Chemical synthesis and characterization of silver nanorods with various protecting agents and their antimicrobial properties against gram positive and negative bacteria

Silver nanorod suspensions were synthesized by a simple chemical soft template method. This same synthesis procedure was then modified to include a change in the protecting agent from CTAB to l-cysteine and 4-aminotiophenol. The prepared nanorods qualitatively displayed differing morphologies and si...

Full description

Autores:
Ardila Fernández, Santiago Andrés
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/73759
Acceso en línea:
https://hdl.handle.net/1992/73759
Palabra clave:
Nanobarras de plata
Agente protector
L-cisteína
4-aminotiofenol
Actividad antimicrobiana
Química
Rights
openAccess
License
Attribution 4.0 International
id UNIANDES2_5ab7a62b98d6bff5ee736154c64bc594
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/73759
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.spa.fl_str_mv Chemical synthesis and characterization of silver nanorods with various protecting agents and their antimicrobial properties against gram positive and negative bacteria
dc.title.alternative.eng.fl_str_mv Síntesis química y caracterización de nanobarras de plata con diversos agentes protectores y sus propiedades antimicrobianas contra bacterias gram positivo y negativo
title Chemical synthesis and characterization of silver nanorods with various protecting agents and their antimicrobial properties against gram positive and negative bacteria
spellingShingle Chemical synthesis and characterization of silver nanorods with various protecting agents and their antimicrobial properties against gram positive and negative bacteria
Nanobarras de plata
Agente protector
L-cisteína
4-aminotiofenol
Actividad antimicrobiana
Química
title_short Chemical synthesis and characterization of silver nanorods with various protecting agents and their antimicrobial properties against gram positive and negative bacteria
title_full Chemical synthesis and characterization of silver nanorods with various protecting agents and their antimicrobial properties against gram positive and negative bacteria
title_fullStr Chemical synthesis and characterization of silver nanorods with various protecting agents and their antimicrobial properties against gram positive and negative bacteria
title_full_unstemmed Chemical synthesis and characterization of silver nanorods with various protecting agents and their antimicrobial properties against gram positive and negative bacteria
title_sort Chemical synthesis and characterization of silver nanorods with various protecting agents and their antimicrobial properties against gram positive and negative bacteria
dc.creator.fl_str_mv Ardila Fernández, Santiago Andrés
dc.contributor.advisor.none.fl_str_mv Reiber, Andreas
dc.contributor.author.none.fl_str_mv Ardila Fernández, Santiago Andrés
dc.contributor.jury.none.fl_str_mv Hurtado Belalcazar, John Jady
Cortés Montañez, María Teresa
Macías López, Mario Alberto
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ciencias::La Química de la Interfase Inorganica-Organica (Quinorg)
dc.subject.keyword.spa.fl_str_mv Nanobarras de plata
Agente protector
L-cisteína
4-aminotiofenol
Actividad antimicrobiana
topic Nanobarras de plata
Agente protector
L-cisteína
4-aminotiofenol
Actividad antimicrobiana
Química
dc.subject.themes.spa.fl_str_mv Química
description Silver nanorod suspensions were synthesized by a simple chemical soft template method. This same synthesis procedure was then modified to include a change in the protecting agent from CTAB to l-cysteine and 4-aminotiophenol. The prepared nanorods qualitatively displayed differing morphologies and sizes according to UV-Visible electronic absorption spectra and the colors of the dispersions. The effects of Ostwald ripening were evaluated on one of the nanorod suspensions so as to explain the formation of nanorods and a gradient in morphology and size for a specific temperaturas. Finally, a disk-diffusion test was performed to evaluate the antimicrobial activity of these silver nanorod dispersions. It was found that the amount of seed solution added to the growth solution in which the nanorods are synthesized greatly affects the morphology and size of these. The change in protecting agent was confirmed via UV-Vis spectroscopy. The antimicrobial assays afforded a huge activity (24.71-52.86%) for all dispersions in comparison with a positive gentamicin control at a concentration 4180x higher. The largest activity was found in the l-cysteine protected rod dispersion.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-06-05
dc.date.accessioned.none.fl_str_mv 2024-02-01T16:36:10Z
dc.date.available.none.fl_str_mv 2024-02-01T16:36:10Z
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/73759
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/73759
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Ravindran, A.; Chandran, P.; Khan, S. S. Biofunctionalized Silver Nanoparticles:Advances and Prospects.Colloids and Surfaces B: Biointerfaces 2013, 105, 342–352. https://doi.org/10.1016/j.colsurfb.2012.07.036.
