Studying academic success: A data analytics approach to predict performance of higher education students
The dropout of students in higher education is a concern for universities, as it directly impacts the community and the educational level of future generations. For this reason, a data analytics-based model is proposed to support students in making decisions during the course selection process, aimi...
- Autores:
-
Martínez Osorio, Daniel Felipe
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/73243
- Acceso en línea:
- https://hdl.handle.net/1992/73243
- Palabra clave:
- Performance
Data analytics
Ingeniería
- Rights
- openAccess
- License
- Attribution 4.0 International
id |
UNIANDES2_5a8de74b6ea4cddaca20907372885803 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/73243 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Studying academic success: A data analytics approach to predict performance of higher education students |
title |
Studying academic success: A data analytics approach to predict performance of higher education students |
spellingShingle |
Studying academic success: A data analytics approach to predict performance of higher education students Performance Data analytics Ingeniería |
title_short |
Studying academic success: A data analytics approach to predict performance of higher education students |
title_full |
Studying academic success: A data analytics approach to predict performance of higher education students |
title_fullStr |
Studying academic success: A data analytics approach to predict performance of higher education students |
title_full_unstemmed |
Studying academic success: A data analytics approach to predict performance of higher education students |
title_sort |
Studying academic success: A data analytics approach to predict performance of higher education students |
dc.creator.fl_str_mv |
Martínez Osorio, Daniel Felipe |
dc.contributor.advisor.none.fl_str_mv |
Manrique Piramanrique, Rubén Francisco Benítez Amaya, Andrés Felipe |
dc.contributor.author.none.fl_str_mv |
Martínez Osorio, Daniel Felipe |
dc.contributor.researchgroup.none.fl_str_mv |
Facultad de Ingeniería |
dc.subject.keyword.eng.fl_str_mv |
Performance Data analytics |
topic |
Performance Data analytics Ingeniería |
dc.subject.themes.spa.fl_str_mv |
Ingeniería |
description |
The dropout of students in higher education is a concern for universities, as it directly impacts the community and the educational level of future generations. For this reason, a data analytics-based model is proposed to support students in making decisions during the course selection process, aiming to guide them towards completing their degree while maximizing their performance. We have a dataset for three different majors in the Universidad de los Andes, (Systems and Computer Engineering, Industrial Engineering, and Economics), containing historical information about students, the courses they chose each semester in their specific curriculum, and their grades. Based on this data, the model analyzes the completed courses and the ones remaining for each student to fulfill their curriculum requirements. In this way, it creates a student profile that is used to calculate the probability of achieving certain grades in their next semester. Assuming this result, the process is iterated to develop a curriculum plan for the upcoming semesters. This outcome will provide students with a course guide for each semester, increasing their likelihood of achieving better performance in their studies. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-01-15T19:40:54Z |
dc.date.available.none.fl_str_mv |
2024-01-15T19:40:54Z |
dc.date.issued.none.fl_str_mv |
2024-01-10 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/73243 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/73243 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.en.fl_str_mv |
Attribution 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
28 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Ingeniería de Sistemas y Computación |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.none.fl_str_mv |
