Deep reinforcement learning for optimal gameplay in street fighter III: a resource-constrained approach

This bachelor’s thesis investigates the performance of reinforcement learning (RL) algorithms in the context of fighting games, specifically Street Fighter III Third Strike, under heavy resource constraints. The research focuses on four distinct RL algorithms: Proximal Policy Optimization (PPO), Asy...

Full description

Autores:
Zambrano Huertas, Daniel Ernesto
Díaz Salamanca, Jhoan Sebastián
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/70987
Acceso en línea:
https://hdl.handle.net/1992/70987
Palabra clave:
Deep Reinforcement Learning
Machine Learning
VideoGames
FightGames
Discrete Spaces
Constrained Resources
RL Agent Policies
Ingeniería
Rights
openAccess
License
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id UNIANDES2_5a26dd62cf4bda09dca26728cfad8582
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/70987
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Deep reinforcement learning for optimal gameplay in street fighter III: a resource-constrained approach
title Deep reinforcement learning for optimal gameplay in street fighter III: a resource-constrained approach
spellingShingle Deep reinforcement learning for optimal gameplay in street fighter III: a resource-constrained approach
Deep Reinforcement Learning
Machine Learning
VideoGames
FightGames
Discrete Spaces
Constrained Resources
RL Agent Policies
Ingeniería
title_short Deep reinforcement learning for optimal gameplay in street fighter III: a resource-constrained approach
title_full Deep reinforcement learning for optimal gameplay in street fighter III: a resource-constrained approach
title_fullStr Deep reinforcement learning for optimal gameplay in street fighter III: a resource-constrained approach
title_full_unstemmed Deep reinforcement learning for optimal gameplay in street fighter III: a resource-constrained approach
title_sort Deep reinforcement learning for optimal gameplay in street fighter III: a resource-constrained approach
dc.creator.fl_str_mv Zambrano Huertas, Daniel Ernesto
Díaz Salamanca, Jhoan Sebastián
dc.contributor.advisor.none.fl_str_mv Cardozo Álvarez, Nicolás
dc.contributor.author.none.fl_str_mv Zambrano Huertas, Daniel Ernesto
Díaz Salamanca, Jhoan Sebastián
dc.subject.keyword.eng.fl_str_mv Deep Reinforcement Learning
Machine Learning
VideoGames
FightGames
Discrete Spaces
Constrained Resources
RL Agent Policies
topic Deep Reinforcement Learning
Machine Learning
VideoGames
FightGames
Discrete Spaces
Constrained Resources
RL Agent Policies
Ingeniería
dc.subject.themes.spa.fl_str_mv Ingeniería
description This bachelor’s thesis investigates the performance of reinforcement learning (RL) algorithms in the context of fighting games, specifically Street Fighter III Third Strike, under heavy resource constraints. The research focuses on four distinct RL algorithms: Proximal Policy Optimization (PPO), Asynchronous Advantage Actor-Critic (A3C), Advantage Actor-Critic(A2C) and Deep Q-Network (DQN). Each algorithm is trained under the same restricted resource conditions to facilitate a fair comparison of their final or estimated performances. The training process involves a combination of batch training and the use of the replay buffer for the off-policy DQN algorithm. The RL agents are trained with a reward function based on the game’s health values, with damage inflicted on the opponent corresponding to a positive reward and damage suffered by the agent corresponding to a negative reward. The primary objective of this research is to determine which RL algorithm performs best under resource constraints and to identify the optimal training conditions for each, with the secondary focus to explore various strategies that could potentially make the algorithms perform better when changing the RL agent’s behavior, by modifying the agent’s reward. The research also explores the potential of developing a meta-agent that can select the best-performing agent based on the current game state, aiming to improve the overall performance. The results of this project aim to contribute to the understanding and advancement of reinforcement learning in complex, dynamic, and discrete environments, such as fighting games. The research also lays the groundwork for future investigations into the development of a metaagent and the formulation of more effective reward functions.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-11-07T18:24:54Z
dc.date.available.none.fl_str_mv 2023-11-07T18:24:54Z
dc.date.issued.none.fl_str_mv 2023-08-16
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/70987
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/70987
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). Deep Reinforcement Learning: A Brief Survey. IEEE Signal Processing Magazine, 34(6), 26–38. https://doi.org/10.1109/msp.2017.2743240
Dabney. (2017). Distributional Reinforcement Learning with Quantile Regression.
Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning, I., Legg, S., & Kavukcuoglu, K. (2018). IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures.
EventHubs. (2023). Tiers for Street Fighter 3 Third Strike. EventHubs. https://www.eventhubs.com/tiers/sf3-3s/.
Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor.
Lahtela, M., & Kaplan, P. (Provenance). (2023). AWS SageMaker. Amazon. https://aws.amazon.com/es/sagemaker/.
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013). Playing Atari with Deep Reinforcement Learning.
Mnih, Volodymyr, Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D., & Kavukcuoglu, K. (2016). Asynchronous Methods for Deep Reinforcement Learning.
OpenAI. (2018). Introduction. Introduction - Spinning Up documentation. https://spinningup.openai.com/en/latest/user/introduction.html.
Palmas, A. (2022). DIAMBRA Arena: a New Reinforcement Learning Platform for Research and Experimentation. ArXiv E-Prints, earXiv:2210.10595.
Quach, K. (2018). What does it take for an OpenAI bot to best Dota 2 heroes? 128,000 CPU cores, 256 NVIDIA GPUs. The Register® - Biting the Hand That Feeds IT. https://www.theregister.com/2018/06/25/openai_dota_2_5v5_bots/.
Salimans, T., Ho, J., Chen, X., Sidor, S., & Sutskever, I. (2017). Evolution Strategies as a Scalable Alternative to Reinforcement Learning.
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal Policy Optimization Algorithms.
Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction, Second Edition. The MIT Press.
Van Hasselt, H., Guez, A., & Silver, D. (2015). Deep Reinforcement Learning with Double Q-learning.
Wang. (2016). Dueling Network Architectures for Deep Reinforcement Learning.
YouTube. (2023). DESTROYING Donkey Kong with AI (Deep Reinforcement Learning). YouTube.
dc.rights.uri.none.fl_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 115 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Ingeniería de Sistemas y Computación
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.department.none.fl_str_mv Departamento de Ingeniería Sistemas y Computación
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/400fa813-45e5-48de-8af3-4589b0d793e9/download
https://repositorio.uniandes.edu.co/bitstreams/06f8530e-3290-4949-8cf8-b26f4136c213/download
https://repositorio.uniandes.edu.co/bitstreams/61b0377f-3434-4bed-ab43-c4e6c17ec12e/download
https://repositorio.uniandes.edu.co/bitstreams/93679faa-d8f7-451f-bfd9-4a739ec10f7d/download
https://repositorio.uniandes.edu.co/bitstreams/cc87b1ca-672b-4de4-8898-261c20f2e5f7/download
https://repositorio.uniandes.edu.co/bitstreams/8325ed9e-12a4-471a-b3e1-829efcb07c62/download
https://repositorio.uniandes.edu.co/bitstreams/61ebaff4-9517-4808-ad5b-c08e6661bc78/download
bitstream.checksum.fl_str_mv f7a4e1a9348ae9127ba08b778d6a0223
8a359c45075a6c539e587b060db7b4e1
ae9e573a68e7f92501b6913cc846c39f
3997ab529999bc4c16df4cac2c76748a
48bb9d925a2534e37ca688c07fc77fe2
a4b2b6ae24fc9f640384a3ae25136f4a
3539f8fbe5fe82c196da4ce645c84da7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134027476336640
spelling Cardozo Álvarez, NicolásZambrano Huertas, Daniel ErnestoDíaz Salamanca, Jhoan Sebastián2023-11-07T18:24:54Z2023-11-07T18:24:54Z2023-08-16https://hdl.handle.net/1992/70987instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/This bachelor’s thesis investigates the performance of reinforcement learning (RL) algorithms in the context of fighting games, specifically Street Fighter III Third Strike, under heavy resource constraints. The research focuses on four distinct RL algorithms: Proximal Policy Optimization (PPO), Asynchronous Advantage Actor-Critic (A3C), Advantage Actor-Critic(A2C) and Deep Q-Network (DQN). Each algorithm is trained under the same restricted resource conditions to facilitate a fair comparison of their final or estimated performances. The training process involves a combination of batch training and the use of the replay buffer for the off-policy DQN algorithm. The RL agents are trained with a reward function based on the game’s health values, with damage inflicted on the opponent corresponding to a positive reward and damage suffered by the agent corresponding to a negative reward. The primary objective of this research is to determine which RL algorithm performs best under resource constraints and to identify the optimal training conditions for each, with the secondary focus to explore various strategies that could potentially make the algorithms perform better when changing the RL agent’s behavior, by modifying the agent’s reward. The research also explores the potential of developing a meta-agent that can select the best-performing agent based on the current game state, aiming to improve the overall performance. The results of this project aim to contribute to the understanding and advancement of reinforcement learning in complex, dynamic, and discrete environments, such as fighting games. The research also lays the groundwork for future investigations into the development of a metaagent and the formulation of more effective reward functions.Ingeniero de Sistemas y ComputaciónPregrado115 páginasapplication/pdfengUniversidad de los AndesIngeniería de Sistemas y ComputaciónFacultad de IngenieríaDepartamento de Ingeniería Sistemas y Computaciónhttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Deep reinforcement learning for optimal gameplay in street fighter III: a resource-constrained approachTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPDeep Reinforcement LearningMachine LearningVideoGamesFightGamesDiscrete SpacesConstrained ResourcesRL Agent PoliciesIngenieríaArulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). Deep Reinforcement Learning: A Brief Survey. IEEE Signal Processing Magazine, 34(6), 26–38. https://doi.org/10.1109/msp.2017.2743240Dabney. (2017). Distributional Reinforcement Learning with Quantile Regression.Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning, I., Legg, S., & Kavukcuoglu, K. (2018). IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures.EventHubs. (2023). Tiers for Street Fighter 3 Third Strike. EventHubs. https://www.eventhubs.com/tiers/sf3-3s/.Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor.Lahtela, M., & Kaplan, P. (Provenance). (2023). AWS SageMaker. Amazon. https://aws.amazon.com/es/sagemaker/.Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013). Playing Atari with Deep Reinforcement Learning.Mnih, Volodymyr, Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D., & Kavukcuoglu, K. (2016). Asynchronous Methods for Deep Reinforcement Learning.OpenAI. (2018). Introduction. Introduction - Spinning Up documentation. https://spinningup.openai.com/en/latest/user/introduction.html.Palmas, A. (2022). DIAMBRA Arena: a New Reinforcement Learning Platform for Research and Experimentation. ArXiv E-Prints, earXiv:2210.10595.Quach, K. (2018). What does it take for an OpenAI bot to best Dota 2 heroes? 128,000 CPU cores, 256 NVIDIA GPUs. The Register® - Biting the Hand That Feeds IT. https://www.theregister.com/2018/06/25/openai_dota_2_5v5_bots/.Salimans, T., Ho, J., Chen, X., Sidor, S., & Sutskever, I. (2017). Evolution Strategies as a Scalable Alternative to Reinforcement Learning.Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal Policy Optimization Algorithms.Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction, Second Edition. The MIT Press.Van Hasselt, H., Guez, A., & Silver, D. (2015). Deep Reinforcement Learning with Double Q-learning.Wang. (2016). Dueling Network Architectures for Deep Reinforcement Learning.YouTube. (2023). DESTROYING Donkey Kong with AI (Deep Reinforcement Learning). YouTube.201914912201819861PublicationORIGINALDeep Reinforcement Learning for Optimal Gameplay.pdfDeep Reinforcement Learning for Optimal Gameplay.pdfapplication/pdf8817369https://repositorio.uniandes.edu.co/bitstreams/400fa813-45e5-48de-8af3-4589b0d793e9/downloadf7a4e1a9348ae9127ba08b778d6a0223MD51Autorizacion Tesis_Daniel Ernesto Zambr-1.pdfAutorizacion Tesis_Daniel Ernesto Zambr-1.pdfHIDEapplication/pdf235477https://repositorio.uniandes.edu.co/bitstreams/06f8530e-3290-4949-8cf8-b26f4136c213/download8a359c45075a6c539e587b060db7b4e1MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/61b0377f-3434-4bed-ab43-c4e6c17ec12e/downloadae9e573a68e7f92501b6913cc846c39fMD53TEXTDeep Reinforcement Learning for Optimal Gameplay.pdf.txtDeep Reinforcement Learning for Optimal Gameplay.pdf.txtExtracted texttext/plain101026https://repositorio.uniandes.edu.co/bitstreams/93679faa-d8f7-451f-bfd9-4a739ec10f7d/download3997ab529999bc4c16df4cac2c76748aMD54Autorizacion Tesis_Daniel Ernesto Zambr-1.pdf.txtAutorizacion Tesis_Daniel Ernesto Zambr-1.pdf.txtExtracted texttext/plain42https://repositorio.uniandes.edu.co/bitstreams/cc87b1ca-672b-4de4-8898-261c20f2e5f7/download48bb9d925a2534e37ca688c07fc77fe2MD56THUMBNAILDeep Reinforcement Learning for Optimal Gameplay.pdf.jpgDeep Reinforcement Learning for Optimal Gameplay.pdf.jpgGenerated Thumbnailimage/jpeg3561https://repositorio.uniandes.edu.co/bitstreams/8325ed9e-12a4-471a-b3e1-829efcb07c62/downloada4b2b6ae24fc9f640384a3ae25136f4aMD55Autorizacion Tesis_Daniel Ernesto Zambr-1.pdf.jpgAutorizacion Tesis_Daniel Ernesto Zambr-1.pdf.jpgGenerated Thumbnailimage/jpeg12196https://repositorio.uniandes.edu.co/bitstreams/61ebaff4-9517-4808-ad5b-c08e6661bc78/download3539f8fbe5fe82c196da4ce645c84da7MD571992/70987oai:repositorio.uniandes.edu.co:1992/709872024-08-27 07:57:52.261https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K