Abou El-Nour, K. M. M.; Eftaiha, A.; Al-Warthan, A.; Ammar, R. A. A. Synthesis and Applications of Silver Nanoparticles. Arabian Journal of Chemistry 2010, 3 (3), 35–140. https://doi.org/10.1016/j.arabjc.2010.04.008.
Das, R.; Nath, S. S.; Chakdar, D.; Gope, G.; Bhattacharjee, R. Synthesis of Silver Nanoparticles and Their Optical Properties. Journal of Experimental Nanoscience 2010, 5 (4), 357–362. https://doi.org/10.1080/17458080903583915.
Shenashen, M. A.; El-Safty, S. A.; Elshehy, E. A. Synthesis, Morphological Control, and Properties of Silver Nanoparticles in Potential Applications. Part. Part. Syst. Charact. 2014, 31 (3), 293–316. https://doi.org/10.1002/ppsc.201300181.
Hu, J.-Q.; Chen, Q.; Xie, Z.-X.; Han, G.-B.; Wang, R.-H.; Ren, B.; Zhang, Y.; Yang, Z.-L.; Tian, Z.-Q. A Simple and Effective Route for the Synthesis of Crystalline Silver Nanorods and Nanowires. Adv. Funct. Mater. 2004, 14 (2), 183–189. https://doi.org/10.1002/adfm.200304421.
Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Gold Nanorods: Synthesis, Characterization and Applications. Coordination chemistry reviews 2005, 249 (17–18), 1870–1901.
Nicoletti, O.; Wubs, M.; Mortensen, N. A.; Sigle, W.; Van Aken, P. A.; Midgley, P. A. Surface Plasmon Modes of a Single Silver Nanorod: An Electron Energy Loss Study. Optics Express 2011, 19 (16), 15371–15379. (8) Zhuo, X.; Henriksen-Lacey, M.; Jimenez de Aberasturi, D.; Sánchez-Iglesias, A.; Liz-Marzán, L. M. Shielded Silver Nanorods for Bioapplications. Chem. Mater. 2020, 32 (13), 5879–5889. https://doi.org/10.1021/acs.chemmater.0c01995.
Ojha, A. K.; Forster, S.; Kumar, S.; Vats, S.; Negi, S.; Fischer, I. Synthesis of Well– Dispersed Silver Nanorods of Different Aspect Ratios and Their Antimicrobial Properties against Gram Positive and Negative Bacterial Strains. J Nanobiotechnol 2013, 11 (1), 42. https://doi.org/10.1186/1477-3155-11-42.
Iftekhar Hossain, Md.; Edwards, J.; Tyler, J.; Anderson, J.; Bandyopadhyay, S. Antimicrobial Properties of Nanorods: Killing Bacteria via Impalement. IET nanobiotechnol. 2017, 11 (5), 501–505. https://doi.org/10.1049/iet-nbt.2016.0129.
Rekha, C. R.; Nayar, V. U.; Gopchandran, K. G. Synthesis of Highly Stable Silver Nanorods and Their Application as SERS Substrates. Journal of Science: Advanced Materials and Devices 2018, 3 (2), 196–205. https://doi.org/10.1016/j.jsamd.2018.03.003.
Jana, N. R.; Gearheart, L.; Murphy, C. J. Wet Chemical Synthesis of Silver Nanorods and Nanowires of Controllable Aspect Ratio. Chem. Commun. 2001, No. 7, 617–618. https://doi.org/10.1039/b100521i.
Miranda, O. R.; Dollahon, N. R.; Ahmadi, T. S. Critical Concentrations and Role of Ascorbic Acid (Vitamin C) in the Crystallization of Gold Nanorods within hexadecyltrimethyl Ammonium Bromide (CTAB)/Tetraoctyl Ammonium Bromide (TOAB) Micelles. Crystal Growth & Design 2006 6 (12), 2747-2753. https://doi.org/10.1021/cg060455l.
Zou, R.; Zhang, Q.; Zhao, Q.; Peng, F.; Wang, H.; Yu, H.; Yang, J. Thermal Stability of Gold Nanorods in an Aqueous Solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010, 372 (1–3), 177–181. https://doi.org/10.1016/j.colsurfa.2010.10.012.