Departamento de Ingeniería Sistemas y Computación |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/d9e792fb-30fc-4f15-b202-26d64fe3b547/download https://repositorio.uniandes.edu.co/bitstreams/8210a4b2-89de-441d-97fd-40ad9d3c4eaa/download https://repositorio.uniandes.edu.co/bitstreams/1a1ec6c5-5b12-4e4b-bafa-27173a3652fe/download https://repositorio.uniandes.edu.co/bitstreams/1e40144b-8c74-4a13-a812-62e715675e95/download https://repositorio.uniandes.edu.co/bitstreams/9936db44-a483-4f28-a8a3-ba975ea42c03/download https://repositorio.uniandes.edu.co/bitstreams/8f63d36f-bc02-4296-b201-ce56954da1d1/download https://repositorio.uniandes.edu.co/bitstreams/5508126a-6b56-41ad-a043-95eb5eed4358/download https://repositorio.uniandes.edu.co/bitstreams/5ab3ed67-ea55-4088-91a7-ff5ebb4edd16/download |
bitstream.checksum.fl_str_mv |
346dfd241ae09c3e2770226547977824 887ad3b02fbc8ec0f5334980febc51ba ae9e573a68e7f92501b6913cc846c39f 0175ea4a2d4caec4bbcc37e300941108 328fccf48e4ee6112c73a70b2088af84 43cc021004e2e3e6d8561a949e4bcad7 456c0fda7c358bab2af33fb13b69f4f3 fbb4ea6312342f7c387fdce26e146690 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133923741761536 |
spelling |
Manrique Piramanrique, Rubén FranciscoBenítez Amaya, Andrés FelipeMartínez Osorio, Daniel FelipeFacultad de Ingeniería2024-01-15T19:40:54Z2024-01-15T19:40:54Z2024-01-10https://hdl.handle.net/1992/73243instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The dropout of students in higher education is a concern for universities, as it directly impacts the community and the educational level of future generations. For this reason, a data analytics-based model is proposed to support students in making decisions during the course selection process, aiming to guide them towards completing their degree while maximizing their performance. We have a dataset for three different majors in the Universidad de los Andes, (Systems and Computer Engineering, Industrial Engineering, and Economics), containing historical information about students, the courses they chose each semester in their specific curriculum, and their grades. Based on this data, the model analyzes the completed courses and the ones remaining for each student to fulfill their curriculum requirements. In this way, it creates a student profile that is used to calculate the probability of achieving certain grades in their next semester. Assuming this result, the process is iterated to develop a curriculum plan for the upcoming semesters. This outcome will provide students with a course guide for each semester, increasing their likelihood of achieving better performance in their studies.Ingeniero de Sistemas y ComputaciónPregrado28 páginasapplication/pdfengUniversidad de los AndesIngeniería de Sistemas y ComputaciónFacultad de IngenieríaDepartamento de Ingeniería Sistemas y ComputaciónAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Studying academic success: A data analytics approach to predict performance of higher education studentsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPPerformanceData analyticsIngeniería201910380PublicationORIGINALStudying Academic Succes.pdfStudying Academic Succes.pdfapplication/pdf1565994https://repositorio.uniandes.edu.co/bitstreams/d9e792fb-30fc-4f15-b202-26d64fe3b547/download346dfd241ae09c3e2770226547977824MD51autorizacion tesis 1_Daniel_signed.pdfautorizacion tesis 1_Daniel_signed.pdfHIDEapplication/pdf550396https://repositorio.uniandes.edu.co/bitstreams/8210a4b2-89de-441d-97fd-40ad9d3c4eaa/download887ad3b02fbc8ec0f5334980febc51baMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/1a1ec6c5-5b12-4e4b-bafa-27173a3652fe/downloadae9e573a68e7f92501b6913cc846c39fMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/1e40144b-8c74-4a13-a812-62e715675e95/download0175ea4a2d4caec4bbcc37e300941108MD54TEXTStudying Academic Succes.pdf.txtStudying Academic Succes.pdf.txtExtracted texttext/plain43670https://repositorio.uniandes.edu.co/bitstreams/9936db44-a483-4f28-a8a3-ba975ea42c03/download328fccf48e4ee6112c73a70b2088af84MD56autorizacion tesis 1_Daniel_signed.pdf.txtautorizacion tesis 1_Daniel_signed.pdf.txtExtracted texttext/plain150https://repositorio.uniandes.edu.co/bitstreams/8f63d36f-bc02-4296-b201-ce56954da1d1/download43cc021004e2e3e6d8561a949e4bcad7MD58THUMBNAILStudying Academic Succes.pdf.jpgStudying Academic Succes.pdf.jpgGenerated Thumbnailimage/jpeg9904https://repositorio.uniandes.edu.co/bitstreams/5508126a-6b56-41ad-a043-95eb5eed4358/download456c0fda7c358bab2af33fb13b69f4f3MD57autorizacion tesis 1_Daniel_signed.pdf.jpgautorizacion tesis 1_Daniel_signed.pdf.jpgGenerated Thumbnailimage/jpeg11057https://repositorio.uniandes.edu.co/bitstreams/5ab3ed67-ea55-4088-91a7-ff5ebb4edd16/downloadfbb4ea6312342f7c387fdce26e146690MD591992/73243oai:repositorio.uniandes.edu.co:1992/732432024-01-16 03:04:36.735http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |