacharjee, R. Synthesis of Silver Nanoparticles and Their Optical Properties. Journal of Experimental Nanoscience 2010, 5 (4), 357–362. https://doi.org/10.1080/17458080903583915.Shenashen, M. A.; El-Safty, S. A.; Elshehy, E. A. Synthesis, Morphological Control, and Properties of Silver Nanoparticles in Potential Applications. Part. Part. Syst. Charact. 2014, 31 (3), 293–316. https://doi.org/10.1002/ppsc.201300181.Hu, J.-Q.; Chen, Q.; Xie, Z.-X.; Han, G.-B.; Wang, R.-H.; Ren, B.; Zhang, Y.; Yang, Z.-L.; Tian, Z.-Q. A Simple and Effective Route for the Synthesis of Crystalline Silver Nanorods and Nanowires. Adv. Funct. Mater. 2004, 14 (2), 183–189. https://doi.org/10.1002/adfm.200304421.Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Gold Nanorods: Synthesis, Characterization and Applications. Coordination chemistry reviews 2005, 249 (17–18), 1870–1901.Nicoletti, O.; Wubs, M.; Mortensen, N. A.; Sigle, W.; Van Aken, P. A.; Midgley, P. A. Surface Plasmon Modes of a Single Silver Nanorod: An Electron Energy Loss Study. Optics Express 2011, 19 (16), 15371–15379. (8) Zhuo, X.; Henriksen-Lacey, M.; Jimenez de Aberasturi, D.; Sánchez-Iglesias, A.; Liz-Marzán, L. M. Shielded Silver Nanorods for Bioapplications. Chem. Mater. 2020, 32 (13), 5879–5889. https://doi.org/10.1021/acs.chemmater.0c01995.Ojha, A. K.; Forster, S.; Kumar, S.; Vats, S.; Negi, S.; Fischer, I. Synthesis of Well– Dispersed Silver Nanorods of Different Aspect Ratios and Their Antimicrobial Properties against Gram Positive and Negative Bacterial Strains. J Nanobiotechnol 2013, 11 (1), 42. https://doi.org/10.1186/1477-3155-11-42.Iftekhar Hossain, Md.; Edwards, J.; Tyler, J.; Anderson, J.; Bandyopadhyay, S. Antimicrobial Properties of Nanorods: Killing Bacteria via Impalement. IET nanobiotechnol. 2017, 11 (5), 501–505. https://doi.org/10.1049/iet-nbt.2016.0129.Rekha, C. R.; Nayar, V. U.; Gopchandran, K. G. Synthesis of Highly Stable Silver Nanorods and Their Application as SERS Substrates. Journal of Science: Advanced Materials and Devices 2018, 3 (2), 196–205. https://doi.org/10.1016/j.jsamd.2018.03.003.Jana, N. R.; Gearheart, L.; Murphy, C. J. Wet Chemical Synthesis of Silver Nanorods and Nanowires of Controllable Aspect Ratio. Chem. Commun. 2001, No. 7, 617–618. https://doi.org/10.1039/b100521i.Miranda, O. R.; Dollahon, N. R.; Ahmadi, T. S. Critical Concentrations and Role of Ascorbic Acid (Vitamin C) in the Crystallization of Gold Nanorods within hexadecyltrimethyl Ammonium Bromide (CTAB)/Tetraoctyl Ammonium Bromide (TOAB) Micelles. Crystal Growth & Design 2006 6 (12), 2747-2753. https://doi.org/10.1021/cg060455l.Zou, R.; Zhang, Q.; Zhao, Q.; Peng, F.; Wang, H.; Yu, H.; Yang, J. Thermal Stability of Gold Nanorods in an Aqueous Solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010, 372 (1–3), 177–181. https://doi.org/10.1016/j.colsurfa.2010.10.012.Tebbe, M.; Kuttner, C.; Männel, M.; Fery, A.; Chanana, M. Colloidally Stable and Surfactant-Free Protein-Coated Gold Nanorods in Biological Media. ACS Appl. Mater. Interfaces 2015, 7 (10), 