Tebbe, M.; Kuttner, C.; Männel, M.; Fery, A.; Chanana, M. Colloidally Stable and Surfactant-Free Protein-Coated Gold Nanorods in Biological Media. ACS Appl. Mater. Interfaces 2015, 7 (10), 5984–5991. https://doi.org/10.1021/acsami.5b00335.
dc.rights.en.fl_str_mv Attribution 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 14 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Química
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Química
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/ef6603c4-1f1b-42d9-b89e-789fa19f46a5/download
https://repositorio.uniandes.edu.co/bitstreams/48101a0e-67e2-4e35-95fc-ee972ee070f0/download
https://repositorio.uniandes.edu.co/bitstreams/4ffb69b6-120e-4cd8-8af8-ae21d416a10c/download
https://repositorio.uniandes.edu.co/bitstreams/91471802-addd-4404-a4b9-47e5ad048705/download
https://repositorio.uniandes.edu.co/bitstreams/e2ed8203-dd15-4064-96ea-ec2edaca8d44/download
https://repositorio.uniandes.edu.co/bitstreams/e6701503-87ea-4925-a56a-2fb4102077fa/download
https://repositorio.uniandes.edu.co/bitstreams/ede0407b-2fb1-4045-84e8-a613fb484651/download
https://repositorio.uniandes.edu.co/bitstreams/bf06c952-dc06-4117-83b8-8f8d0857a5cc/download
bitstream.checksum.fl_str_mv 0175ea4a2d4caec4bbcc37e300941108
ae9e573a68e7f92501b6913cc846c39f
9f77ae698cf3fd1077bfb553b8ded42b
35b33bfb903ead1986989e0491e40075
fc5c06ee211f3678eba9008a68812258
e1c06d85ae7b8b032bef47e42e4c08f9
b178cacd36600d707faadc7363cb4733
536f59de6cbc840f4bccc9f3ea2acf4e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1808390259273105408
spelling Reiber, Andreasvirtual::89-1Ardila Fernández, Santiago AndrésHurtado Belalcazar, John Jadyvirtual::90-1Cortés Montañez, María Teresavirtual::91-1Macías López, Mario Albertovirtual::92-1Facultad de Ciencias::La Química de la Interfase Inorganica-Organica (Quinorg)2024-02-01T16:36:10Z2024-02-01T16:36:10Z2023-06-05https://hdl.handle.net/1992/73759instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Silver nanorod suspensions were synthesized by a simple chemical soft template method. This same synthesis procedure was then modified to include a change in the protecting agent from CTAB to l-cysteine and 4-aminotiophenol. The prepared nanorods qualitatively displayed differing morphologies and sizes according to UV-Visible electronic absorption spectra and the colors of the dispersions. The effects of Ostwald ripening were evaluated on one of the nanorod suspensions so as to explain the formation of nanorods and a gradient in morphology and size for a specific temperaturas. Finally, a disk-diffusion test was performed to evaluate the antimicrobial activity of these silver nanorod dispersions. It was found that the amount of seed solution added to the growth solution in which the nanorods are synthesized greatly affects the morphology and size of these. The change in protecting agent was confirmed via UV-Vis spectroscopy. The antimicrobial assays afforded a huge activity (24.71-52.86%) for all dispersions in comparison with a positive gentamicin control at a concentration 4180x higher. The largest activity was found in the l-cysteine protected rod dispersion.Se sintetizaron suspensiones de nanobarras de plata por un método de molde suave simple. Este mismo método de síntesis se modificó para incluir un cambio en el agente protector de bromuro de hexadeciltrimetilamonio (CTAB) a L-cisteína y 4-aminotiofenol. Las nanobarras preparadas presentaron diferentes morfologías y tamaños según resultados de espectroscopía de absorción UVVisible y los colores presentados por las dispersiones. Se evaluaron los efectos de la maduración de Ostwald en una de las suspensiones de nanobarras para explicar su formación y su gradiente de morfología y tamaño a temperaturas específicas. Finalmente, se llevaron a cabo pruebas de difusión en disco (Kirby-Bauer) para evaluar la actividad antimicrobiana de las dispersiones de nanobarras de plata. Se encontró que: la cantidad de solución semilla adicionada a la solución de crecimiento en que se sintetizan las nanobarras afecta su morfología y tamaño. El cambio de agente protector se confirmó por medio de espectroscopía de absorción UV-Visible. Los ensayos de propiedad antimicrobiana proporcionaron una alta actividad (24.71%-52.86%) para todas las dispersiones en contraste con un control positivo de gentamicina en concentraciones 4180 veces mayores. La actividad más significativa fue encontrada en la dispersión de barras protegidas con L-cisteína.QuímicoPregradoNanomateriales14 páginasapplication/pdfengUniversidad de los AndesQuímicaFacultad de CienciasDepartamento de QuímicaAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Chemical synthesis and characterization of silver nanorods with various protecting agents and their antimicrobial properties against gram positive and negative bacteriaSíntesis química y caracterización de nanobarras de plata con diversos agentes protectores y sus propiedades antimicrobianas contra bacterias gram positivo y negativoTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPNanobarras de plataAgente protectorL-cisteína4-aminotiofenolActividad antimicrobianaQuímicaRavindran, A.; Chandran, P.; Khan, S. S. Biofunctionalized Silver Nanoparticles:Advances and Prospects.Colloids and Surfaces B: Biointerfaces 2013, 105, 342–352. https://doi.org/10.1016/j.colsurfb.2012.07.036.Abou El-Nour, K. M. M.; Eftaiha, A.; Al-Warthan, A.; Ammar, R. A. A. Synthesis and Applications of Silver Nanoparticles. Arabian Journal of Chemistry 2010, 3 (3), 35–140. https://doi.org/10.1016/j.arabjc.2010.04.008.Das, R.; Nath, S. S.; Chakdar, D.; Gope, G.; Bhattacharjee, R. Synthesis of Silver Nanoparticles and Their Optical Properties. Journal of Experimental Nanoscience 2010, 5 (4), 357–362. https://doi.org/10.1080/17458080903583915.Shenashen, M. A.; El-Safty, S. A.; Elshehy, E. A. Synthesis, Morphological Control, and Properties of Silver Nanoparticles in Potential Applications. Part. Part. Syst. Charact. 2014, 31 (3), 293–316. https://doi.org/10.1002/ppsc.201300181.Hu, J.-Q.; Chen, Q.; Xie, Z.-X.; Han, G.-B.; Wang, R.-H.; Ren, B.; Zhang, Y.; Yang, Z.-L.; Tian, Z.-Q. A Simple and Effective Route for the Synthesis of Crystalline Silver Nanorods and Nanowires. Adv. Funct. Mater. 2004, 14 (2), 183–189. https://doi.org/10.1002/adfm.200304421.Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Gold Nanorods: Synthesis, Characterization and Applications. Coordination chemistry reviews 2005, 249 (17–18), 1870–1901.Nicoletti, O.; Wubs, M.; Mortensen, N. A.; Sigle, W.; Van Aken, P. A.; Midgley, P. A. Surface Plasmon Modes of a Single Silver Nanorod: An Electron Energy Loss Study. Optics Express 2011, 19 (16), 15371–15379. (8) Zhuo, X.; Henriksen-Lacey, M.; Jimenez de Aberasturi, D.; Sánchez-Iglesias, A.; Liz-Marzán, L. M. Shielded Silver Nanorods for Bioapplications. Chem. Mater. 2020, 32 (13), 5879–5889. https://doi.org/10.1021/acs.chemmater.0c01995.Ojha, A. K.; Forster, S.; Kumar, S.; Vats, S.; Negi, S.; Fischer, I. Synthesis of Well– Dispersed Silver Nanorods of Different Aspect Ratios and Their Antimicrobial Properties against Gram Positive and Negative Bacterial Strains. J Nanobiotechnol 2013, 11 (1), 42. https://doi.org/10.1186/1477-3155-11-42.Iftekhar Hossain, Md.; Edwards, J.; Tyler, J.; Anderson, J.; Bandyopadhyay, S. Antimicrobial Properties of Nanorods: Killing Bacteria via Impalement. IET nanobiotechnol. 2017, 11 (5), 501–505. https://doi.org/10.1049/iet-nbt.2016.0129.Rekha, C. R.; Nayar, V. U.; Gopchandran, K. G. Synthesis of Highly Stable Silver Nanorods and Their Application as SERS Substrates. Journal of Science: Advanced Materials and Devices 2018, 3 (2), 196–205. https://doi.org/10.1016/j.jsamd.2018.03.003.Jana, N. R.; Gearheart, L.; Murphy, C. J. Wet Chemical Synthesis of Silver Nanorods and Nanowires of Controllable Aspect Ratio. Chem. Commun. 2001, No. 7, 617–618. https://doi.org/10.1039/b100521i.Miranda, O. R.; Dollahon, N. R.; Ahmadi, T. S. Critical Concentrations and Role of Ascorbic Acid (Vitamin C) in the Crystallization of Gold Nanorods within hexadecyltrimethyl Ammonium Bromide (CTAB)/Tetraoctyl Ammonium Bromide (TOAB) Micelles. Crystal Growth & Design 2006 6 (12), 2747-2753. https://doi.org/10.1021/cg060455l.Zou, R.; Zhang, Q.; Zhao, Q.; Peng, F.; Wang, H.; Yu, H.; Yang, J. Thermal Stability of Gold Nanorods in an Aqueous Solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010, 372 (1–3), 177–181. https://doi.org/10.1016/j.colsurfa.2010.10.012.Tebbe, M.; Kuttner, C.; Männel, M.; Fery, A.; Chanana, M. Colloidally Stable and Surfactant-Free Protein-Coated Gold Nanorods in Biological Media. ACS Appl. Mater. Interfaces 2015, 7 (10), 5984–5991. https://doi.org/10.1021/acsami.5b00335.201819723Publicationhttps://scholar.google.es/citations?user=jXtWpzEAAAAJvirtual::90-1https://scholar.google.es/citations?user=rvM48UEAAAAJvirtual::91-1https://scholar.google.es/citations?user=WVqdEMkAAAAJvirtual::92-10000-0002-0511-9719virtual::90-10000-0002-7475-2083virtual::91-10000-0003-2749-8489virtual::92-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000568201virtual::89-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001192175virtual::90-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000281204virtual::91-17e1de7b1-7670-4e86-81ca-90331b57ff5evirtual::89-17e1de7b1-7670-4e86-81ca-90331b57ff5evirtual::89-1047f74b0-09ef-4525-a0a8-b17aaa7ac91evirtual::90-1113fd683-fc5b-4ead-8736-82763a221532virtual::91-17cbde288-913a-4810-b1d1-0c5784a4bfa5virtual::92-1047f74b0-09ef-4525-a0a8-b17aaa7ac91evirtual::90-1113fd683-fc5b-4ead-8736-82763a221532virtual::91-17cbde288-913a-4810-b1d1-0c5784a4bfa5virtual::92-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/ef6603c4-1f1b-42d9-b89e-789fa19f46a5/download0175ea4a2d4caec4bbcc37e300941108MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/48101a0e-67e2-4e35-95fc-ee972ee070f0/downloadae9e573a68e7f92501b6913cc846c39fMD52ORIGINALChemical synthesis and characterization of silver nanorods with various protecting agents and their antimicrobial properties against gram positive and negative bacteria.pdfChemical synthesis and characterization of silver nanorods with various protecting agents and their antimicrobial properties against gram positive and negative bacteria.pdfapplication/pdf617770https://repositorio.uniandes.edu.co/bitstreams/4ffb69b6-120e-4cd8-8af8-ae21d416a10c/download9f77ae698cf3fd1077bfb553b8ded42bMD53Formato Autorizacion.pdfFormato Autorizacion.pdfHIDEapplication/pdf1031742https://repositorio.uniandes.edu.co/bitstreams/91471802-addd-4404-a4b9-47e5ad048705/download35b33bfb903ead1986989e0491e40075MD54TEXTChemical synthesis and characterization of silver nanorods with various protecting agents and their antimicrobial properties against gram positive and negative bacteria.pdf.txtChemical synthesis and characterization of silver nanorods with various protecting agents and their antimicrobial properties against gram positive and negative bacteria.pdf.txtExtracted texttext/plain18852https://repositorio.uniandes.edu.co/bitstreams/e2ed8203-dd15-4064-96ea-ec2edaca8d44/downloadfc5c06ee211f3678eba9008a68812258MD55Formato Autorizacion.pdf.txtFormato Autorizacion.pdf.txtExtracted texttext/plain2https://repositorio.uniandes.edu.co/bitstreams/e6701503-87ea-4925-a56a-2fb4102077fa/downloade1c06d85ae7b8b032bef47e42e4c08f9MD57THUMBNAILChemical synthesis and characterization of silver nanorods with various protecting agents and their antimicrobial properties against gram positive and negative bacteria.pdf.jpgChemical synthesis and characterization of silver nanorods with various protecting agents and their antimicrobial properties against gram positive and negative bacteria.pdf.jpgGenerated Thumbnailimage/jpeg5672https://repositorio.uniandes.edu.co/bitstreams/ede0407b-2fb1-4045-84e8-a613fb484651/downloadb178cacd36600d707faadc7363cb4733MD56Formato Autorizacion.pdf.jpgFormato Autorizacion.pdf.jpgGenerated Thumbnailimage/jpeg10530https://repositorio.uniandes.edu.co/bitstreams/bf06c952-dc06-4117-83b8-8f8d0857a5cc/download536f59de6cbc840f4bccc9f3ea2acf4eMD581992/73759oai:repositorio.uniandes.edu.co:1992/737592024-02-16 14:49:36.367http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K