5984–5991. https://doi.org/10.1021/acsami.5b00335.201819723Publicationhttps://scholar.google.es/citations?user=jXtWpzEAAAAJvirtual::90-1https://scholar.google.es/citations?user=rvM48UEAAAAJvirtual::91-1https://scholar.google.es/citations?user=WVqdEMkAAAAJvirtual::92-10000-0002-0511-9719virtual::90-10000-0002-7475-2083virtual::91-10000-0003-2749-8489virtual::92-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000568201virtual::89-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001192175virtual::90-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000281204virtual::91-17e1de7b1-7670-4e86-81ca-90331b57ff5evirtual::89-17e1de7b1-7670-4e86-81ca-90331b57ff5evirtual::89-1047f74b0-09ef-4525-a0a8-b17aaa7ac91evirtual::90-1113fd683-fc5b-4ead-8736-82763a221532virtual::91-17cbde288-913a-4810-b1d1-0c5784a4bfa5virtual::92-1047f74b0-09ef-4525-a0a8-b17aaa7ac91evirtual::90-1113fd683-fc5b-4ead-8736-82763a221532virtual::91-17cbde288-913a-4810-b1d1-0c5784a4bfa5virtual::92-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/ef6603c4-1f1b-42d9-b89e-789fa19f46a5/download0175ea4a2d4caec4bbcc37e300941108MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/48101a0e-67e2-4e35-95fc-ee972ee070f0/downloadae9e573a68e7f92501b6913cc846c39fMD52ORIGINALChemical synthesis and characterization of silver nanorods with various protecting agents and their antimicrobial properties against gram positive and negative bacteria.pdfChemical synthesis and characterization of silver nanorods with various protecting agents and their antimicrobial properties against gram positive and negative bacteria.pdfapplication/pdf617770https://repositorio.uniandes.edu.co/bitstreams/4ffb69b6-120e-4cd8-8af8-ae21d416a10c/download9f77ae698cf3fd1077bfb553b8ded42bMD53Formato Autorizacion.pdfFormato Autorizacion.pdfHIDEapplication/pdf1031742https://repositorio.uniandes.edu.co/bitstreams/91471802-addd-4404-a4b9-47e5ad048705/download35b33bfb903ead1986989e0491e40075MD54TEXTChemical synthesis and characterization of silver nanorods with various protecting agents and their antimicrobial properties against gram positive and negative bacteria.pdf.txtChemical synthesis and characterization of silver nanorods with various protecting agents and their antimicrobial properties against gram positive and negative bacteria.pdf.txtExtracted texttext/plain18852https://repositorio.uniandes.edu.co/bitstreams/e2ed8203-dd15-4064-96ea-ec2edaca8d44/downloadfc5c06ee211f3678eba9008a68812258MD55Formato Autorizacion.pdf.txtFormato Autorizacion.pdf.txtExtracted texttext/plain2https://repositorio.uniandes.edu.co/bitstreams/e6701503-87ea-4925-a56a-2fb4102077fa/downloade1c06d85ae7b8b032bef47e42e4c08f9MD57THUMBNAILChemical synthesis and characterization of silver nanorods with various protecting agents and their antimicrobial properties against gram positive and negative bacteria.pdf.jpgChemical synthesis and characterization of silver nanorods with various protecting agents and their antimicrobial properties against gram positive and negative bacteria.pdf.jpgGenerated Thumbnailimage/jpeg5672https://repositorio.uniandes.edu.co/bitstreams/ede0407b-2fb1-4045-84e8-a613fb484651/downloadb178cacd36600d707faadc7363cb4733MD56Formato Autorizacion.pdf.jpgFormato Autorizacion.pdf.jpgGenerated Thumbnailimage/jpeg10530https://repositorio.uniandes.edu.co/bitstreams/bf06c952-dc06-4117-83b8-8f8d0857a5cc/download536f59de6cbc840f4bccc9f3ea2acf4eMD581992/73759oai:repositorio.uniandes.edu.co:1992/737592024-02-16 14:49:36.367http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |